Published 2025-12-30
Keywords
- anatomy,
- brain,
- medical education,
- photogrammetry
How to Cite
Copyright (c) 2025 Paweł Grabarek, Jacek Masełko , Weronika Radecka, Marian Simka

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Background. Nowadays, anatomy education use 3D digital models, which are particularly helpful when a cadaveric material is scarce or absent. Such models can be created using the photogrammetry, which consists of multiple digital photographs taken from various angles and then are used for constructing a virtual anatomical model. With the advance of novel smartphones and applications, a high-quality and easy-to-perform photogrammetry became user-friendly. Methods. In this study we assessed the feasibility and technique of creating 3D digital models of the fresh cadaver brains. For this purpose we applied the KIRI Engine application installed on the iPhone smartphone. With this method, five brains of recently deceased patients were scanned and 3D virtual models of these organs were created. Results. We did not encounter major problems with scanning of the brain with the above-described method. After completion of the scanning, models of the brain could be downloaded and either displayed as the virtual reality objects, or as isolated 3D objects. These virtual brains could be moved or rotated or enlarged in order to see details. Also, it was possible to transfer the file containing virtual model the scanned organ to another phone or computer, in order to be handled by another user. Conclusions. We found 3D scanning of the brains with the use of a smartphone application feasible and highly valuable from the educational perspective, especially considering visual appearance of 3D virtual models of the brains, which were very similar to the alive organs.
References
- 1. Benet, A.; Rincon-Torroella, J.; Lawton, M.T.; González Sánchez, J.J. Novel embalming solution for neurosurgical simulation in cadavers. J Neurosurg 2014, 120, 1229-37.
- 2. Hammer, N.; Löffler, S.; Bechmann, I.; Steinke, H.; Hädrich, C.; Feja, C. Comparison of modified Thiel embalming and ethanol-glycerin fixation in an anatomy environment: Potentials and limitations of two complementary techniques. Anat Sci Educ 2015, 8, 74-85.
- 3. Hammer, N. Thirty years of Thiel embalming-A systematic review on its utility in medical research. Clin Anat 2022, 35, 987-997.
- 4. Antipova, V.; Niedermair, J.F.; Siwetz, M.; Fellner, F.A.; Löffler, S.; Manhal, S.; Ondruschka, B.; Pietras, S.M.; Poilliot, A.J.; Pretterklieber, M.L.; Wree, A.; Hammer, N. Undergraduate medical student perceptions and learning outcomes related to anatomy training using Thiel- and ethanol-glycerin-embalmed tissues. Anat Sci Educ 2023, 16, 1144-1157.
- 5. Thompson, B.; Green, E.; Scotcher, K.; Keenan, I.D. A Novel cadaveric embalming technique for enhancing visualisation of human anatomy. Adv Exp Med Biol 2022, 1356, 299-317.
- 6. Haizuka, Y.; Nagase, M.; Takashino, S.; Kobayashi, Y.; Fujikura, Y.; Matsumura, G. A new substitute for formalin: Application to embalming cadavers. Clin Anat 2018, 31, 90-98.
- 7. Nagase, M.; Nagase, T.; Tokumine, J.; Saito, K.; Sunami, E.; Shiokawa, Y.; Matsumura, G. Formalin-free soft embalming of human cadavers using N-vinyl-2-pyrrolidone: perspectives for cadaver surgical training and medical device development. Anat Sci Int 2022, 97, 273-282.
- 8. Waerlop, F.; Rashidian, N.; Marrannes, S.; D’Herde, K.; Willaert, W. Thiel embalmed human cadavers in surgical education: Optimizing realism and long-term application. Am J Surg 2021, 221,1300-1302.
- 9. Balta, J.Y.; Cronin, M.; Cryan, J.F.; O’Mahony, S.M. Human preservation techniques in anatomy: A 21st century medical education perspective. Clin Anat 2015, 28, 725-34.
- 10. Hachabizwa, C.; Banda, M.; Hainza, J.; Mutemwa, S.; Erzingastian, K.; Kafumukache, E. Cadaveric embalming using a modified Thiel method as an alternative to the formalin method. Anat J Africa 2020, 9, 1797-1806.
- 11. Miyake, S.; Suenaga, J.; Miyazaki, R.; Sasame, J.; Akimot,o T.; Tanaka, T.; Ohtake, M.; Takase, H.; Tateishi, K.; Shimizu, N.; Murata, H.; Funakoshi, K.; Yamamoto, T. Thiel’s embalming method with additional intra-cerebral ventricular formalin injection (TEIF) for cadaver training of head and brain surgery. Anat Sci Int 2020, 95, 564-570.
- 12. Tomalty, D.; Pang, S.C.; Ellis, R.E. Preservation of neural tissue with a formaldehyde-free phenol-based embalming protocol. Clin Anat 2019, 32, 224-230.
- 13. Nardi, L.; Schmeisser, M.J.; Schumann, S. Fixation and staining methods for macroscopical investigation of the brain. Front Neuroanat 2023, 17, 1200196.
- 14. Hauptmann, M.; Stewart, P.A.; Lubin, J.H.; Beane Freeman, L.E.; Hornung, R.W.; Herrick, R.F.; Hoover, R.N.;, Fraumeni, J.F. Jr.; Blair, A.; Hayes, R.B. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst 2009, 101, 1696-708.
- 15. Soonklang, N.; Saowakon, N. Evaluation of formaldehyde exposure among gross dissection after modified embalming solution and health assessment. Environ Sci Pollut Res Int 2022, 29, 65642-65654.
