Vol. 129 No. 2 (2025)
Original Article

Embryologic layers in dermatology: Developmental checkpoint disorders, diagnostic insight, and regenerative futures

Gökhan Kaya
Department of Dermatology, Sivas Medicana Hospital, Sivas, Türkiye
Gülce Naz Yazici
Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
Ceren Alavanda
Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
Özlem Su Küçük
Department of Dermatology, Faculty of Medicine, Bezmiâlem Vakıf University, Istanbul, Türkiye

Published 2025-12-30

Keywords

  • Embryonic Development,
  • Skin Abnormalities,
  • Congenital Disorders,
  • Dermatology,
  • Regenerative Medicine

How to Cite

Kaya, G., Yazici, G. N., Alavanda, C., & Küçük Özlem S. (2025). Embryologic layers in dermatology: Developmental checkpoint disorders, diagnostic insight, and regenerative futures. Italian Journal of Anatomy and Embryology, 129(2), 13–28. https://doi.org/10.36253/ijae-16696

Abstract

Objectives: This review aims to present a developmental framework linking embryonic lineage with non-heritable cutaneous anomalies to improve diagnostic precision and educational approaches in dermatology. Materials and Methods: A narrative literature review was conducted using PubMed, Scopus, and Web of Science databases covering the years 2000–2025. Keywords included “skin development,” “embryology,” “developmental checkpoint disorders,” and “non-genetic congenital disorders.” Data on morphogenesis, embryologic signaling pathways, and representative disorders were synthesized into a layer-based model. Results: Disorders such as self-healing collodion baby (periderm retention anomaly), pigmentary mosaicism (postzygotic melanocyte patterning defect), and focal dermal hypoplasia (connective tissue maldevelopment) reflect disruptions at specific morphogenetic checkpoints. Mapping these conditions to their embryonic origins revealed layer-specific vulnerability windows and facilitated differential diagnosis from inherited disorders. Understanding these embryologic principles supports earlier diagnosis, informed prenatal counseling, and structured integration into dermatology curricula. Advances in regenerative medicine, particularly stem cell–based strategies, highlight the translational potential of dermatoembryology in developing targeted therapies. Conclusion: A layer-oriented dermatoembryological perspective enhances recognition of developmental skin disorders, especially when genetic analyses are inconclusive. Incorporating embryologic concepts into clinical reasoning not only improves diagnostic accuracy but also fosters regenerative therapeutic innovations and enriches dermatology education.

