Vol. 129 No. 1 (2025)
Original Article

Corpus callosum motor fibers dissection using Klingler’s method and methylene blue

Paulo Henrique Pires de Aguiar
Federal University of São Paulo, (UNIFESP) São Paulo, Brasil
Carolina Simão Martini
Neurosurgery resident at Santa Paula Hospital, São Paulo, Brazil
Giulia Bassalo Canals Silva
Medical Student at Pontifical Catholic University of São Paulo (PUC/SP), São Paulo, Brazil
Giovanna Zambo Galafassi
Neurosurgery resident at ABC medical school, Santo André, Brazil
Jemaila Maciel da Cunha
Neurosurgery resident at Heliopólis Hospital, São Paulo, Brazil
Giovana Figueira Rodrigues Vieira Pessano
Neurosurgery resident at Heliopólis Hospital, São Paulo, Brazil
Ricardo Silva Centeno
Chief of Epilepsy Department at Federal University of São Paulo (UNIFESP), São Paulo, Brasil

Published 2025-07-10

Keywords

  • Lennox Gaustaut Syndrome,
  • corpus callosum,
  • white matter

How to Cite

Pires de Aguiar, P. H., Simão Martini, C., Bassalo Canals Silva, G., Zambo Galafassi, G., Maciel da Cunha, J., Figueira Rodrigues Vieira Pessano, G., & Silva Centeno, R. (2025). Corpus callosum motor fibers dissection using Klingler’s method and methylene blue. Italian Journal of Anatomy and Embryology, 129(1), 47–53. https://doi.org/10.36253/ijae-15941

Abstract

Background: The corpus callosum (CC) is the largest white matter bundle in the brain, connecting the left and right cerebral hemispheres. It plays a crucial role in integrating information and facilitating somatosensory, motor, and cognitive function. This study examined the anatomy of the CC using white matter dissection and explored a posterior callosotomy approach for treating drop attacks in Lennox-Gastaut syndrome (LGS). LGS is a rare form of childhood-onset epilepsy, characterized by multiple seizure types, abnormal electroencephalograms, and progressive mental retardation. The authors proposed that fibers from the medial and posterior CC regions converge on the precentral gyrus, and dissection was performed to investigate this theory. Methods: This study employed the Klingler method to examine white matter fibers in four adult brains. Dissection involved removing the cortex from the superior frontal, precentral, and postcentral gyri, followed by the cingulate gyrus. Results: The CC is divided into five parts: the rostrum, genu, body, isthmus, and splenium. Each part has distinct anatomical relationships with the lateral ventricles and connects to different cortical regions Conclusions: Our findings are consistent with the evidence that the motor fibers of the brain traverse the posterior region of the corpus callosum, suggesting that selective posterior callosotomy may be a more effective treatment for refractory drop attacks in Lennox-Gastaut Syndrome.

