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Abstract. Crown and root rot of wheat, caused by Fusarium spp., limit crop yields 
worldwide, from rotting of seeds, seedlings, crowns, roots and basal plant stems. Viru-
lence factors and virulence and aggressiveness of Fusarium spp. were investigated for 
isolates from Iran, obtained from wheat plants with crown and root rot symptoms. 
Forty isolates of Fusarium were used in this research. Among the isolates, nivalenol 
(NIV) was detected as the dominant trichothecene chemotype produced. Production 
of trichothecenes and zearalenone (ZEA) in autoclaved rice cultures of Fusarium iso-
lates was analyzed using high performance liquid chromatography. The levels of NIV 
ranged from 258 to 1246 μg kg−1, of deoxynivalenol (DON) from 45 to 1411 μg kg−1, 
and of ZEA from 53 to 3220 μg kg−1. All Fusarium isolates produced cellulase and pec-
tinase enzymes. Positive correlation was observed between activity of cell wall degrad-
ing enzymes (CWDEs) produced by the isolates and their pathogenicity on wheat leaf 
segments. Virulence of trichothecene-producing isolates was greater than that of non-
trichothecene-producing isolates. Considerable association was detected between the 
capability of Fusarium spp. isolates to produce virulence factors (such as mycotoxins 
and CWDEs) and their pathogenicity on wheat.

Keywords.	 Cell wall degrading enzymes, mycotoxins.

INTRODUCTION

Crown and root rot of wheat, caused by several Fsarium species, occur 
in most cereal producing regions of the world, including Europe, Australia, 
North America, South America, West Asia, South Africa and North Africa 
(Smiley et al., 1996; Paulitz et al., 2002; Smiley et al., 2005). In Iran, sev-
eral Fusarium spp. have been isolated from crown and root rot symptoms 
in wheat growing regions (Besharati Fard et al., 2017). Fusaria produce 
a diverse array of toxic secondary metabolites (mycotoxins), which are 
involved in pathogenicity of these fungi to host plants. The most important 
Fusarium mycotoxins are trichothecenes and zearalenone, which can con-
taminate agricultural products, making them unsuitable for food or feed 
(Ma et al., 2013).
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Trichothecenes are sesquiterpenoid molecules of 
which many variants are known. These have been chat-
egorized as type A, including T-2 toxin, HT-2 toxin, 
diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS), 
and type B, including deoxynivalenol (DON, vomitox-
in), nivalenol (NIV) and their mono- and di-acetylated 
derivatives (Yli-Mattila, 2010).

The ability of Fusarium spp. to produce particular 
mycotoxins can be investigated using biochemical and 
molecular techniques. Molecular techniques are based 
on detection of different gene clusters involved in pro-
duction of mycotoxins. Chemotype determination can 
be performed with primers for several genes involved in 
trichothecene biosynthesis such as Tri3, Tri5, Tri7, Tri12 
and Tri13 (Mahmoud and Shehata, 2017). The type of 
trichothecene produced by an isolate can be predicted 
based on genetic markers derived from the Tri gene clus-
ter, containing the genes involved in tricothecene bio-
synthesis. Different mycotoxins have different toxicologi-
cal properties. NIV is more toxic than DON to humans 
and domestic animals. Trichothecenes such as DON are 
potent inhibitors of eukaryotic protein biosynthesis (Van 
der Lee et al., 2015). Trichothecenes also play important 
roles as virulence factors in fungal pathogenesis.

Based on several previous reports, different types of 
trichothecene chemotypes are produced by F. gramine-
arum and F. culmorum, and possibly by other Fusarium 
species (Khaledi et al. 2017, Desjardins et al. 1993; Sarv-
er et al. 2011; Li et al. 2016). DON is one of the factors 
influencing virulence and aggressiveness of Fusarium 
spp. Some studies have reported that chemotype diversi-
ty depends on geographical distribution. Both DON and 
NIV chemotypes are reported from several countries 
in Asia, Africa, Europe, South and North America. The 
DON chemotype is reported as the major trichothecene 
chemotype present in North America, while the NIV 
chemotype has not been detected in this region. The 
NIV chemotype was most frequently isolated from some 
Asian and European countries (Gilbert et al., 2002; Zel-
ler et al., 2003; Panthi et al., 2014).

