
Phytopathologia Mediterranea 58(1): 17-37, 2019

Firenze University Press 
www.fupress.com/pm

Phytopathologia Mediterranea
The international journal of the  

Mediterranean Phytopathological Union

ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.14601/Phytopathol_Mediterr-25086

Citation: Fischer M., Peighami Ash-
naei S. (2019) Grapevine, esca com-
plex, and environment: the disease 
triangle. Phytopathologia Mediterranea 
58(1): 17-37. doi: 10.14601/Phyto-
pathol_Mediterr-25086

Accepted: March 24, 2019

Published: May 15, 2019

Copyright: © 2019 Fischer M., Pei-
ghami Ashnaei S. This is an open 
access, peer-reviewed article published 
by Firenze University Press (http://
www.fupress.com/pm) and distributed 
under the terms of the Creative Com-
mons Attribution License, which per-
mits unrestricted use, distribution, and 
reproduction in any medium, provided 
the original author and source are 
credited.

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

Editor: Laura Mugnai, University of 
Florence, Italy.

Review

Grapevine, esca complex, and environment: the 
disease triangle

Michael FISCHER1,*, Samira PEIGHAMI ASHNAEI2 

1 JKI-Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Plant Protec-
tion in Fruit Crops and Viticulture, D-76833 Siebeldingen, Germany
2 Plant Disease Research Department, Iranian Research Institute of Plant Protection 
(IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Teh-
ran, Iran
*Corresponding author: michael.fischer@julius-kuehn.de

Abstract. This review compiles the available knowledge on the triple impact of host-
pathogens-environment in the progress of the esca disease complex of grapevine. The 
perennial crop grapevine encounters different biotic and abiotic factors responsible for 
numerous changes at the various growth stages. This review provides increased under-
standing of the esca disease complex, with emphasis on (1) the nature of esca-associ-
ated fungi as endophytes or pathogens in grapevine, (2) the importance of grapevine 
genotype and age in relation to resistance or susceptibility to the pathogens, (3) the 
significant effects of climatic changes, especially drought, on pathogen development 
and symptomatology, and (4) the physio-biochemical changes in the grapevines arising 
from the biotic and abiotic interactions. Drought often provides conditions favouring 
disease development in plants. Physiological and biochemical changes in plants play 
critical roles in this topic. The constantly increasing economic impacts of esca disease 
in many grape-producing countries, and the broad lack of knowledge so far, require 
precise studies on the transcriptional responses to biotic and abiotic factors in grape-
vines, as effects of “climate change” develop. On the viticultural side, improved man-
agement of water and adjusted nutrition balance in vineyards may become useful strat-
egies to mitigate the widespread damage caused by grapevine wood pathogens.

Keywords.	 Climate change, esca disease complex, grapevine, water stress.

INTRODUCTION

Viticulture, like other fields of agriculture, is deeply affected by a wide 
variety of biotic and abiotic factors. For the past three decades, the economic 
burden of trunk diseases such as esca has become a limiting factor for grape-
vine production in many countries (Larignon and Dubos, 1997; Mugnai et 
al., 1999; Dubos et al., 2002; Bertsch et al., 2009; Úrbez-Torres, 2011; Bruez 
et al., 2013; Mohammadi et al., 2013; De la Fuente et al., 2016). Advances in 
control of grapevine leaf strip disease (GLSD), the main disease in esca com-
plex, have only recently been made with the introduction of Trichoderma as a 
biological treatment for wound protection, and with the possibility to reduce 
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symptom expression by applications of mixtures of foliar 
fertilizers (Di Marco et al., 2004; Calzarano et al., 2014; 
Calzarano and Di Marco, 2018).

Esca is a disease complex, generally characterized by 
the development of typical inner necrosis in grapevine 
wood tissues and external symptoms known as “tiger-
striped” leaves or black measles on the berries, assigned 
to infection by pathogenic fungi that invade the peren-
nial plants and their vascular systems (Larignon and 
Dubos, 1997; Mugnai et al., 1999; Graniti et al., 2000). 
Petri disease, as part of the esca complex (Surico, 2001; 
Gramaje and Armengol, 2011) is caused by several fun-
gi in the genera Phaeomoniella and Phaeoacremonium 
(Kubátová et al., 2004; Mostert et al., 2006; Essakhi et 
al., 2008; Gramaje et al., 2009; Gramaje and Armen-
gol, 2011). Mature vineyards (10 years or more) are also 
affected by white rot linked with Basidiomycete taxa 
such as Fomitiporia mediterranea and related species 
(Fischer, 2002; Fischer and Kassemeyer, 2003; Fischer 
and Binder, 2004; Fischer et al., 2005; Fischer, 2006; 
Péros et al., 2008; Luque et al., 2009; Cloete, 2015; Fis-
cher and González García, 2015). 

In recent years there has been progressive evolution 
in the concept of esca and the diseases that are includ-
ed within this complex (for example see Mugnai et al., 
1999; Calzarano et al., 2001, 2014; Edwards et al., 2001; 
Larignon et al., 2001, 2009; Surico et al., 2008; Surico, 
2009; Lecomte et al., 2012; Bertsch et al. 2013; Fontaine 
et al., 2016). Following the suggestion of Surico (2009), 
GLSD (previously known as “young esca”) is considered 
the most important and widespread disease within the 
esca complex. Other diseases that are discussed within 
esca include brown wood streaking, Petri disease (black 
goo or slow dieback), and esca proper (including white 
rot). Co-existence of GLSD and esca proper is a com-
mon feature in mature vineyards. However, all of the 
above diseases may overlap, as they also do with canker 
agents such as those caused by members of the Botry-
osphaeriaceae or Diatrypaceae (Rolshausen et al., 2010; 
Gramaje et al., 2018; Moyo et al., 2018).

