Vol. 77 No. 2 (2022)
Research Articles

Historical crop yields and climate variability: analysis of Italian cereal data

Fabio Gaetano Santeramo
Università di Foggia
Irene Maccarone
University of Foggia

Published 2022-08-04


  • climate change,
  • cereals,
  • detrendisation

How to Cite

Santeramo, F. G., & Maccarone, I. (2022). Historical crop yields and climate variability: analysis of Italian cereal data. Italian Review of Agricultural Economics, 77(2), 77–91. https://doi.org/10.36253/rea-13596


Climate change is impacting on the agricultural sector in several ways, and the effects on yields are generally among the most observable ones. Open fields crops, such as cereals, are very vulnerable to climate change. We study the historical data on yields of main cereals, namely barley, maize, oats, rice, rye, wheat, to conclude on the long run impacts of temperature and precipitation, over the period 1920-2015. Yields are found to be inversely correlated with temperatures and positively with precipitation, in both cases the relationships are non-linear, as expected.


Download data is not yet available.


Metrics Loading ...


  1. Agnolucci P., De Lipsis V. (2019). Long-run trend in agricultural yield and climatic factors in Europe. Climatic Change, 1-21. DOI: https://doi.org/10.1007/s10584-019-02622-3
  2. Avanzini M., Salvador I., Gios G. (2018). Climate change and variations in mountain pasture values in the central-eastern Italian Alps in the eighteenth and nineteenth centuries. Bio-based and Applied Economics, 7(2): 97-116. DOI: 10.13128/bae-7670
  3. Barnwal P., Kotani K. (2013). Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. Ecological Economics, 87: 95-109. DOI: http://dx.doi.org/10.1016/j.ecolecon.2012.11.024
  4. Black J.R., Thompson S.R. (1978). “Some evidence on weather-crop-yield interaction.” American Journal of Agricultural Economics, 60(3): 540-543. DOI: https://doi.org/10.2307/1239954
  5. Briche E., Beltrando G., Somot S., Quénol H. (2014). Critical analysis of simulated daily temperature data from the ARPEGE-climate model: application to climate change in the Champagne wine-producing region. Climatic change, 123(2): 241-254. DOI: 10.1007/s10584-013-1044-5
  6. Campiglia E., Mancinelli R., De Stefanis E., Pucciarmati S., Radicetti E. (2015). The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crops Research, 176: 34-44. DOI: http://dx.doi.org/10.1016/j.fcr.2015.02.021
  7. Cabas J., Weersink A., Olale E. (2010). “Crop yield response to economic, site and climatic variables.” Climatic change, 101(3): 599-616. DOI: 10.1007/s10584-009-9754-4
  8. Challinor A.J., Watson J., Lobell D.B., Howden S.M., Smith D.R., Chhetri N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4): 287-291. DOI: http://dx.doi.org/10.1038/nclimate2153
  9. Cooper J., DelBeCq B. (2014). A multi-region approach to assessing fiscal and farm level consequences of government support for farm risk management. Bio-Based and Applied Economics Journal, 3(1050-2016-85763): 205-227. DOI: http://dx.doi.org/10.22004/ag.econ.196654
  10. Cordier J., Santeramo F. (2020). Mutual funds and the Income Stabilisation Tool in the EU: Retrospect and Prospects. EuroChoices, 19(1): 53-58. DOI: https://doi.org/10.1111/1746-692X.12210
  11. Diffenbaugh N.S., Davenport F.V., Burke M. (2021). Historical warming has increased US crop insurance losses. Environmental Research Letters, 16(8): 084025. DOI: https://doi.org/10.1088/1748-9326/ac1223