Among the Fusarium isolates, NIV, 3-ADON and 
15-ADON chemotypes were detected from different fields 
of Mazandaran and Golestan provinces in the northern 
region of Iran (Haratian et al., 2008; Malihipour et al., 
2012), while 15-ADON was the only chemotype detected 
among the isolates collected from fields of Ardabil prov-
ince in the North West of Iran (Malihipour et al., 2012; 
Davari et al., 2013). Among Fusarium isolates from fields 
of Golestan province in the North of Iran, the NIV gen-
otype occurred more frequently, followed by 3-acetyl 
deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol 
(15-ADON) genotypes (Khaledi et al., 2016).

DON is the most predominant mycotoxin associ-
ated with progress of disease in host plants (Mirocha 
et al. 2003; Taheri 2018). DON is more phytotoxic on 
cereals than NIV (Desjardins 2006), disrupting normal 
cell function by inhibiting protein biosynthesis, and is a 
major virulence factor of Fusarium spp. pathogenic on 
cereals (Khaledi et al. 2017; Yu et al. 2008; Zhang et al. 
2010).

Zearalenone (ZEA), a polyketide mycotoxin, has 
chronic estrogenic effects on mammals, causing repro-
ductive problems in farm-raised pigs, experimental ani-
mals, livestock and humans (Gaffoor and Trail, 2006). 
ZEA can be produced pre- or post-harvest in maize and 
other cereals. Contaminations to ZEA by Fusarium spp. 
in maize, wheat and barley were reported from North, 
West and South of Iran (Karami-Osboo and Mirabol-
fathy, 2008; Ehsani et al., 2014). Production of ZEA by F. 
acuminatum, F. crookwellense, F. culmorum, F. equiseti, 
F. graminearum, F. oxysporum, F. sporotrichioides and 
F. semitectum have been reported (Jiménez et al., 1996; 
Ezekiel et al., 2008).

The other mechanism involved in aggressiveness and 
virulence of Fusarium spp. is production of extracellu-
lar enzymes, which degrade host plant cell walls. These 
cell wall degrading enzymes (CWDEs), such as cellulases 
and pectinases, are crucial in the processes of coloniza-
tion and disease establishment (Wanyoike et al., 2002; 
Kikot et al., 2010). The CWDEs are involved in softening 
the cell walls, increasing accessibility of cell wall compo-
nents for degradation by other enzymes, which enables 
success of further infection steps and spread of fungal 
mycelia into the inner host plant tissues (Roncero et al., 
2003; Ortega et al., 2013).

The objectives of the present study were: (i) to inves-
tigate the capability of Fusarium spp. isolates (obtained 
from wheat plants with crown and root rot symptoms) 
for producing various virulence factors such as tri-
chothecenes, ZEA and CWDEs such as cellulase and 
pectinase; and (ii) to examine pathogenicity and aggres-
siveness of Fusarium isolates on wheat, and determine 
relationships between ability of the isolates to produce 
virulence factors and their pathogenicity.

MATERIALS AND METHODS

Fungal inoculum preparation

Forty isolates, belonging to eight species of Fusari-
um, were obtained from wheat plants showing symp-
toms of crown and root rot in Yazd province of Iran. 
The isolates were deposited in the fungal collection in 
Ferdowsi University of Mashhad, Iran (Table 1). Fun-
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Table 1. Capability of Fusarium spp. isolates obtained from wheat plants for production of pectinase and cellulase, based on quantitative (μg 
mL−1) and qualitative (mm) analyses, together with virulence and aggressiveness traits of Fusarium spp. isolates on inoculated wheat leaf 
segments. Virulence was evaluated on the leaf segments at 7 d post inoculation. 

Isolate 
code

Maximum of enzyme activity (μg mL−1) Zone diameter (mm) Virulence on leaf 
segments

(LLa, mm)