The above picture is not adopted throughout the 
community of pathologists and others with interests 
in esca, and differing views are taken, for instance, by 
Lecomte et al. (2012) or Larignon and collaborators 
(Larignon et al., 2001; 2009). Other, and less specific, 
designations have also been commonly used, including 
“manifest and hidden esca” (Marchi et al., 2006), “grape-
vine dieback disease” (Amponsah et al., 2011), “esca 
decline” (Lecomte et al., 2008, 2011) or “esca dieback 
foliar expression” (Guérin-Dubrana et al., 2012).

The diseases included in the esca complex are often 
cryptic and symptoms usually take several years to 

develop, in some of the diseases discontinuously (Suri-
co et al., 2000, 2006; Christen et al., 2007; Calzarano 
et al., 2018). A potentially important group of patho-
gens are endophytic fungi (Petrini, 1986), which may 
be pathogenic or mutualistic, depending on the cir-
cumstances (Schulz and Boyle, 2005; Alvarez-Loayza et 
al., 2011). In the endophytic phase they asymptomati-
cally colonize their hosts to form latent infections, but 
may modify their behaviour and become invasive when 
the plant gets stressed (Verhoeff, 1974; Gubler et al., 
2005; Aroca et al., 2006; Surico et al., 2006; Slippers 
and Wingfield, 2007; Sakalidis et al., 2011; Hofstetter 
et al., 2012). There has been considerable debate dur-
ing the past two decades whether, and to what extent, 
environmental factors influence fungal development in 
vineyards and the expression of symptoms (Calzarano 
et al., 2018). Several biotic and abiotic factors (Cramer 
et al., 2007; McDowell et al., 2008; Deluc et al., 2009; 
Andreini et al., 2014; Kovacs et al., 2017) naturally 
affect the physio-biochemical processes of grapevines, 
and subsequently their responses to pathogens, as in 
the case of GLSD phytoalexin patterns during leaf 
symptom development (Calzarano et al., 2016; 2017a; 
2017b).

It is well known that exposure of plants to differ-
ent stresses generally induces the expression of various 
genes. As a result, various enzymes and plant hormones 
(Vanholme et al., 2008; Vogt, 2010) with multiple biolog-
ical functions are produced in response to different envi-
ronmental stimuli. In this way, the variable virulence 
of potential pathogens, the host defense responses, and 
environmental conditions constitute the disease triangle 
(Agrios, 2005).

This eventually leads to an even more diffused pic-
ture of esca and the related diseases, making it chal-
lenging to clearly separate between diseases and fungal 
endophytes/pathogens and stress related symptomatolo-
gy. In the case of grapevine and esca, whenever possible 
we refer to the specific designations of the diseases.

In this review, we refer to a large amount of litera-
ture, most of which is original research papers. In addi-
tion, we cite several review articles, which provide useful 
summaries of certain aspects of the “plant and stress” 
topic. A considerable proportion of the references refers 
to plants other than grapevine. While we particularly 
emphasize grapevine and the esca complex, numerous 
entries in Tables 1 and 2 also refer to other groups of 
plants. First, this underlines the overall significance of 
the subject, i.e. interrelations between stress factors and 
host plants. Secondly, data generated for non-grapevine 
hosts may assist understanding of esca and related dis-
ease phenomena.
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ESCA-ASSOCIATED FUNGI: ENDOPHYTES OR 
PATHOGENS?

Some vascular-inhabiting fungi isolated from 
declining vines (Ferreira et al., 1999) or other hosts have 
been considered as latent opportunistic pathogens, and 
cause diseases when their hosts are subjected to abiotic 
stresses (Pearce, 1996; Slippers and Wingfield, 2007; Jac-
tel et al., 2012). 

One of the main features of GLSD is the variabil-
ity in external symptom expression, whereby symptoms 
on leaves and berries may be obvious one year but are 
not apparent in another. The significant increase in 
foliar symptoms in 20-year-old potted vines induced 
by excessive watering (Surico et al., 2010), and the 
relationship between growing season rainfall (particu-
larly in July) and leaf symptoms expression (Calzarano 
et al., 2018) have confirmed the role of rainy seasons 
and water in the soil in GLSD symptom development 
(Surico et al., 2000; Marchi et al., 2006). Factors extra-
neous to the plant-pathogen interactions (e.g. light, 
soil type, nutrients, and water availability) have been 
hypothesized to play roles in the erratic nature of the 
foliar symptoms of esca (Mugnai et al., 1999; Calzara-
no et al., 2007; 2009; 2014). The observed rates of mor-
tality of vines are not necessarily, or not always, in 
accordance with the incidence of external symptoms 
(Andreini et al., 2014). However, Calzarano and col-
laborators (2018) observed greater mortality of GLSD 
affected vines that showed severe leaf symptoms at the 
first appearance, compared to vines with low symptom 
severity.

Although several studies have dealt with various 
aspects of esca related pathogens, the causes of foliar 
symptom development still remain elusive (Surico et al., 
2006; Larignon et al., 2009; Camps et al., 2010). It was 
hypothesized that toxic metabolites produced by fungi 
in colonized wood reach leaves through the xylem ves-
sels, triggering defense responses that result in the devel-
opment of leaf symptoms (Evidente et al., 2000; Tabac-
chi et al., 2000; Andolfi et al., 2011; Bertsch et al., 2013). 
These plant responses include the formation of necrotic 
lesions on leaves as a hypersensitive reaction. In GLSD 
symptomatic vines, phytoalexins increased with increas-
ing severity of leaf symptoms, confirming that these sub-
stances are synthesized as a reaction to lesions occurring 
on leaves, usually followed by formation of antimicrobial 
compounds such as stilbene derivatives (Heath, 2000; 
Calzarano et al., 2016; 2017a; 2017b). 