- 16. Ogami-Takamura, K.; Saiki, K.; Endo, D.; Murai, K.; Tsurumoto, T. The risk of Creutzfeldt-Jakob disease infection in cadaveric surgical training. Anat Sci Int 2022, 97, 297-302.
- 17. Koyama, S.; Yagita, K.; Hamasaki, H.; Noguchi, H.; Shijo, M.; Matsuzono, K.; Takase, K.I.; Kai, K.; Aishima, S.I.; Itoh, K.; Ninomiya, T.; Sasagasako, N.; Honda, H. Novel method for classification of prion diseases by detecting PrPres signal patterns from formalin-fixed paraffin-embedded samples. Prion 2024, 18, 40-53.
- 18. Simka, M. Teaching anatomy of the lower extremity veins: Educational challenges.Vasc Invest Ther 2025, 8, 1-6.
- 19. Chytas, D.; Paraskevas, G.; Noussios, G.; Demesticha, T.; Salmas, M.; Vlachou, C.; Vasiliadis, A.V.; Troupis, T. Use of photogrammetry-based digital models in anatomy education: An overview. Morphologie 2024, 108, 100792.
- 20. de Oliveira, A.S.; Leonel, L.C.; LaHood, E.R.; Nguyen, B.T.; Ehtemami, A.; Graepel, S.P.; Link, M.J.; Pinheiro-Neto, C.D.; Lachman, N.; Morris, J.M.; Peris-Celda, M. Projection of realistic three-dimensional photogrammetry models using stereoscopic display: A technical note. Anat Sci Educ 2024 , 17, 39-46.
- 21. Struck, R.; Cordoni, S.; Aliotta, S.; Pérez-Pachón, L.; Gröning, F. Application of photogrammetry in biomedical science. Adv Exp Med Biol 2019, 1120, 121-130.
- 22. Krause, K.J.; Mullins, D.D.; Kist, M.N.; Goldman, E.M. Developing 3D models using photogrammetry for virtual reality training in anatomy. Anat Sci Educ 2023, 16, 1033-1040.
- 23. Tóth, D.; Petrus, K.; Heckmann, V.; Simon, G.; Poór, V.S. Application of photogrammetry in forensic pathology education of medical students in response to COVID-19. J Forensic Sci 2021, 66, 1533-1537.
- 24. Piazza, A.; Corvino, S.; Ballesteros, D.; Campeggi, A.; Agosti, E.; Serioli, S.; Corrivetti, F.; Bortolotti, C.; De Notaris, M. Neuroanatomical photogrammetric models using smartphones: a comparison of apps. Acta Neurochir (Wien) 2024, 166, 378.
- 25. de Oliveira Manduca Palmiero, H.; Ribas, E.C.; Carlotti, C.G. Jr.; Figueiredo, E.G. Anatomical assessment of cerebral sulci and gyri for neuroanatomy education using photogrammetry technique to generate 3D-tridimensional models. Neurosurg Rev 2025, 48, 172.
- 26. Petriceks, A.H.; Peterson, A.S.; Angeles, M.; Brown, W.P.; Srivastava, S. Photogrammetry of human specimens: An innovation in anatomy education. J Med Educ Curric Dev 2018, 5, 2382120518799356.
- 27. Van Vlasselaer, N.; Keelson, B.; Scafoglieri, A.; Cattrysse, E. Exploring reliable photogrammetry techniques for 3D modeling in anatomical research and education. Anat Sci Educ 2024, 17, 674-682.
- 28. Morichon, A.; Dannhoff, G.; Barantin, L.; Destrieux, C.; Maldonado, I.L. Doing more with less: Realistic stereoscopic three-dimensional anatomical modeling from smartphone photogrammetry. Anat Sci Educ 2024,17, 864-877.
- 29. de Oliveira, A.S.; Leonel, L.C.; LaHood, E.R.; Hallak, H.; Link, M.J.; Maleszewski, J.J.; Pinheiro-Neto, C.D.; Morris, J.M.; Peris-Celda, M. Foundations and guidelines for high-quality three-dimensional models using photogrammetry: A technical note on the future of neuroanatomy education. Anat Sci Educ 2023, 16, 870-883.
- 30. de Oliveira, A.S.; Leonel, L.C.; Bauman, M.M.; De Bonis, A.; LaHood, E.R.; Graepel, S.; Link, M.J.; Pinheiro-Neto, C.D.; Lachman, N.; Morris, J.M.; Peris-Celda, M. Photogrammetry scans for neuroanatomy education - a new multi-camera system: technical note. Neuroinformatics 2024, 22, 317-327.
- 31. Smith, K.; Ventre, G.J.; Palmisciano, P.; Hussein, A.E.; Hoz, S.S.; Forbes, J.A.; Lowrie, D.J. Jr.; Zuccarello, M.; Andaluz, N.; Prestigiacomo, C.J. Brain vasculature color-labeling using the triple-injection method in cadaveric heads: A technical note for improved teaching and research in neurovascular anatomy. Oper Neurosurg (Hagerstown) 2023, 24, 291-300.
- 32. Çırak, M.; Yağmurlu, K.; Soldozy, S.; Norat, P.; Shaffrey, M.E.; Kalani, M.Y.S. Common challenges and solutions associated with the preparation of silicone-injected human head and neck vessels for anatomical study. Brain Sci 2020, 11, 32.
- 33. Sanan, A.; Abdel Aziz, K.M.; Janjua, R.M.; van Loveren, H.R.; Keller, J.T. Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery 1999, 45, 1267-71; discussion 1271-4.