Aggressiveness on 
leaf segments

(hpib)Pectinase±SE Cellulase±SE Pectinase on pectin 
agar media±SE

Cellulase on CMC 
agar media±SE

Ab1 4028±89l mn c 1129.5±20.5 abc 6.6±0.8 efg 7.3±0.3 fg 11±2.3 def 24
Ab2 3865±1 no 674±28 kl 5±0.1 ij 3.6±0.3 lm 6±0.5 j 96
Ab3 3727±10.5 rst 735.5±23.5 ij 5±1.1 ij 4.6±0.8 jkl 7.6±0.6 gh 96
Ar1 4309±86 gh 1087.5±27.5 abcde 8.3±0.3 bcde 8.3±0.3 cd 12.6±2.4 de 36
Ar2 4264±49 ghijkl 1010±10 bc 7.3±0.8 de 6±0.5 hi 10±0.1 def 48
As1 4221±207.5 hi 954±31 efg 7.6±0.8 cd 7±0.5 gh 9±2 ef 36
As2 5218±28 bc 1139.5±4.5 abc 12.3±1.3 a 10.3±0.3 ab 25±1.7 a 12
As3 4135±42.5 jk 965±15 efg 6.6±0.8 efg 6±1.5 hi 9.6±1.4 ef 72
Ba1 3770±182.5 qr 787.5±7.5 hi 6±0.1 gh 4.3±0.3 jkl 8.3±2 gh 96
Ba2 4008±3 lmn 690.5±3.5 jkl 7±0.5 ef 5±0.5 jk 8.6±0.8 fg 72
Ba3 3982±17 lmn 967.5±7.5 defg 7±0.5 ef 5.6±0.6 ij 9.3±1.2 ef 48
Ba4 4460±182 ghij 1068±61.5 abcde 10±0.5 abcd 10±0.1 abc 17±1.7 bc 24
Ba5 3938±66.5 mn 514.5±31.5 no 4.6±0.3 jk 3±0.5 m 6±0.1 j 120
Ba6 3725±30 rst 845±25 ghi 6.3±0.6 fg 5.6±0.8 ij 9±1.5 ef 72
Ba7 5031±28.5 cd 1082±22 abcde 10.6±0.6 ab 9.6±0.3 abcd 20.6±1.8 ab 24
Ba8 4021±84 lmn 750±23 hi 6±1.5 gh 6±0.1 hi 8.3±1.6 gh 72
De1 5445±130 ab 1145±12 abc 12.3±1.4 a 11.3±0.8 a 25.6±2 a 12
De2 4089±11 lm 956±4 efg 8±0.1 bcde 4.6±0.3 jkl 8.3±1.6 gh 96
Kh1 3733±108.5 rst 543±133 mno 4.6±1.2 jk 4±0.1 kl 6.6±0.3 ij 120
Kh3 3790±60 pq 700±10 jkl 6.3±0.8 fg 5±0.1 jk 8.3±0.8 gh 96
Kh4 4864±112 def 971±36 defg 9±0.5 bc 9±0.5 bcd 15.6±1.6 bcde 12
Kh5 4171±58.5 ij 810±20 hi 5.6±1.2 hi 4±0.5 kl 7±1.1 hij 120
Kh6 4487±160 ghi 1122.5±12.5 abc 9.3±0.3 b 8.6±0.3 bcde 12±2.6 def 24
Meh1 3831±54 op 476±32 no 4.6±0.3 jk 3±0.1 m 5.6±0.3 j 120
Meh2 4392±75.5 ghijk 1085±50 abcde 6±1.5 gh 7.3±0.3 fg 10±0.5 def 48
Meh3 4080.5±30.5 kl 1009±36 bc 7.3±0.3 de 6±1 hi 9.3±2.3 ef 48
Mey1 3872±62.5 no 1167± 7.5 a 10.3±0.6 abc 9.3±0.3 bc 16±3.7 bcd 24
Mey2 3942±47 mn 599±14 lm 6±1 gh 4.6±0.3 jkl 7.6±0.6 gh 96
Mey3 3679±26 st 498±127 no 4.3±0.8 kl 3.3±0.8 lm 6±0.5 j 120
Mey4 5017±7.5 cd 1102.5 ±2.5 abcde 7.3±1.2 de 8±0.1 de 11±2.8 def 24
Ta1 3671±81 st 443.5±94.5 o 4±0.5 l 3±0.5 m 5±0.1 j 120
Ta2 3763±77 qr 1117.5±2.5 abcd 7±0.1 ef 5±1.1 jk 10.6±0.6 def 72
Ta4 3777±99 pq 1045±95 abcde 7.6±0.3 cd 7±0.5 gh 11.3±0.3 def 36
Ta5 5174±39 bcd 1159.5±15.5 ab 10.3±0.8 abc 10±0.5 abc 20.3±1.6 abc 24
Ta6 3546.5±106.5 t 829±6 ghij 5.6±1.4 hi 5±0.5 jk 8±2 gh 72
Ya1 4098.5±91.5 kl 890±20 fgh 6.6±1.3 ef 5.6±0.3 ij 9.3±0.3 ef 72
Ya2 4903±27 cde 1057 ±67.5 abcdef 8.3±0.3 bcde 7.6±0.3 ef 11.6±1.6 def 36
Ya3 4604±209.5 efg 1003±2 cd 8.6±0.3 bcd 9±0.1 bcd 14.3±3.9 bcdef 24
Ya4 5641.5±195.5 a 1151±8 abc 9±0.1 bc 9.3±0.3 bc 14±5.6 cd 24
Ya5 4552±289.5 fgh 1062.5±52.5 abcde 7.6±0.6 cd 8±0.5 de 12±3.5 def 36

a LL, Lesion length.
b hpi, hours post inoculation
c Different letters indicate significant differences (P = 0.05), according to Duncan analysis. Each experiment was repeated twice, with similar 
results.
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gal inocula were produced in Mung Bean Broth (MBB) 
using the method of Zhang et al. (2013). Conidium sus-
pensions were diluted in water containing 0.05% (v/v) 
Tween 20, to final concentration of 1 × 105 conidia mL−1.