References

  1. 1. Sadler TW. Langman’s medical embryology. 12th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. Available from: https://integratedsciences.lwwhealthlibrary.com/book.aspx?bookid=770
  2. 2. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen’s human embryology. 5th ed. Philadelphia: Elsevier; 2014.
  3. 3. Fitzpatrick TB, Kang S, Goldsmith LA, Gilchrest BA, Paller AS, Leffell DJ, Wolff K, editors. Structure and function of skin. In: Fitzpatrick’s dermatology in general medicine. 10th ed. New York: McGraw-Hill; 2024. Chapter 7.
  4. 4. Workman VL, Giblin AV, Green NH, et al. Development of a tissue-engineered skin model with epidermal, dermal and hypodermal components. In Vitro Models. 2023;2:297-306. https://doi.org/10.1007/s44164-023-00058-9.
  5. 5. Gopee NH, Winheim E, Olabi B, et al. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature. 2024;635:679-689. https://doi.org/10.1038/s41586-024-08002-x.
  6. 6. Park S. Building vs. rebuilding epidermis: Comparison embryonic development and adult wound repair. Front Cell Dev Biol. 2022;9:796080. https://doi.org/10.3389/fcell.2021.796080.
  7. 7. Fuchs E. Scratching the surface of skin development. Nature. 2007;445(7130):834-842. https://doi.org/10.1038/nature05659.
  8. 8. Sonnen KF, Janda CY. Signalling dynamics in embryonic development. Biochem J. 2021;478(23):4045-4070. https://doi.org/10.1042/BCJ20210043.
  9. 9. Fu X, editor. Regenerative medicine in China. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-16-1182-7.
  10. 10. De Falco M, Pisano MM, De Luca A. Embryology and anatomy of the skin. In: Brash UT, Maitland ML, editors. Skin cancer. New York: Springer; 2014. p.3-17. https://doi.org/10.1007/978-1-4614-7357-2_1.
  11. 11. Tumiene B, Peters H, Melegh B, et al. Rare disease education in Europe and beyond: time to act. Orphanet J Rare Dis. 2022;17:441. https://doi.org/10.1186/s13023-022-02527-y.
  12. 12. Fakoya FA, Emmanouil-Nikoloussi E, Sharma D, Moxham BJ. A core syllabus for the teaching of embryology and teratology to medical students. Clin Anat. 2017;30(2):159-167. https://doi.org/10.1002/ca.22802.
  13. 13. Cochard LR, Netter FH. Netter’s atlas of human embryology. Updated ed. Philadelphia: Saunders Elsevier; 2012.
  14. 14. Chetty R. Pathology of vascular skin lesions: Clinicopathological correlations: Sangueza OP, Requena L. J Clin Pathol. 2003;56(7):559-560.
  15. 15. Schlessinger DI, Patino SC, Belgam Syed SY, et al. Embryology, epidermis. [Updated 2022 Oct 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441867/
  16. 16. Voiță-Mekereș F. Assessment of the embryological origin, anatomical and histological structure of the skin. Arch Pharm Pract. 2024;15(2):69-74. https://doi.org/10.51847/SWViK4kyKx.
  17. 17. Hoeger PH, Kinsler V, Yan AC, Harper J, Oranje AP, Bodemer C, et al., editors. Harper’s textbook of pediatric dermatology. 4th ed. Oxford: Wiley-Blackwell; 2019.
  18. 18. Singh V. Textbook of clinical embryology. New Delhi: Elsevier India; 2012.
  19. 19. Griffiths CEM, Barker J, Bleiker TO, Hussain W, Simpson RC, editors. Rook’s textbook of dermatology. 10th ed. Oxford: Wiley-Blackwell; 2024.
  20. 20. Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(4):620-632. https://doi.org/10.1242/dev.106567.
  21. 21. Keswell D, Kidson SH, Davids LM. Melanocyte migration is influenced by E-cadherin-dependent adhesion of keratinocytes in both two- and three-dimensional in vitro wound models. Cell Biol Int. 2015;39(2):169-176. https://doi.org/10.1002/cbin.10350.
  22. 22. Yamauchi A, Hadjur C, Takahashi T, Suzuki I, Hirose K, Mahe YF. Human skin melanocyte migration towards stromal cell-derived factor-1α demonstrated by optical real-time cell mobility assay: modulation of their chemotactic ability by α-melanocyte-stimulating hormone. Exp Dermatol. 2013;22(10):664-667. https://doi.org/10.1111/exd.12232.
  23. 23. Alsaad KO, Obaidat NA, Ghazarian D. Skin adnexal neoplasms--part 1: an approach to tumours of the pilosebaceous unit. J Clin Pathol. 2007;60(2):129-144. https://doi.org/10.1136/jcp.2006.040337.
  24. 24. Sanz-Ezquerro JJ, Münsterberg AE, Stricker S. Signaling pathways in embryonic development. Front Cell Dev Biol. 2017;5:76. https://doi.org/10.3389/fcell.2017.00076.