No strict correlation has been found between the 
occurrence of symptoms and the extent of pathogen 
colonization or wood necrosis (Calzarano and Di Mar-

co, 2007; Liminana et al., 2009; Fischer and Kassemey-
er, 2012). In contrast, Lecomte et al. (2008) showed that 
vines exhibiting leaf symptoms had, on average, greater 
proportions of necrotic wood than asymptomatic plants. 
The degree of wood necrosis may also be positively cor-
related with the mortality of vines (Liminana et al., 
2009).

No significant difference was observed between the 
fungal communities that inhabit apparently healthy 
and visibly diseased individual plants (Hofstetter et al., 
2012). Both Phaeomoniella chlamydospora and Phaeo-
acremonium spp. have been isolated from asymptomatic 
tissue (Mugnai et al., 1999; Bruez et al., 2014; Elena et 
al., 2018), supporting the concept of latent phases for 
these pathogens. Furthermore, the time delay between 
infection and symptom expression (Di Marco and Osti, 
2008) may reinforce the role of other factors in esca dis-
ease development. A possible explanation for this situa-
tion may be the different environmental factors prevail-
ing. The varying interactions between such factors and 
symptom expression caused by vascular pathogens has 
been extensively reviewed by Mundy and Manning 
(2011). Characterizing the impacts of abiotic factors in 
grapevine responses may be a key step towards obtain-
ing complete knowledge of physicochemical changes in 
plants that lead to disease development and the appear-
ance of symptoms.

GRAPEVINE GENOTYPE AND AGE

Genotype

Genotype relationships with possible tolerance of 
Vitis spp. to biotic and abiotic stresses has been the focus 
of many studies. Scion cultivars and the rootstocks may 
differ in their responses to stress. Rootstocks provide 
benefits, such as drought stress tolerance (Alsina et al., 
2007; Koundouras et al., 2008; Gambetta et al., 2012). 
However, information is scarce on the genetic back-
grounds of these benefits, and specific responses to envi-
ronmental factors.

Grapevine rootstocks have been shown to play 
important roles in adaptation to water deficit (Soar et al., 
2006; Marguerit et al., 2012; Parker et al., 2013), while 
scion transpiration rates and their acclimation to water 
deficit are, through different genetic architecture, con-
trolled genetically by rootstocks (Marguerit et al., 2012). 
Alsina et al. (2011) showed that scion stomatal conduct-
ance was more strongly down-regulated with drought-
sensitive rootstocks (V. riparia × V. rupestris cv. 101-
14Mgt) than with drought-tolerant ones (V. berlandieri × 
V. rupestris cv. Paulsen 1103).
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Rootstock impacts may be mediated by chemical 
(Soar et al., 2006; Alsina et al., 2011), hormonal (par-
ticularly abscisic acid: ABA) and hydraulic signaling in 
responses to water deficit (Soar et al., 2006; Vandeleur et 
al., 2009; Marguerit et al., 2012). At the hydraulic level 
in roots, radial water movement mediated by aquaporins 
was shown to have a significant potential contribution 
to drought stress adaption (Vandeleur et al., 2009; Lovi-
solo et al., 2010). Aquaporins also affect root hydrau-
lic conductance (Perrone et al., 2012), water uptake by 
fine roots (Koundouras et al., 2008, 2009; Gambetta et 
al., 2012) and, consequentially, vine growth (Pouzou-
let et al., 2014). Selection of appropriate rootstocks may 
increase tolerance to extended drought stress periods, 
and even resistance to pathogens. 

Rootstock genotype may affect the frequency 
of external symptoms (Marchi, 2001; Murolo and 
Romanazzi, 2014). However, leaf symptoms are not nec-
essarily related to alterations observed in wood (Eskalen 
et al., 2001; Feliciano et al., 2004; Calzarano and di Mar-
co, 2007; Romanazzi et al., 2009; Andreini et al., 2013; 
Murolo and Romanazzi, 2014).

The comparative transcriptome analysis in Pinot 
Noir grapevine highlighted rootstock-dependent differ-
ences in the response of genes involved in the jasmonic 
acid (JA) metabolism and pathogenesis-related (PR) pro-
teins (Berdeja et al., 2014). JA is a well known regulator 
of wound responses against pathogens, and plays a role 
in water stress perception and regulation and, subse-
quently, in expression of several related genes (Bell and 
Mullet, 1991; Zhang and Memelink, 2009; see Table 1 
for more information on gene expression induced by 
environmental factors in different plants). In grapevine, 
production of PR proteins is the most frequent defense 
reaction to fungal infection (Derckel et al., 1999); they 
accumulate in leaves and berries after pathogen infec-
tion and contribute to grapevine resistance (Giannakis 
et al., 1998). Berdeja et al. (2014) indicated that, under 
drought stress, the transcript abundance of some specific 
PR genes, e.g. PR1 and PR4, differed between rootstock 
cultivars. This indicates a link between JAs and ABA in 
water-stressed grapevines (Suhita et al., 2004). 

As for scion cultivars, V. vinifera Chardonnay and 
Merlot have been classified as less susceptible to esca 
than Cabernet Sauvignon, which is considered as sus-
ceptible due to the high proportions of symptomatic 
vines observed in different climatic conditions (Chris-
ten et al., 2007; Andreini et al., 2009; Bruez et al., 2013; 
Murolo and Romanazzi, 2014). Varieties with small 
xylem vessels are considered less likely to express foliar 
symptoms because of a limited drought-induced xylem 
cavitation (Pouzoulet et al., 2014). Furthermore, own 

rooted vines sometimes show lower incidence of esca 
disease than grafted vines (Andreini et al., 2014), possi-
bly because they avoid contamination by fungal spores 
on wounds at graft unions during propagation processes 
(Halleen et al., 2003; Hofstetter et al., 2012). In contrast, 
vines grafted on SO4, with low drought resistance, and 
those grafted on 1103P, conferring high drought resist-
ance, had very similar amounts of apoplexy, while the 
rate in own-rooted vines, also with high drought resist-
ance, was much higher (Marchi, 2001).