Virulence assays

Spring wheat cultivar (cv. Falat), obtained from 
Agricultural Research Center of Khorassan Razavi 
province in Iran, was grown in a greenhouse, with 12 h 
photoperiod, RH of 75%, and a day:night temperature 
regime of 18°C:12 °C. After 14 d, 7 cm segments from 
the mid-section of the first leaf of plants were harvested, 
and placed adaxial surface up on the surfaces of 0.5 % 
water agar in Petri plates, as described by Browne and 
Cooke (2004). Leaf segments were each inoculated at 
the center of the adaxial surface with 5 μL of conidium 
suspension. Sterile distilled water containing 0.05% (v/v) 
Tween 20 was applied on the control (non-inoculated) 
leaf segments. Petri dishes were incubated at 25°C with 
a 12 h:12 h light:dark cycle. After 7 d, the lesion length 
at the point of inoculation on each leaf was determined. 
The experiment was replicated three times for each iso-
late, and repeated twice.

Assessment of aggressiveness

Aggressiveness, as another quantitative component 
of pathogenicity, was investigated for each fungal isolate 
on detached leaves of wheat plants (cv. Falat) in labora-
tory conditions using the methods described by Mali-
hipour et al. (2012) and Pariaud et al. (2009). Analysis 
of aggressiveness was determined based on hours post 
inoculation (hpi) for disease symptom appearance.

Qualitative analyses of cell wall degrading enzymes

For determining cellulase activity, Glucose Yeast 
Extract Peptone Agar containing 0.5% carboxy-methyl-
cellulose in Petri plates was used for qualitative inves-
tigation of cellulase activity. After 3 to 5 d of fungal 
colony growth, plates were flooded with 0.2% aqueous 
Congo red solution and de-stained with 1M NaCl for 15 
min. Appearance of yellow areas around fungal colonies 
in red medium indicated cellulase activity (Hankin et 
al., 1971).

Pectinolytic activity was determined by growing the 
fungi in Petri plates containing Pectin Agar (containing 
5 g L-1 pectin, 1 g L-1 yeast extract, and 15 g L-1 agar in 
distilled water; pH 5.0). After incubation of 3 to 7 d at 

28°C, pectin utilization was detected by flooding the cul-
ture plates with freshly prepared iodine-potassium iodide 
solution (1.0 g iodine + 5.0 g potassium iodide in 330 mL 
distilled water) (Hankin et al., 1971). Clear zones formed 
around fungal colonies indicated pectinolytic activity.

In each assay, Petri plates each inoculated with a 
PDA plug without fungus were used as as negative con-
trols.

Quantitative analysis of cell wall degrading enzymes

For cellulase assays, fungal cultures were prepared 
in 500 mL capacity Erlenmeyer f lasks each contain-
ing 250 mL of culture medium, as described by Abdel-
Razik (1970). After inoculation, incubation was carried 
out under shaking (150 rpm) at 27°C and darkness for 
10 d. Cellulase activity was assessed using the method of 
Wood and Bhat (1988). Absorbance was measured at 550 
nm, and the amount of reducing sugar released was cal-
culated from the standard curve for glucose. One unit of 
cellulase activity was defined as the amount of enzyme 
that catalyzed glucose at 1.0 μ mol min-1 during the 
hydrolysis reaction. 

For pectinase assays, the fungal cultures were pre-
pared in 500 mL capacity Erlenmeyer flasks each con-
taining 250 mL culture medium, as described by Mac-
Millan and Voughin (1964). Pectinase activity was deter-
mined based on the amount of reducing sugar (D-galac-
turonic acid) released into the culture supernatant. The 
amount of D-galacturonic acid was determined using 
the dinitrosalicylic acid colorimetric method of Colow-
ich (1995), and absorbance was measured at 540 nm. The 
unit of enzyme activity was defined as the amount of 
enzyme that released galacturonic acid at 1 μ mol min-1, 
according to the standard curve. The standard curve was 
developed based on the absorbance for different concen-
trations of D-galacturonic acid.