  25. 25. Tüzün Y, İşçimen A, Pehlivan Ö. Collodion baby. J Turk Acad Dermatol. 2008;2(2):Article 82201r. Available from: http://www.jtad.org/2008/2/jtad82201r.pdf
  26. 26. Simalti AK, Sethi H. Collodion baby. Med J Armed Forces India. 2017;73(2):197-199. https://doi.org/10.1016/j.mjafi.2015.10.007.
  27. 27. Nguyen MA, Gelman A, Norton SA. Practical events in the management of a collodion baby. JAMA Dermatol. 2015;151(9):1031-1032. https://doi.org/10.1001/jamadermatol.2015.0694.
  28. 28. Richardson RJ, Hammond NL, Coulombe PA, et al. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest. 2014;124(9):3891-3900. https://doi.org/10.1172/JCI71946.
  29. 29. Chen H. Collodion baby. In: Puri RD, Agarwal S, editors. Atlas of genetic diagnosis and counseling. New York: Springer; 2016. p. 1-10. https://doi.org/10.1007/978-1-4614-6430-3_47-2.
  30. 30. Bamalan OA, Moore MJ, Menezes RG. Vernix caseosa. [Updated 2023 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559238/
  31. 31. So JY, Teng J. Epidermolysis bullosa simplex. 1998 Oct 7 [Updated 2022 Aug 4]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1369/
  32. 32. Smith LD, Masood M, Bajaj GS, Couser NL. Genetic abnormalities of the anterior segment, eyelids, and external ocular adnexa. In: Singh AD, Damato BE, Pe’er J, Murphree AL, Perry JD, editors. Ophthalmic genetic diseases: A quick reference guide to the eye and external ocular adnexa abnormalities. Amsterdam: Elsevier; 2019. p. 15-39. https://doi.org/10.1016/B978-0-323-65414-2.00002-7.
  33. 33. Rice AS, Crane JS. Epidermolytic hyperkeratosis. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544323/
  34. 34. Komlosi K, Glocker C, Hsu-Rehder HH, Alter S, Kopp J, Hotz A, et al. Autosomal dominant lamellar ichthyosis due to a missense variant in the gene NKPD1. J Invest Dermatol. 2024;144(12):2754-2763.e6. https://doi.org/10.1016/j.jid.2024.03.041.
  35. 35. Summers CG. Albinism: classification, clinical characteristics, and recent findings. Optom Vis Sci. 2009;86(6):659-662. https://doi.org/10.1097/OPX.0b013e3181a5254c.
  36. 36. Federico JR, Krishnamurthy K. Albinism. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-.
  37. 37. Kromann AB, et al. Pigmentary mosaicism. Orphanet J Rare Dis. 2018;13:39. https://doi.org/10.1186/s13023-018-0778-6.
  38. 38. Schaffer JV. Pigmentary mosaicism. Clin Dermatol. 2022;40(4):322-338. https://doi.org/10.1016/j.clindermatol.2022.02.005.
  39. 39. Zhou YJ, et al. Becker’s nevus. Dermatol Ther. 2022;35(7):e15548. https://doi.org/10.1111/dth.15548.
  40. 40. Brownell I, Loomis CA, Koss T. Skin development and maintenance. In: Bolognia JL, Schaffer JV, Cerroni L, editors. Dermatology. 5th ed. Amsterdam: Elsevier; 2024.
  41. 41. Malfait F, Castori M, Francomano CA, et al. The Ehlers–Danlos syndromes. Nat Rev Dis Primers. 2020;6:64. https://doi.org/10.1038/s41572-020-0194-9.
  42. 42. Miklovic T, Sieg VC. Ehlers-Danlos syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 31747221.
  43. 43. Ghosh SK, Dutta A, Sarkar S, Nag SS, Biswas SK, Mandal P. Focal dermal hypoplasia (Goltz syndrome): A cross-sectional study from eastern India. Indian J Dermatol. 2017;62(5):498-504. https://doi.org/10.4103/ijd.IJD_317_17.
  44. 44. Pfendner EG, Lucky AW. Junctional epidermolysis bullosa. 2008 Feb 22 [Updated 2018 Dec 20]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1125/
  45. 45. Khanna D, Bardhan A. Epidermolysis bullosa. [Updated 2024 Jan 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK599531/
  46. 46. Lucky AW, Pope E, Crawford S. Dystrophic epidermolysis bullosa. 2006 Aug 21 [Updated 2025 May 8]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1304/
  47. 47. Youssefian L, Vahidnezhad H, Uitto J. Kindler syndrome. 2016 Mar 3 [Updated 2022 Jan 6]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK349072/
  48. 48. Shamim H, Hanif S. Hypohidrotic ectodermal dysplasia: A case report. Cureus. 2023;15(10):e46530. https://doi.org/10.7759/cureus.46530.
  49. 49. Pignata C, Fusco A, Amorosi S. Human clinical phenotype associated with FOXN1 mutations. In: Maiese K, editor. Forkhead transcription factors. Advances in experimental medicine and biology. Vol. 665. New York: Springer; 2009. p. 195–206. https://doi.org/10.1007/978-1-4419-1599-3_15.