With other combinations of cultivar and rootstock, 
the rootstocks may be less important than other factors, 
both internal and external. This suggests that the sus-
ceptibility of vine genotypes to esca depends on envi-
ronment and genotype factors (Marchi, 2001). The com-
plexity of esca, and the effects of several environmental 
factors in appearance of symptoms, make evaluation of 
cultivar susceptibility very difficult. In-depth and broad 
genetic studies of varieties in response to biotic and abi-
otic stresses are necessary.

Age

Age of plants is a key factor governing the interac-
tion between responses to the biotic and abiotic stresses, 
and whether plants are tolerant or susceptible to stress 
factors; the overall effect of stress combination on plants 
largely depends on their age (Pandey et al., 2015). Age of 
vines also affects disease incidence, resulting in greater 
incidence of diseased plants in old vineyards. Older 
plants experience more infection cycles than young 
plants, through wounds they have received (McCutcheon 
et al., 1993; Mugnai et al., 1999; Zabalgogeazcoa, 2008; 
Amponsah et al., 2011; Kovacs et al., 2017). As a result, 
there are positive correlations between vine age and 
trunk disease incidence, and, on a global scale, the dis-
ease remains the greatest limitation to maintaining opti-
mum yields (Brown et al., 2016). 

CLIMATIC AND ENVIRONMENTAL CHANGES AS 
ABIOTIC FACTORS

Climatic and edaphic factors have been reported 
to influence the incidence of esca and other grapevine 
trunk diseases (Graniti et al., 2000; van Niekerk et al., 
2011; Sosnowski et al., 2011; Calzarano et al., 2018). This 
indicates that the pathogens are not the only agents 
responsible for the disease symptoms. Changes in envi-
ronmental conditions are known to exacerbate disease 
symptoms in plants (Boyer, 1995). In latent vine infec-
tions, the presence of pathogens does not necessar-
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Table 1. Gene expression in response to genotype and various environmental factors and the putative action in different plants.

Gene Expression Plant species (as cited in 
respective research papers) Environmental factors Putative action Reference

Pathogenesis-related
proteins

Vitis ssp.
V. vinifera
V. vinifera

Pathogen infection;
Genotype

Defense genes against 
pathogens

Giannakis et al., 1998     
Derckel et al., 1999
Letousey et al., 2010

Phenylalanine
ammonia lyase
(PAL)

Vitis sp.
V. vinifera
V. vinifera
V. vinifera

Pathogen infection;
Water stress

Related to synthesis of the 
phytoalexin in grapevine 
and general responses 
against biotic and abiotic 
stresses

Melchior and Kindl, 1991
Grimplet et al., 2007
Deluc et al., 2009
Letousey et al., 2010

Abscisic acid (ABA) Zea mays
Glycine max
Z. mays 
V. vinifera 
Arabidopsis thaliana
V. vinifera
A. thaliana
Solanum lycopersicum
V. vinifera
Vitis spp.
Pinus taeda

Water stress; 
Rootstock  genotype

Stomatal closure;
Regulation of transpiration 
and root hydraulic traits;
Affecting SA-, JA and 
ET-related defense genes;
Suppressing PAL activity 
and ROS production

Zhang and Davies, 1990
McDonald and Cahill, 1999
Kizis and Peges, 2002
Soar et al., 2004
Kariola et al., 2006
Soar et al., 2006
Adie et al., 2007
Asselbergh et al., 2008
Vandeleur et al., 2009
Lovisolo et al., 2010
Lorenz et al., 2011

Cytokinins S. lycopersicum 
Z. mays

Water stress Influencing shoot  
responses

Kudoyarova et al., 2007
Alvarez et al., 2008 

Sugars V. vinifera
Prunus persica
V. vinifera
V. vinifera
V. vinifera
P. persica
P. persica

Water stress;
Genotype

Sugar accumulation  
in fruit

Freeman and Kliewer, 1983
Golding et al., 2006
Castellarin et al., 2007
Deluc et al., 2009
Koundouras et al., 2009
Lopresti et al., 2014
Cirilli et al., 2016

Amino acids Ocimum sp.
V. vinifera
V. vinifera

Water stress;
Rootstock genotype

Adjusting the osmotic 
potential in cytoplasm;
Affecting berry 
composition

Khalid, 2006
Deluc et al., 2009
Berdeja et al., 2014

Polyamines (PAs) Oryza sativa
Z. mays

Saline stress;
Pathogen infection

Involved in many 
physiological processes, 
such as cell growth and 
response to stress tolerance

Krishnamurthy and 
Bhagwat, 1989
Rodriguez-Kessler et al., 
2008

Anthocyanins Pisum sativum

V. vinifera

UV-B radiation;
Water stress

Developing a light red 
color in leaves and 
playing a primary role in 
photosynthesis;

Playing a major role in 
wine quality, including 
colour, flavor and bitterness

Noguees et al., 1998

Berdeja et al., 2014

Lignin Z. mays Water stress Important in plant defense Alvarez et al., 2008
Stilbenes Sorghum bicolor

V. vinifera
Pathogen infection;
Water stress

Protection against 
environmental challenges

Yu et al., 2005
Grimplet et al., 2007

Flavonoids P. sativum
Hordeum vulgare

UV-B radiation;
Water stress;
Saline stress

Decreasing the auxin level 
in plant tissues  
and causing growth 
retardation

Noguees et al., 1998
Ali and Abbas, 2003
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ily result in the immediate appearance of symptoms 
(Di Marco and Osti, 2008), as abiotic factors affect the 
appearance and the severity of the disease (Lecomte et 
al., 2011). As a result, incidence and symptom profiles 
of diseases associated with the different esca pathogens 
may vary between different climatic areas (van Niekerk 
et al., 2011). Climate changes will not occur uniformly 
in different regions, particularly for host and pathogen 
exposure to drought (Schultz, 2016).