Detection of the genes responsible for production of NIV, 
DON and zearalenone

For detection of DON, NIV and zearalenone 
genes, the Tri5, Tri13 and PKS4 (polyketide synthase) 
genes were amplified by PCR, using the primers pairs 
Tri5F (5′-AGCGACTACAGGCTTCCCTC-3′) and 
Tri5R (5′-AAACCATCCAGTTCTCCATCTG-3′) for 
Tri5, Tri13F (5′-TACGTGAAACATTGTTGGC-3′) and 
Tri13R (5′-GGTGTCCCAGGATCTGCG-3′) for Tri13, 
and PKS4F (5′-CGTCTTCGAGAAGATGACAT-3′) and 
PKS4R (5′-TGTTCTGCAAGCACTCCGA-3′) for PKS4 
(Doohan et al., 1999; Waalwijk et al., 2003; Meng et al., 



119Virulence factors of Fusarium spp. on wheat in Iran

2010). The PCR cycles consisted of an initial denaturation 
step at 94°C for 2 min, followed by 30 cycles of denatura-
tion (95°C for 35 s), annealing (60°C for 30 s), extension 
(72°C for 30 s), and final extension at 72°C for 7 min. The 
PCR products were detected on 1% agarose gels.

Mycotoxin analyses in laboratory cultures

Mycotoxin production by the Fusarium isolates in 
laboratory cultures was investigated using the meth-
od of Alvarez et al. (2009). Briefly, 25 g of rice grains 
(Oryza sativa L.) were soaked in 100 mL of sterile dis-
tilled water for 6 h in 500 mL capacity flasks. Water 
was then drained and the rice grain was autoclaved 
twice. Five mL of inoculum suspension (1 × 105 conidia 
mL−1) of each isolate was added to each flask and incu-
bated at 26 ± 1°C in darkness for 3 weeks. The rice-
fungus mixtures were each ground in a mortar and 
then dispensed in an Erlenmeyer flask with 75 mL of 
acetonitrile:methanol:water (80:5:15, v/v/v). HPLC analy-
sess was carried out on a Waters Alliance 2695 separa-
tions module coupled to a Waters 474 scanning fluores-
cence detector (Waters Corporation) that was set at 365 
nm excitation and 440 nm emission. To perform cho-
romatographic separations, 500 µL of water:methanol 
(86:14, v/v) was added to each extract and cleaned with a 
C18 Spherisorb 5 µm (250 × 4.6 mm; Merck). The mobile 
phase was water:acetonitrile:methanol (78:12:10 v/v/v) 
with a flow rate of 2.5 mL min-1. NIV, DON and zearale-
none production were measured in µg per kg of sample. 
Standards of the DON, NIV and ZEA were used to con-
struct a five-point calibration curve of peak areas versus 
concentrations. The injection volume was 50 µL for both 
the standard solutions and sample extracts.

Statistical analyses

All experiments were set up in completely rand-
omized designs. The data were analyzed by one-way 
analysis of variance (ANOVA), and comparison of 
means was carried out using the Duncan’s Multiple 
Range Test (P ≤ 0.05. Statistical analyses and correlation 
tests were performed using software Statistical Package 
for the Social Sciences (SPSS; version 22).

RESULTS

Virulence and aggressiveness assays

Comparison of the data obtained from inocula-
tion of Fusarium spp. isolates on wheat leaf segments 

revealed that different isolates had different virulence 
capabilities (Table 1). Significant differences in disease 
index were recorded among the isolates tested. Leaf 
assays revealed that the greatest lesion length was pro-
duced by F. solani isolate De1 and F. flocciferum isolate 
As2. The least disease was observed for the F. equiseti 
isolate Ta1 and F. oxysporum isoklate Meh1. Other iso-
lates tested fell between these isolates with various levels 
of virulence on wheat leaf segments (Table 1, Figure 1). 
The results of the aggressiveness test on detached leaves 
showed more rapid development of disease symptoms by 
F. solani isolate De1 and F. flocciferum isolate As2, com-
pared to the other isolates tested (Table 1).