  50. 50. Chabchoub I, Souissi A. Monilethrix. [Updated 2023 Jun 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539813/
  51. 51. Al-Batayneh OB. Tricho-dento-osseous syndrome: Diagnosis and dental management. Int J Dent. 2012;2012:514692. https://doi.org/10.1155/2012/514692.
  52. 52. Moody MN, Landau JM, Goldberg LH. Nevus sebaceous revisited. Pediatr Dermatol. 2012;29(1):15–23. https://doi.org/10.1111/j.1525-1470.2011.01562.x.
  53. 53. Idriss MH, Elston DM. Secondary neoplasms associated with nevus sebaceus of Jadassohn: A study of 707 cases. J Am Acad Dermatol. 2014;70(2):332–337. https://doi.org/10.1016/j.jaad.2013.10.004.
  54. 54. Moss C. Cytogenetic and molecular evidence for cutaneous mosaicism: The ectodermal origin of Blaschko lines. Am J Med Genet. 1999;85(4):330–333. https://doi.org/10.1002/(sici)1096-8628(19990806)85:4<330::aid-ajmg3>3.0.co;2-m.
  55. 55. Brar BK, Mahajan BB, Puri N. Linear and whorled nevoid hypermelanosis. Indian J Dermatol Venereol Leprol. 2008;74(5):512–513. https://doi.org/10.4103/0378-6323.44325.
  56. 56. Yadlapati S, Tripathy K. Incontinentia pigmenti (Bloch-Sulzberger syndrome). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 35201722.
  57. 57. Nicholson CL, Daveluy S. Epidermal nevus syndromes. [Updated 2023 Jun 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559003/.
  58. 58. Singh AP, Gorla SR. Amniotic band syndrome. [Updated 2022 Dec 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545283/
  59. 59. Ornoy A, Echefu B, Becker M. Valproic acid in pregnancy revisited: Neurobehavioral, biochemical and molecular changes affecting the embryo and fetus in humans and in animals: A narrative review. Int J Mol Sci. 2023;25(1):390. https://doi.org/10.3390/ijms25010390.
  60. 60. Matt N, Ghyselinck NB, Wendling O, Chambon P, Mark M. Retinoic acid-induced developmental defects are mediated by RARbeta/RXR heterodimers in the pharyngeal endoderm. Development. 2003;130(10):2083–2093. https://doi.org/10.1242/dev.00428.
  61. 61. Akpan US, Pillarisetty LS. Congenital cytomegalovirus infection. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541003/.
  62. 62. Dos Santos ALS, Rosolen BB, Ferreira FC, Chiancone IS, Pereira SS, Pontes KFM, et al. Intrauterine Zika virus infection: An overview of the current findings. J Pers Med. 2025;15(3):98. https://doi.org/10.3390/jpm15030098.
  63. 63. Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, et al. Skin development and disease: A molecular perspective. Curr Issues Mol Biol. 2024;46(8):8239–8267. https://doi.org/10.3390/cimb46080487.
  64. 64. Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting 119 trios. Genet Med. 2015;17(10):774–781. https://doi.org/10.1038/gim.2014.191.
  65. 65. Moraes SG, Pereira LA. A multimedia approach for teaching human embryology: Development and evaluation of a methodology. Ann Anat. 2010;192(6):388–395. https://doi.org/10.1016/j.aanat.2010.05.005.
  66. 66. Prodinger CM, Reichelt J, Bauer JW, Laimer M. Current and future perspectives of stem cell therapy in dermatology. Ann Dermatol. 2017;29(6):667–687. https://doi.org/10.5021/ad.2017.29.6.667.
  67. 67. Taub AF, Pham K. Stem cells in dermatology and anti-aging care of the skin. Facial Plast Surg Clin North Am. 2018;26(4):425–437. https://doi.org/10.1016/j.fsc.2018.06.004.
  68. 68. Farabi B, Roster K, Hirani R, Tepper K, Atak MF, Safai B. The efficacy of stem cells in wound healing: A systematic review. Int J Mol Sci. 2024;25(5):3006. https://doi.org/10.3390/ijms25053006.
  69. 69. Nakamuta A, Yoshido K, Naoki H. Stem cell homeostasis regulated by hierarchy and neutral competition. Commun Biol. 2022;5:1268. https://doi.org/10.1038/s42003-022-04218-7.
  70. 70. Ogliari KS, Marinowic D, Brum DE, Loth F. Stem cells in dermatology. An Bras Dermatol. 2014;89(2):286–291. https://doi.org/10.1590/abd1806-4841.20142530.
  71. 71. Cousin I, Misery L, de Vries P, Lebonvallet N. Emergence of new concepts in skin physiopathology through the use of in vitro human skin explants models. Dermatology. 2023;239(6):849–859. https://doi.org/10.1159/000533261.