Environmental changes may affect the nature of host 
responses to the pathogens. Firstly, plants adjust to envi-
ronmental challenges by tightly and differentially regu-
lating their transcriptomes (Baker et al., 1997; Chen et 
al., 2002; Yamaguchi and Shinozaki, 2006). These altera-
tions, often found associated with duration and sever-
ity of stresses, determine a plant’s ability to respond to 
internal and external signals, and to adjust to changing 
conditions (Eastburn et al., 2011; Pandey et al., 2015). 
Plant responses to environmental changes, e.g. develop-
ment of thicker wax layers on leaves or changes in sto-
matal densities, could impact the processes of infection 
and expression of symptoms (Campbell and Madden, 
1990). Abiotic stresses have impacts on the defense-
growth trade-off that plants face whenever there is a 
pathogen attack (Huang et al. 2008; Leakey et al. 2009; 
Kontunen-Soppela et al., 2010), causing resistance or 
susceptibility to the pathogens (Kuldau and Yates, 2000; 
Amtmann et al., 2008; Mittler and Blumwald, 2010). 
Environmental changes can also have direct effects on 
the pathogens. With esca, as indicated above, climatic 
conditions influence not only the distribution of patho-
gens but also the disease symptoms they cause (Surico 
et al., 2000; Marchi et al., 2006; van Niekerk et al., 2011; 
Calzarano et al., 2018).

Climatic changes have the potential to alter the inci-
dence and severity of plant disease epidemics, as well 
as to reshape the co-evolutionary relationships between 
pathogens and host plants (Burdon et al., 2006; Ziska 
and Runion, 2007; Crowl et al., 2008). Drought and tem-
perature, as the most influential factors, affect pathogens 
by altering growth rates, propagule germination, and 
the rates of inoculum production (Huber and Gillespie, 
1992). Eventually, increased colonization of plants by 
pathogens may occur in the presence of abiotic stresses 
(Koga et al., 2004). 

Drought

With the background of “climate change”, the fre-
quencies and intensities of drought periods are increas-
ing worldwide. Increased drought leads to enhanced 
plant respiration, resulting in carbon (C) losses at the 

plant level (Schultz, 2000; Moriondo et al., 2011), and 
plant death due to C starvation (Martinez-Vilalta et al., 
2002; Breda et al., 2006; McDowell et al., 2008; Adams 
et al., 2013; see Table 2 for additional information on the 
effect of water stress on different plants).

Low soil water content and resulting water defi-
cit have been considered as causes of stress on grape-
vines (Lovisolo and Schubert, 1998; Lovisolo et al., 2010; 
Lanari and Silvestroni, 2015). Among different stress 
combinations that occur in vineyards, the influential 
interaction between esca and drought has often been 
considered (Surico et al., 2000, 2006, 2010; Edwards et 
al., 2007b, c; Luque et al., 2010; Fischer and Kassemey-
er, 2012; Bostock et al., 2014; Ramegowda and Senthil-
Kumar, 2015).

Analysis of V. vinifera plants subjected to individual 
drought stress and/or pathogen infection revealed down-
regulation of transcripts involved in photosynthesis, 
nutrient assimilation, and cellular homeostasis (Choi et 
al., 2013). Two mechanisms have been suggested to illus-
trate how water deficit increases the susceptibility of 
grapevine to pathogen attack: first, limitation of photo-
synthesis (Flexas et al., 1999; Escalona et al., 1999) elimi-
nates the plant’s ability to produce defensive compounds, 
and, second, plant growth is reduced in the presence of 
the pathogen, allowing further progression of the patho-
gen and eventually expression of symptoms.

Drought-induced plant death under pathogen attack 
is influenced by the type of interaction between patho-
gen and host (Oliva et al., 2014). Studies reviewed by 
Boyer (1995) showed that predisposition to disease is 
often observed in host plants experiencing soil water 
deficits, and, among other cases, this has been illus-
trated in increases of bacterial leaf scorch symptoms (in 
Parthenocissus: McElrone et al., 2001,), and esca-related 
wood symptoms (caused by P. chlamydospora in Vitis: 
Fischer and Kassemeyer, 2012). Conversely, it was shown 
that resistance is typically restored when water stress is 
remediated (in Pinus: Johnson et al., 1997).

The pathogen may act: i) simultaneously with 
drought, as an opportunistic agent taking advantage 
of the effects of water stress on the host; or ii) prior to 
drought events (Oliva et al., 2014). Drought occurring 
during infection may have greater impact than previ-
ous drought episodes (Croise et al., 2001). For example, 
vascular wilt pathogens can accelerate drought-induced 
mortality by damaging the xylem vascular system, caus-
ing phloem impairment and foliage wilting (Oliva et al., 
2014). These conditions tend to increase evapotranspi-
ration, producing favourable conditions for the devel-
opment of xylem embolism, as is also observed in esca 
(Pouzoulet et al., 2014). 
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Evidence of esca complex and drought interactions in 
grapevine

The effects of esca pathogens and water stress on 
grapevines have been intensively studied. Water stress 
exacerbated decline symptoms associated with P. chla-
mydospora in young plantations (Ferreira et al., 1999). 
In glasshouse experiments, leaf water potentials in vines 
subjected to water stress were reduced when the vines 
were infected by P. chlamydospora, indicating that infec-

tion altered host plant responses to water stress, making 
it difficult for vines to get water to their leaves (Edwards 
et al., 2007b; c). Pasquier et al. (2013) showed that foli-
ar symptoms of esca proper may impact stress-related 
pathways in grapevines, e.g. sHSP (small heatshock pro-
tein) which is induced during water, salt, and oxidative 
stresses (Löw et al., 2000; Scharf et al., 2001). Christen 
et al. (2007), however, showed that foliar symptoms (in 
the case of GLSD) was not simply a water transport-
deficit disease, but that xylem dysfunction due to patho-

Table 2. Different plant species and their adaptive changes in response to water stress.