Analysis of cell wall degrading enzymes

Qualitative and quantitative analysis of CWDEs 
showed that all the Fusarium isolates were capable of 
producing pectinase and cellulose enzymes (Table 1). 
In the quantitative assays, the amounts of CWDE activ-
ity among isolates varied from 443.5 to 1167 μg mL−1 
for cellulase and 3546.5 to 5641.5 μg mL−1 for pectinase. 
Quantitative results of CWDE assays agreed with the 
qualitative results. The F. equiseti isolate Mey1 and F. 
pseudograminearum isolate Ta5 had the greatest in vitro 

Figure 1. Disease symptoms caused by Fusarium solani isolate De1 
and F. flocciferum isolate As2 on wheat leaves (A and B) and nega-
tive control (C).
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cellulase activity of all the isolates. The least cellulase 
activity was measured for F. equiseti Ta1 and F. oxyspo-
rum Meh1. The Fusarium oxysporum Ya4 and F. solani 
De1 had the greatest pectinase activities. Least pecti-
nase was measured for F. flocciferum Ta6 and F. equiseti 
Ta1. Based on the size of clear culture medium zones 
for cellulase activity, maximum activity was observed 
for F. solani De1 and F. flocciferum As2, while least 
activity was measured for F. equiseti Ta1, F. oxysporum 
Meh1 and F. equiseti Ba5.The least pectinase activity was 
measured for F. equiseti Ta1 and F. pseudograminearum 
Mey3, and F. solani isolate De1 and F. flocciferum isolate 
As2 gave the greatest pectinase activities (Figure 2).

Detection of trichothecene and zearalenone genotypes by 
PCR

The Tri5 gene encodes trichodiene synthase, which 
catalyses the first step in trichothecene biosynthesis. 

This gene was detected using the primer set TRI5 (F)/
TRI5 (R), which produced a unique PCR product of 544 
bp for the isolates which contained the Tri5 gene (Figure 
3A, Table 2) (Doohan et al., 1999; Covarelli et al., 2015). 
The results obtained from PCR of the Tri5 gene showed 
amplification of this gene in 43% of the isolates, which 
produced either NIV or DON.

Also, the Tri13F/Tri13R primers for amplification 
of Tri13 gene amplified a fragment in the range of 200 
to 300 bp from DON producers and 400 to 450 bp from 
NIV producing isolates of Fusarium (Figure 3B, Table 
2). Among the isolates producing trichothecenes, results 
obtained from PCR of the Tri13 gene showed amplifica-
tion of this gene for 35% of DON-producing isolates, and 
65% of NIV- producing isolates.

The PKS4 (polyketide synthase) gene of F. gramine-
arum has been reported to be essential in production 
of ZEA (Lysøe et al., 2006). The size of PCR products 
obtained in detecting this gene was approx. 280 bp (Fig-

Figure 2. Cellulolytic activity of Fusarium flocciferum isolate As2 on GYP medium (A) and its negative control (B). Pectinolytic activity of 
this isolate on pectin agar medium (C) and its negative control (D).

Figure 3. Amplification products using the primer pairs Tri5F/Tri5R (A), Tri13F/Tri13R (B), PKS4F/PKS4R (C), M: marker (1,500 bp). The 
primer set Tri5F/Tri5R produced a unique PCR product with the size of 544 bp for the isolates which contain the Tri5 gene. The Tri13F/
Tri13R primers amplified a fragment in the range of 200 to 300 bp from DON-producing Fusarium isolates and 400 to 450 bp from NIV-
producing isolates. The PKS4F/PKS4R primer set produced a fragment of 280 bp for the zearalenone-producing isolates.
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Table 2. Origin and species of Fusarium isolates obtained from wheat plants in Yazd province of Iran, together with the presence of tri-
chothecene- (NIV and DON) and zearalenone- (ZEA) specific markers detected in the isolates by PCR assays, and their capability for 
mycotoxin production analyzed by HPLC.

Isolate 
code

Sample 
site Species Trichotecene 

genotype

PCR assay results Toxin production in vitro (μg kg−1)