  12. Ferrara R.M., Trevisiol P., Acutis M., Rana G., Richter G.M., Baggaley N. (2010). Topographic impacts on wheat yields under climate change: two contrasted case studies in Europe. Theoretical and Applied Climatology, 99(1): 53-65. DOI: 10.1007/s00704-009-0126-9
  13. Finger R. (2010). “Evidence of slowing yield growth–the example of Swiss cereal yields.” Food Policy, 35(2): 175-182. DOI: https://doi.org/10.1016/j.foodpol.2009.11.004
  14. Fletcher A.L., Chen C., Ota N., Lawes R.A., Oliver Y.M. (2020). Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 1-18. DOI: https://doi.org/10.1007/s10584-020-02666-w.
  15. Furuya J., Koyama O. (2005). Impacts of climatic change on world agricultural product markets: estimation of macro yield functions. Japan Agricultural Research Quarterly: JARQ, 39(2): 121-134. DOI: http://www.jircas.affrc.go.jp
  16. Gaudin A.C.M., Tolhurst T.N., Ker A.P., Janovicek K., Tortora C., Martin R.C., Deen W. (2015). “Increasing crop diversity mitigates weather variations and improves yield stability.” PloS one, 10(2), e0113261. DOI: https://doi.org/10.1371/journal.pone.0113261
  17. Hennessy D.A. (2009). “Crop yield skewness and the normal distribution.” Journal of Agricultural and Resource Economics, 34-52. DOI: https://www.jstor.org/stable/41548400
  18. ISTAT (2019). Agricoltura: nel 2018 +0,6% produzione e +0,9% valore aggiunto, ma i margini calano.
  19. ISTAT (2021). In calo le superfici cerealicole, ma previsioni in crescita per il 2021.
  20. Kahil M.T., Albiac J. (2013). Greenhouse gases mitigation policies in the agriculture of Aragon, Spain. Bio-based and Applied Economics Journal, 2(1050-2016-85745): 49-72. DOI: http://dx.doi.org/10.22004/ag.econ.149222
  21. Kim H., Moschini G. (2018). The dynamics of supply: US corn and soybeans in the biofuel era. Land Economics, 94(4): 593-613. DOI: 10.3368/le.94.4.593
  22. Ker A.P., Goodwin B.K. (2000). “Nonparametric estimation of crop insurance rates revisited.” American Journal of Agricultural Economics, 82(2): 463-478. DOI: https://doi.org/10.1111/0002-9092.00039
  23. Kolstad C.D., Moore F.C. (2020). Estimating the economic impacts of climate change using weather observations. Review of Environmental Economics and Policy. Doi: https://doi.org/10.1093/reep/rez024
  24. Lamonaca E., Santeramo F.G., Seccia A. (2021). Climate changes and new productive dynamics in the global wine sector. Bio-based and Applied Economics, 10(2): 123-135. DOI: 0.36253/bae-967
  25. Leng Guoyong, Maoyi Huang (2017). “Crop yield response to climate change varies with crop spatial distribution pattern.” Scientific Reports, 7(1): 1-10. DOI: 10.1038/s41598-017-01599-2
  26. Lobell D.B., Burke M.B. (2010). “On the use of statistical models to predict crop yield responses to climate change.” Agricultural and forest meteorology, 150(11): 1443-1452. DOI: https://doi.org/10.1016/j.agrformet.2010.07.008
  27. Lu Junyu, Carbone G.J., Peng Gao (2017). “Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895-2014.” Agricultural and forest meteorology, 237: 196-208. DOI: https://doi.org/10.1016/j.agrformet.2017.02.001
  28. Mereu V., Gallo A., Trabucco A., Carboni G., Spano D. (2021). Modeling high-resolution climate change impacts on wheat and maize in Italy. Climate Risk Management, 33, 100339. Doi: DOI: https://doi.org/10.1016/j.crm.2021.100339
  29. Orlandi F., Rojo J., Picornell A., Oteros J., Pérez-Badia R., Fornaciari M. (2020). Impact of climate change on olive crop production in Italy. Atmosphere, 11(6): 595. DOI: 10.3390/atmos11060595