References

  1. Fitsiori A, Nguyen D, Karentzos A, Delavelle J, Vargas MI. The corpus callosum: white matter or terra incognita. Br J Radiol. 2011 Jan;84(997):5–18.
  2. Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, et al. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. NeuroImage. 2022 Jul 1;254:119029.
  3. Pearce JMS. Corpus Callosum. Eur Neurol. 2007;57(4):249–50.
  4. Fabri M, Polonara G, Mascioli G, Salvolini U, Manzoni T. Topographical organization of human corpus callosum: An fMRI mapping study. Brain Res. 2011 Jan;1370:99–111.
  5. Alanazi GM, ALOsaimi TF, Alwadei AH, Al-Otaibi AD, Jad LA, Al-Attas AA. Efficacy and safety of corpus callosotomy versus vagus nerve stimulation as long-term adjunctive therapies in children with Lennox–Gastaut syndrome: Experience of a tertiary care center. Neurosciences. 2022 Apr;27(2):59–64.
  6. Hur YJ, Kim HD. The causal epileptic network identifies the primary epileptogenic zone in Lennox–Gastaut syndrome. Seizure – Eur J Epilepsy. 2015 Dec 1;33:1–7.
  7. Ueda R, Matsuda H, Sato N, Iwasaki M, Sone D, Takeshita E, et al. Alteration of the anatomical covariance network after corpus callosotomy in pediatric intractable epilepsy. Biagini G, editor. PLOS ONE. 2019 Dec 5;14(12):e0222876.
  8. Paglioli E, Martins WA, Azambuja N, Portuguez M, Frigeri TM, Pinos L, et al. Selective posterior callosotomy for drop attacks: A new approach sparing prefrontal connectivity. Neurology. 2016 Nov 8;87(19):1968–74.
  9. Ito H, Morino M, Niimura M, Takamizawa S, Shimizu Y. Posterior callosotomy using a parietooccipital interhemispheric approach in the semi-prone park-bench position. Abstract.
  10. Ruddy KL, Leemans A, Carson RG. Transcallosal connectivity of the human cortical motor network. Brain Struct Funct. 2017 Apr;222(3):1243–52.
  11. Wang P, Wang J, Tang Q, Alvarez TL, Wang Z, Kung YC, et al. Structural and functional connectivity mapping of the human corpus callosum organization with white-matter functional networks. NeuroImage. 2021 Feb 15;227:117642.
  12. Shah A, Goel A, Jhawar SS, Patil A, Rangnekar R, Goel A. Neural Circuitry: Architecture and Function—A Fiber Dissection Study. World Neurosurg. 2019 May;125:e620–38.
  13. Cumming WJK. An Anatomical Review of the Corpus Callosum. Cortex. 1970 Mar;6(1):1–18.
  14. Rhoton AL. THE CEREBRUM. Neurosurgery [Internet]. 2007 Jul;61(1). Available from: https://journals.lww.com/00006123-200707001-00004
  15. Fabri M, Pierpaoli C, Barbaresi P, Polonara G. Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol. 2014;6(12):895.
  16. Ribas EC, Yağmurlu K, De Oliveira E, Ribas GC, Rhoton A. Microsurgical anatomy of the central core of the brain. J Neurosurg. 2018 Sep;129(3):752–69.
  17. Shah A, Jhawar S, Goel A, Goel A. Corpus Callosum and Its Connections: A Fiber Dissection Study. World Neurosurg. 2021 Jul;151:e1024–35.
  18. Raybaud C. The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology. 2010 Jun;52(6):447–77.
  19. Witelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain. 1989;112(3):799–835.
  20. Asadi-Pooya AA. Lennox-Gastaut syndrome: a comprehensive review. Neurol Sci. 2018 Mar;39(3):403–14.
  21. Andrade CS, Leite CC, Otaduy MCG, Lyra KP, Valente KDR, Yasuda CL, et al. Diffusion abnormalities of the corpus callosum in patients with malformations of cortical development and epilepsy. Epilepsy Res. 2014 Nov;108(9):1533–42.
  22. Meng Y, Hu X, Zhang X, Bachevalier J. Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions. Hippocampus. 2018 Nov;28(11):838–45.
  23. Hofer S, Frahm J. Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage. 2006 Sep;32(3):989–94.
  24. Küçükyürük B, Uzan M, Avyasov R, Tahmazoğlu B, İşler C, Sanus GZ, et al. Evaluation of Ideal Extent of Corpus Callosotomy Based on the Location of Intracallosal Motor Fibers. World Neurosurg. 2020 Dec;144:e568–75.
  25. Thirunavu V, Du R, Wu JY, Berg AT, Lam SK. The role of surgery in the management of Lennox–Gastaut syndrome: A systematic review and meta‐analysis of the clinical evidence. Epilepsia. 2021 Apr;62(4):888–907.
  26. Uda T, Kunihiro N, Umaba R, Koh S, Kawashima T, Ikeda S, et al. Surgical Aspects of Corpus Callosotomy. Brain Sci. 2021 Dec 5;11(12):1608.
  27. Fujimoto A, Okanishi T. Corpus Callosotomy: Editorial. Brain Sci. 2022 Jul 29;12(8):1006.