Tri5 Tri13 PKS4 NIV DON ZEA

Ab1 Abarkuh F. acuminatum - - - + - - ND
Ab2 Abarkuh F. culmorum NIV + + + 298 ND 186
Ab3 Abarkuh F. culmorum DON + + + ND 1411 252
Ar1 Ardakan F. pseudograminearum NIV + + + 1007 ND 3075
Ar2 Ardakan F. flocciferum - - - - - - -
As1 Ashkezar F. acuminatum DON + + + ND 379 ND
As2 Ashkezar F. flocciferum - - - + - - ND
As3 Ashkezar F. equiseti NIV + + + 850 ND ND
Ba1 Bafq F. solani - - - + - - ND
Ba2 Bafq F. acuminatum - - - + - - ND
Ba3 Bafq F. proliferatum - - - + - - ND
Ba4 Bafq F. culmorum DON + + + ND 1093 114
Ba5 Bafq F. equiseti - - - - - - -
Ba6 Bafq F. proliferatum - - - + - - 67
Ba7 Bafq F. pseudograminearum DON + + + ND 65 3220
Ba8 Bafq F. equiseti - - - + - - ND
De1 Taft F. solani - - - + - - ND
De2 Taft F. flocciferum - - - - - - -
Kh1 Khatam F. flocciferum - - - - - - -
Kh3 Khatam F. equiseti DON + + + ND 103 ND
Kh4 Khatam F. culmorum NIV + + + 1135 ND 230
Kh5 Khatam F. acuminatum NIV + + + 350 ND 73
Kh6 Khatam F. pseudograminearum NIV + + + 1083 ND 1760
Meh1 Mehriz F. oxysporum - - - + - - 53
Meh2 Mehriz F. equiseti - - - + - - ND
Meh3 Mehriz F. solani - - - - - - -
Mey1 Meybod F. equiseti - - - + - - 105
Mey2 Meybod F. equiseti NIV + + + 480 ND ND
Mey3 Meybod F. pseudograminearum NIV + + + 258 ND 1385
Mey4 Meybod F. oxysporum - - - + - - ND
Ta1 Taft F. equiseti - - - + - - ND
Ta2 Taft F. equiseti - - - + - - 96
Ta4 Taft F. pseudograminearum NIV + + + 954 ND 1670
Ta5 Taft F. pseudograminearum NIV + - + 1246 ND 2525
Ta6 Taft F. flocciferum - - - - - - -
Ya1 Yazd F. culmorum NIV + + + 743 ND 365
Ya2 Yazd F. equiseti - - - + - - ND
Ya3 Yazd F. equiseti - - - + - - 78
Ya4 Yazd F. oxysporum DON + + + ND 45 ND
Ya5 Yazd F. oxysporum - - - - - - -
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ure 3C, Table 2). Overall, 83% of the Fusarium isolates 
produced this amplicon in the PCR assays.

Mycotoxin analyses using HPLC

Data of detection of trichothecenes produced by 
Fusarium isolates on rice grain showed that among 17 
isolates which amplified the Tri5 gene, 657% produced 
NIV and 35% produced DON. The levels of NIV ranged 
from 258 to 1,246 μg kg−1, of DON from 45 to 1,411 μg 
kg−1,  and of ZEA from 53 to 3,220 μg kg−1 (Table 2).

DISCUSSION

This study was a detailed investigation of tri-
chothecene genotypes and quantification of NIV, DON 
and ZEA by HPLC from Fusarium species associated to 
wheat crown and root rot in Iran. Activities of CWDEs 
and their relationships with virulence factors, aggres-
siveness and pathogenicity of Fusarium spp. isolates to 
wheat leaf tissues were also evaluated.

Different types of virulence factors can be produced 
by different Fusarium species pathogenic on cereals 
(Taheri 2018). Mycotoxins, such as trichthecenes and 
ZEA, and CWDEs, are among the main factors involved 
in virulence and aggressiveness of Fusarium spp. on host 
plants. We conclude that the two most virulent Fusa-
rium isolates in this study (F. solani isolate De1 and F. 
flocciferum AS2), which do not produce tricothecenes, 
may produce other types of virulence factors, such as 
CWDEs as demonstrated here. Involvement of other 
virulence factors, such as lipases, xylanases, protein 
kinases, other proteins and various transcription factors 
(reviewed by Taheri, 2018), in pathogenicity of these fun-
gi, needs to be investigated in the future studies.

Quantitative and qualitative activities of CWDEs, 
including cellulase and pectinase which are involved 
in the infection processes of Fusarium spp. on wheat, 
were investigated here. Aggressiveness of Fusarium spp. 
involves different mechanisms or components, such as 
production and release of extracellular enzymes which 
degrade host plant cell walls. The CWDEs are crucial 
in the processes of pathogen colonization and establish-
ment of disease. Once infection is established, myco-
toxins are released and these interfere with the metabo-
lism, physiological processes and structural integrity of 
host cells (Ortega et al., 2013). These enzymes are par-
ticularly important for phytopathogenic fungi without 
specialized penetration structures (Gibson et al., 2011). 
The activities of CWDEs produced by the Fusarium iso-
lates, which caused maximum or minimum virulence 

on wheat leaves, were compared for possible associa-
tions between the CWDEs and virulence. The isolates F. 
solani De1 () and F. flocciferum As2, which showed the 
greatest virulence on wheat leaves, had greater enzyme 
activities at different time points investigated. In con-
trast, the isolates Ta1 and Meh1 had the least virulence 
capability, and the lowest levels of CWDE activity. Cor-
relation analysis revealed high levels of direct association 
between the capability of Fusarium spp. in producing 
CWDEs and their virulence on the wheat leaves (Table 
3). Similarly, Khaledi et al. (2016) demonstrated the 
association of aggressiveness and virulence of Fusarium 
spp. isolates causing head blight of wheat with the levels 
of CWDEactivity.