  30. Peltonen-Sainio P., Jauhiainen L., Trnka M., Olesen J.E., Calanca P., Eckersten H., Eitzinger J., Gobin A., Kersebaum K.C., Kozyra J., Kumar S., Dalla Marta A., Micale F., Schaap B., Seguin B., Skjelvag A.O., Orlandini, S. (2010). Coincidence of variation in yield and climate in Europe. Agriculture, ecosystems & environment, 139(4), 483-489. DOI: https://doi.org/10.1016/j.agee.2010.09.006
  31. Popp M., Rudstrom M., Manning P. (2005). “Spatial yield risk across region, crop and aggregation method.” Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 53(2-3): 103-115. DOI : https://doi.org/10.1111/j.1744-7976.2005.00408.x
  32. Ray D.K., Gerber J.S., MacDonald G.K., West P.C. (2015). “Climate variation explains a third of global crop yield variability.” Nature communications, 6(1): 1-9. DOI: 10.1038/ncomms6989
  33. Rowhani P., Lobell D.B., Linderman M., Ramankutty N. (2011). Climate variability and crop production in Tanzania. Agricultural and forest meteorology, 151(4): 449-460. DOI: https://doi.org/10.1016/j.agrformet.2010.12.002
  34. Sarker M.A.R., Alam K., Gow J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112: 11-16. DOI: https://doi.org/10.1016/j.agsy.2012.06.004
  35. Santeramo F.G., Di Gioia L. (2018). La gestione del rischio in agricoltura. Assicurazioni, credito e strumenti finanziari per lo sviluppo rurale. Edgricole – New Business Media.
  36. Santeramo F.G. (2019). I learn, you learn, we gain experience in crop insurance markets. Applied Economic Perspectives and Policy, 41(2): 284-304. DOI: https://doi.org/10.1093/aepp/ppy012
  37. Santeramo F.G., Russo I. (2021). Behavioural aspects in crop insurance uptakes: the Italian market. Italian Review of Agricultural Economics, 76(2): 73-90. DOI: 10.36253/rea-12186
  38. Setiyono T.D., Quicho E.D., Gatti L., Campos-Taberner M., Busetto L., Collivignarelli F., Garcia-Haro F.J., Boschetti M., Kan N.I., Holecz, F. (2018). Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote Sensing, 10(2): 293. DOI: https://doi.org/10.3390/rs10020293
  39. Schlenker W., Roberts M.F. (2006). “Nonlinear temperature effects of weather on corn yields.” Review of agricultural economics, 28(3): 391-398. DOI: https://doi.org/10.1073/pnas.0906865106
  40. Tappi M., Nardone G., Santeramo F.G. (2022). On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy. Bio-Based and Applied Economics. 11(2). Forthcoming.
  41. Thornton P.K., Jones P.G., Alagarswamy G., Andresen J. (2009). Spatial variation of crop yield response to climate change in East Africa. Global environmental change, 19(1): 54-65. DOI: https://doi.org/10.1016/j.gloenvcha.2008.08.005
  42. Trnka M., Olesen J.E., Kersebaum K.C., Rötter R.P., Brázdil R., Eitzinger, J., Janssen S., Skjelvag A.O., Peltonen-Sainio P., Hlavinka P., Balek J., Eckersten H., Gobin A., Vuceti V., Dalla Marta A., Orlandini S., Alexandrov V., Semeradova D., Štěpánek P., Svobodova E., Rajdl, K. (2016). Changing regional weather crop yield relationships across Europe between 1901 and 2012. Climate Research, 70(2-3): 195-214. DOI: https://doi.org/10.3354/cr01426
  43. Turvey C.G., Zhao J. (1999). Parametric and non-parametric crop yield distributions and their effects on all-risk crop insurance premiums (No. 1620-2016-134858). DOI: http://dx.doi.org/10.22004/ag.econ.34129
  44. Ye T., Nie J., Wang J., Shi P., Wang Z. (2015). Performance of detrending models of crop yield risk assessment: evaluation on real and hypothetical yield data. Stochastic environmental research and risk assessment, 29(1): 109-117. DOI: 10.1007/s00477-014-0871-x
  45. Zhu X., Moriondo M., van Ierland E.C., Trombi G., Bindi M. (2016). A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under climate change. Regional Environmental Change, 16(1): 85-96. DOI: 10.1007/s10113-014-0622-z