Plant species (as cited in 
respective research papers) Physio-biochemical changes Reference

Acer platanoides, 
Populus tremula, etc. 
Juglans regiax×nigra
Betula alleghaniensis, 
B. davurica, etc. 
Vitis vinifera

Stomatal closure Aasamaa et al., 2001

Cochard et al., 2002
Gu and Rom, 2007

Letousey et al., 2010
Zea mays
V. vinifera
Arabidopsis thaliana
Pinus edulis

Changes in photosynthetic rate and 
Carbon reserves

Westgate and Boyer, 1985
Christen et al., 2007 
Hummel et al., 2010
Sevanto et al., 2014

V. vinifera Enhanced respiration Schultz, 2000 
A. saccharum, 
Thuja occidentalis, etc. 

Lower shoot hydraulic conductance 
and leaf specific conductivity 

Tyree and Sperry, 1988

V. vinifera Lower transectional areas in xylem 
vessels

Lovisolo and Schubert, 1998

Eucalyptus globulus Impaired function of phloem Pate and Arthur, 1998
Vitis sp. Aquaporin gene expression Galmes et al., 2007
V. vinifera Growth reduction Shellie and Brown, 2012
Melissa officinalis Chlorophyll loss Munne-Bosch and Alegre, 1999
Z. mays
V. berlandieri×V. rupestris
Lycopersicom esculentum

Alteration in root structure 
and function

Zhang et al., 1995
Dry et al., 2000 
Mingo et al., 2004

Glycine max
Z. mays
G. max
L. esculentum
A. thaliana
A. thaliana
V. vinifera
Solanum lycopersicum
V. vinifera
Vitis sp.

ABA-responsive signaling pathway, 
e.g. the activation of JA-related 
defense genes, alteration in PAL 
activity, etc.   

Ward et al., 1989
Zhang and Davies, 1990
McDonald and Cahill, 1999
Audenaert et al., 2002
Kariola et al., 2006
Adie et al., 2007
Grimplet et al., 2007
Asselbergh et al., 2008
Deluc et al., 2009
Lovisolo et al., 2010

S. lycopersicum 
Z. mays

Cytokinin production Kudoyarova et al., 2007
Alvarez et al., 2008

V. vinifera
V. vinifera
V. vinifera

Sugar accumulation Castellarin et al., 2007
Deluc et al., 2009
Koundouras et al., 2009

Ocimum sp.
V. vinifera
V. vinifera

Accumulation of amino acids, e.g. 
proline

Khalid, 2006
Deluc et al., 2009
Berdeja et al., 2014 

G. max Reduction of isoflavone content Gutierrez-Gonzalez et al., 2010
Z. mays Changes in lignin content Alvarez et al., 2008
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gen spread partly explained the appearance of the foliar 
symptoms.

Intensity and timing of water deficit

Water supply plays an important role in plants under 
stress. Several studies have shown that water availabil-
ity induces modifications of vessel diameter in differ-
ent plants, including V. vinifera (Lovisolo and Schubert, 
1998; Fichot et al., 2009; Bauerle et al., 2011). Annual 
changes in esca symptom expression may be partly due 
to differences in the size of new vessels formed under dif-
ferent water regimes (Pouzoulet et al., 2014). 

Root systems that are able to maintain water uptake 
under low water availability may increase drought 
resistance (Passioura, 2002; Comas et al., 2013; Barrios-
Masias and Jackson, 2014). Hydraulic conductivity and 
suberization of grapevine roots can change dramatically 
when they are subjected to water deficit, so irrigation 
management could be used to modify the water uptake 
capacity of root systems (Barrios-Masias et al., 2015). 
Moderate water deficit increases root growth of grape-
vine, as this is required for water uptake from deeper 
layers of soil, and maintains stomatal conductance under 
declining soil moisture (Alsina et al., 2007, 2011). Water 
use efficiency is consequentially optimized (Shellie and 
Brown, 2012).

Intensity and timing of water deficit may play criti-
cal roles in grapevine health and productivity, particu-
larly in semi-arid regions. Schreiner and Lee (2014) sug-
gested that there will be only small negative impacts of 
late-season water deficit in Pinot noir grapevines, from 
evidence with plants grown in pot-in-pot microplots.

Wine grapes are often intentionally grown under 
water deficit regimes to meet wine quality goals (Cas-
tellarin et al., 2007). In contrast, increased amounts 
of rainfall during summer and soils with high water 
reserves were shown to increase severity of GLSD and 
other diseases in the esca complex (Calzarano et al., 
2016; 2017a, 2017b; Guérin-Dubrana et al., 2005, 2012; 
Marchi et al., 2006). Apoplectic symptoms are often 
correlated with excess of soil water combined with hot 
weather, leading to dramatic imbalance between foliar 
transpiration and root absorption (Surico et al., 2006).

OTHER ABIOTIC FACTORS

Adding plant nutrients (fertilizers) to soils, to pro-
mote plant growth, was reported to enhance esca disease 
expression. For esca proper, high availability of nutrients 
in a growing season increased the proportion of diseased 

vines with symptoms, and decreased the proportion of 
infected but symptomless vines (Calzarano and Di Mar-
co, 2007; Calzarano et al., 2009). 