In the present study, trichothecene genotype detec-
tion revealed 50% amplification of the Tri5 gene for F. 
acuminatum isolates, 27% amplification for F. equiseti 
isolates, and 25% amplification for those of F. oxyspo-
rum. Fusarium pseudograminearum and F. culmorum 
isolates had 100% amplification of the Tri5 gene. How-
ever, this gene was not detected in isolates of F. solani, F. 
proliferatum and F. flocciferum. In accordance with our 
data, Tan and Niessen (2003) showed that F. solani was 
not capable of producing trichothecenes and ZEA, and 
this species lacked the Tri5 gene required for biosynthe-
sis of trichothecenes. Khaledi et al. (2016) reported that 
some F. proliferatum isolates causing wheat head blight 
amplified the Tri5 gene and this species has the ability of 
trichothecenes biosynthesis, which is in agreement with 
the findings from the present study.

The Tri13 gene from the Fusarium trichothecene 
biosynthetic gene cluster is responsible for conversion of 
DON to NIV (Lee et al., 2001). Our results showed that 
the NIV was produced by 65% of the isolates, whereas 
35% of the isolates produced DON. There are few reports 
on the geographical distribution of trichothecene chem-
otypes produced by Fusarium spp. in different regions 
of Iran. Our data showed that the distribution of DON 
and NIV was not equal in different parts of the stud-
ied province, and that NIV was the dominant chemo-

Table 3. Correlation analyses between activity of cell wall degrading 
enzymes (in quantitative and qualitative assays) produced by Fusar-
ium spp. isolates and their virulence on wheat leaves.

Correlation Virulence on leaf 
segments P value (two-tailed)

Pectinase (quantitative) 0.78231 < .0001
Pectinase (qualitative) 0.94502 < .0001
Cellulase (quantitative) 0.71337 < .0001
Cellulase (qualitative) 0.90916 < .0001
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type. Other investigations in Iran showed dominance 
of the NIV chemotype in Mazandaran (Haratian et al., 
2008) and Golestan provinces (Abedi-Tizaki et al., 2013; 
Khaledi et al., 2016). Other studies in different regions 
of the world such as Africa, Asia and Europe have con-
firmed the presence of NIV and DON chemotypes, but 
only the DON type has been detected in North Amer-
ica (Miedaner et al., 2000). Both NIV and DON chem-
otypes have been identified together, in Europe and 
South America, and the DON chemotype was dominant 
in these regions. In Asian countries such as Korea and 
Japan, the NIV chemotype had the greatest distribution 
(Gale et al., 2011; Lee et al., 2002).

The results of the present study relating to virulence 
of Fusarium isolates on wheat leaf segments showed that 
all isolates were pathogenic to wheat (cv. Falat), and dif-
ferences in virulence were observed. Some reports have 
showned that trichothecenes are virulence factors in 
plants, and they may contribute to colonization of wheat 
crowns by the pathogen (Mudge et al., 2006). Maier et al., 
(2006) showed that NIV and DON act as virulence fac-
tors on wheat, while only the NIV chemotype is virulent 
on maize (. In general in the present study, the isolates 
with NIV chemotype were more aggressive than the oth-
er chemotypes of trichothecenes produced by Fusarium 
spp. This is in agreement with the observations of other 
researchers (Cumagun et al., 2004; Khaledi et al., 2016).

The polyketide synthase gene PKS4, which is 
involved in ZEA biosynthesis, was used in our study for 
developing a PCR-based assay to detect ZEA-produc-
ing Fusarium isolates (Meng et al., 2010). The isolates 
of F. flocciferum and F. solani did not produce ZEA. 
The results of our study showed that the levels of ZEA 
were not correlated with virulence and aggressiveness of 
Fusarium spp. isolates. This is similar to results of Kuh-
nem et al. (2015), who found that the level of ZEA pro-
duced by F. graminearum was not related to severity of 
the disease caused by this species on maize.

Finding novel and effective ways to prevent or 
decrease production of different types of virulence fac-
tors by Fusarium spp. may be helpful in management of 
destructive diseases caused by these important and com-
monly occurring phytopathogenic fungi.
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