Soil salinity also is important. High salinity causes 
damage to plants from water deficit due to osmotic stress 
and by ion toxicity from excessive sodium ions (Zhu, 
2003; Munns and Tester, 2008; Hasegawa, 2013), and 
this may provide favourable conditions for esca-related 
pathogens. However, grapevine is adapted to semi-arid 
environments, where drought and salinity are prevalent 
growth restraints, and is considered moderately tolerant 
to salinity stress (Walker et al., 2002; Gil et al., 2013). 
Combined drought and salt stresses led to enhanced 
sodium accumulation in roots and shoots (Ahmed et al., 
2013). Ma et al. (2015) characterized physiological and 
molecular responses of grapevine to short-term osmot-
ic and sodium chloride stresses; a close relationship 
between drought and salinity may exist, leading to even-
tual impacts on plant physiological responses.

The duration and intensity of light may affect the 
life cycles of fungal pathogens, including those caus-
ing esca. Mittler et al. (1997) and Alvarez-Loayza et al. 
(2011) demonstrated that low light intensity favoured 
endosymbiotic development, while high light intensity 
triggered pathogenicity of the fungi. These authors also 
showed that mycelial melanin, correlated with increased 
production of reactive oxygen species (ROS) in patho-
gens and often associated with increased virulence to 
hosts, increased with light exposure, for instance caused 
by natural radiation. The rates of spore survival are also 
influenced by light conditions, mainly due to the UV-B 
portion of the spectrum, and to increased surface tem-
peratures caused by radiation (Rotem et al., 1985; Ste-
venson and Pennypacker, 1988; Braga et al., 2015). How-
ever, no such studies, for instance with respect to colo-
nization of pruning wounds, have been conducted with 
esca pathogens.

Pandey et al. (2015) reviewed enhanced dam-
age caused by heat and drought stress combinations 
in plants. Both stress types share a number of physi-
ological traits; their overall effects on plants are additive 
and aggravate both conditions. Sosnowski et al. (2007) 
reported that temperature and rainfall were related to the 
symptom development of Eutypiosis. Cool, rainy sum-
mers favoured GLSD or esca proper (chronic esca), and 
hot dry summers favoured apoplexy (acute esca) (Surico 
et al., 2000). Marchi et al. (2006) reported on the rela-
tionship between annual incidence of manifest esca (dis-
eased plants with foliar symptoms), hidden esca (asymp-
tomatic plants through a growing season) and rainfall. 
Other data show that rainfall and temperature in (North-
ern Hemisphere) May-July or only in July were, respec-
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tively, directly and inversely related with esca leaf symp-
toms (Calzarano et al., 2018). Incidence of P. chlamydos-
pora and Phaeoacremonium spp. infections were greater 
in winter rainfall regions than in marginal and summer 
rainfall regions, and this was attributed to the climat-
ic preferences of these fungi (van Niekerk et al., 2011). 
Expression of PR-10 protein was found to be dependent 
on climatic conditions; therefore, it is possible that yearly 
temperature differences could influence the appearance 
of foliar symptoms in esca proper (Pasquier et al., 2013).

PHYSIO-BIOCHEMICAL CHANGES IN GRAPEVINE IN 
ADAPTATION TO ENVIRONMENTAL CHANGES

Acclimation of plants to environmental factors 
leads to adaptive changes in root and shoot growth and 
physio-biochemical processes, which subsequently can 
alter molecular host-pathogen interactions. Beckman 
(1964) noted that physiological changes in plants, such 
as increased respiration and changes in water balance, 
result in wilting due to lack of water rather than toxins 
produced by vascular pathogens, such as Phaeomoniella 
or Phaeoacremonium.

Physiological changes

Advanced soil drying decreases the amount of 
nitrate taken up by plant roots, and this raises the xylem 
sap pH, increasing the sensitivity of stomata to the 
hormone ABA (Wilkinson and Davies, 1997; see also 
Woodall and Ward, 2002; Benjamin and Nielsen, 2006). 
The effects of stress on xylem sap were investigated by 
Agüero et al. (2008), who reported that sap from water 
stressed grapevines enhanced the in vitro growth of P. 
chlamydospora and Phaeoacremonium spp.

Xylem morphology

During developmental stages, xylem is responsive 
to environmental signals, and biotic and abiotic stresses 
may threaten xylem function (Pouzoulet et al., 2014). 
Grapevine xylem is very efficient for water transport 
and by the formation of tyloses and gels is particularly 
vulnerable to cavitation (Alsina et al., 2007). This results 
in possible dysfunction due to water stresses (Hacke et 
al., 2000; McDowell et al., 2008; Choat et al., 2012; Vila-
grosa et al., 2012), and the presence of pathogens (Kuro-
da, 1991; Edwards et al., 2007a; Raimondo et al., 2010). 
Resistance to drought-induced cavitation is correlated 
with xylem vessel dimensions (Hacke et al., 2001; Jacob-

sen et al., 2005; Sperry et al., 2006), which are the func-
tion of the plant’s genetic makeup (Fichot et al., 2009). 
Pouzoulet et al. (2014) documented that the grape vari-
eties Cabernet Sauvignon and Thompson Seedless, both 
considered susceptible to esca, had wider and longer 
vessels than other varieties. Occlusion processes taking 
place in vessels of wide diameter, with loose clusters of 
tyloses, compared to smaller diameter vessels with more 
compact clusters, would create favourable environments 
for P. chlamydospora (Pouzoulet et al., 2017). 

Several studies in different plant species have 
observed increases of vessel grouping (Tyree et al., 1994; 
Lopez et al., 2005; Robert et al., 2009; Lens et al., 2011; 
Carlquist, 2012), and fewer solitary vessels (Arx et al. 
2013), with increasing water limitation. Vessel group-
ing improves hydraulic redundancy and reduces the 
potential loss of water transport capacity associated 
with cavitation (Pouzoulet et al., 2014). However, it was 
also hypothesized that the mechanism of tolerance 
towards esca is similar to that displayed by elms (Ulmus 
spp.) against Dutch elm disease, and therefore may not 
be correlated with vessel morphology (Venturas et al., 
2013). Thorough evaluation of xylem structure in differ-
ent grapevine varieties may offer increased understand-
ing of xylem vulnerability to drought stress, and suscep-
tibility to vascular pathogens.

BIOCHEMICAL CHANGES

Plant biochemical responses to biotic and abiotic 
factors are complex and based on a number of molecular 
factors.

Photosynthetic responses

Esca-affected and drought-stressed grapevines pro-
vided information on the distinct functional behav-
iour patterns of photosynthetic response for these two 
stress types. In a study by Christen et al. (2007), esca-
infected plants showed greater f luorescence intensity 
than drought stressed plants. However, the pool size of 
electron carriers, the electron transport per cross sec-
tion and the electron transport per active reaction cen-
tre increased in the drought stress plants, whereas they 
decreased in the esca-infected plants.

Defense-related metabolism

In response to biotic and abiotic factors, a “trade-
off” exists between growth and defense-related metabo-
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lism in plants (Treutter, 2005). When defense com-
pounds are produced, plant resources are used, includ-
ing amino acids, carbohydrates and other nutrients. 
Plants with symptoms reduce their carbohydrate 
reserves during winter dormancy (Petit et al., 2006), and 
the lower pool of reserves may contribute to decreased 
plant development and vigour during the subsequent 
year (for grapevine, shown by Fontaine et al., 2016). 

Vines infected with P. chlamydospora showed 
reduced carbohydrate reserves compared to the con-
trol vines during winter dormancy, and were character-
ized by an overall loss of plant vigour (Petit et al., 2006). 
Rudelle et al. (2005) suggested that high metabolic activ-
ity associated with secretory defense responses results 
from reduced starch storage. This associates with the 
first appearance of GLSD symptoms in a growing sea-
son in Trebbiano d’Abruzzo vineyards, at pre-bunch clo-
sure, and is when carbohydrate reserves in the wood are 
at their least. This condition could stimulate release of 
toxins by the pathogens in the vine wood, causing host 
leaf responses (Sumarah et al., 2005; Eaton et al., 2015). 
The reconstitution of these reserves between pre-bunch 
closure and veraison (Lebon et al., 2008) was accompa-
nied by reduced leaf symptom expression (Calzarano et 
al., 2016; 2017a; 2017b). In contrast, if a vine has already 
experienced water stress, and has allocated amino acids 
to proline production in order to maintain osmotic pres-
sure (Keller, 2005; Deluc et al., 2009), less raw material 
will be available to produce plant defense compounds.

CONCLUSIONS

Considering the fact that grapevine culture and 
wine production are highly dependent on climatic con-
ditions (van Leeuwen et al., 2004; Ollat et al., 2016), this 
review tried to provide new insights regarding biotic and 
abiotic factors in esca disease incidence. 

Grapevines are economically important woody per-
ennial fruit crops, with approx. 7.12 million ha cultivated 
and 74.5 million t of fruit harvested in 2014 (Gramaje et 
al., 2018). Viticulture is facing important environmental 
challenges that need to be addressed through coordinated 
research. To achieve this goal, it will be important to assess 
the effects of biotic and abiotic stressors on grapevine per-
formance, since plant disease responses may change signif-
icantly under the influence of environmental parameters. 
Evidence for global climate change is generally accepted 
(Solomon et al., 2007; Bradley et al., 2012; Matyssek et al., 
2012), and concomitant changes can lead to the disappear-
ance or emergence of diseases in particular regions.

Water stress and the esca disease complex have 
been identified as the most important economic threats 
for viticulture (Luque et al., 2010; Sosnowski et al., 
2011; van Niekerk et al., 2011). The worldwide economic 
cost for the replacement of dead grapevines is estimat-
ed to be in excess of 1.5 billion dollars per year (Hof-
stetter et al., 2012; see also De la Fuente et al., 2016). 
Since plant responses to environmental stressors are 
known to affect responses to pathogens, decipher-
ing how grapevines adapt to drought conditions is an 
essential step to improving water use efficiency, and 
to adequately managing the linked pathogens. Under-
standing the role of xylem plasticity among grapevine 
varieties, and its consequences for xylem vulnerability 
to drought stress and susceptibility to vascular patho-
gens, are essential. Further research is needed to deter-
mine the physiological and molecular mechanisms 
underlying the plant-environment-pathogen triangle. 
Bio-informatic analyses may be useful for compar-
ing the expression of various sets of biotic and abiotic 
stress-related genes involved in general plant responses 
to pathogen infection (Fontaine et al., 2016), and these 
analyses could improve understanding of the regula-
tory networks that control the plant responses to vari-
ous stresses. To date, not enough information has been 
gathered on the effects of environmental stresses on the 
transcriptional responses of grapevine to the esca dis-
ease complex.

Long-term application of controlled conditions 
should be a priority, to increase understanding of the 
interactions between grapevine and the esca-related 
pathogens. The goal of this research should be to manip-
ulate field growth conditions to favour vine hosts. Sus-
tainable esca disease management will consist of a com-
bination of appropriate grapevine cultivars and water 
regimes to mitigate the economic losses. Due to the 
extended periods of drought expected in the coming 
decades, the targeted use of protective endophytes, such 
as arbuscular mycorrhiza fungi, to improve plant nutri-
ent uptake and osmotic stress tolerance, could provide 
improved drought tolerance (Schreiner, 2003; Schrein-
er and Linderman, 2005; Schreiner and Mihara, 2009; 
Trouvelot et al., 2015).
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