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Fungi associated with grapevine trunk diseases in nursery-produced 
Vitis vinifera plants
Cristina PINTOS, Vanesa REDONDO, Daniel COSTAS, Olga AGUÍN and PeDrO MANSILLA

Estación Fitopatolóxica Areeiro, Diputación de Pontevedra, Subida a la Robleda s/n 36153 Pontevedra Spain

Summary. Grapevine trunk diseases (GTDs) are one of the most important groups of fungal diseases affecting 
grapevine plants worldwide. One of the main causes of GTDs infection occur during nursery plant production 
processes. The phytosanitary status was determined for 150 young grapevine plants (two varieties grafted onto 
different rootstocks) that were produced in three European nurseries. Some plants were analyzed upon submis-
sion, while others were assessed after up to 12 months growth in a greenhouse. Fungal species associated with 
GTDs were identified and characterized from the scions, graft unions, rootstocks, or roots. A total of 449 fungal 
isolates associated with GTDs were obtained, and 20 species were identified by morphological characteristics and 
DNA analyses. Five species were involved in Botryosphaeria dieback, six in black foot disease, six in Diaporthe 
dieback, and three in Petri disease. Incidence of GTDs on grapevine plants was between 81 and 100%, with dif-
ferent diseases varying between rootstocks and grapevine varieties. Isolates of other fungal genera not involved 
in the GTD complex were also detected, including Colletotrichum, Fusarium, and Rhizoctonia. The high presence of 
GTDs during nursery production of grapevine plants raises the need to implement effective control methods that 
could prevent the spread of these diseases to vineyards.

Key words: Botryosphaeriaceae, Cylindrocarpon, Diaporthe, trunk diseases, Petri disease, young vine decline.

Introduction
Grapevine trunk diseases (GTDs) are one of the 

most destructive groups of fungal diseases affecting 
Vitis vinifera worldwide (Larignon and Dubos 1997; 
Agustí-Brisach et al., 2013a; Gramaje et al., 2018). Sev-
eral trunk disease pathogens cause premature decline 
and dieback of grapevines. These pathogens include: 
the causal agents of Petri disease; species of the Bot-
ryosphaeriaceae which cause Botryosphaeria dieback 
(Úrbez-Torres, 2011); Phomopsis viticola (Diaporthe am-
pelina) which is the leading cause of Diaporthe die-
back (Fourie and Halleen 2004; Úrbez-Torres et al., 
2013); and Cylindrocarpon-like species which cause 
black foot disease (Halleen et al., 2004; Agustí-Brisach 
and Armengol, 2013).

Several authors have reported decreases in sur-
vival rates of grafted grapevines affected by GTDs 
grown in nurseries and young vineyards (Halleen et 
al., 2003, 2004; Gramaje et al., 2009; Rego et al., 2009; 
Agustí-Brisach et al., 2011; Gramaje and Armengol, 
2011; Cabral et al., 2012a; Gramaje et al., 2018). These 
decreases are probably due to the banning of sodi-
um arsenite for disease control (Mugnai et al., 1999; 
Bertsch et al., 2013; Gramaje et al., 2018). The exter-
nal symptoms of the diseases in young grapevines 
include stunted growth, reduced vigour, delayed or 
absent sprouting, shortened internodes, sparse and 
chlorotic foliage with necrotic margins, bud mortal-
ity, fruit rotting, cane bleaching, failure of the graft 
unions, wilting, and dieback. All of these symptoms 
may be accompanied by sunken necrotic root lesions 
and reductions in the root biomass and root hairs 
(Gramaje and Armengol, 2011). The decline of young 
vines due to fungal infections has mainly been at-
tributed to Cylindrocarpon-like species, Petri disease 
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fungi, and Botryosphaeriaceae species acting alone 
or, more frequently in combination (Giménez-Jaime 
et al., 2006; Rego et al., 2009; Probst et al., 2012; Carluc-
ci et al., 2017). Analysis of canes of mother-plants of 
rootstocks and scions prior to grafting has also shown 
that they were mainly infected with Botryospha-
eriaceae species (Rego et al., 2009, Billones-Baaijens et 
al., 2013a, 2013b, 2015) and Diaporthe ampelina (Rego 
et al., 2009).

Traditional propagation techniques used in viti-
culture can have significant effects on the quality of 
the vines produced, and apparently healthy grafted 
plants also contain fungi that cause GTDs (Gramaje 
and Armengol, 2011; Agustí-Brisach et al., 2013b; Car-
lucci et al., 2017). The aim of the research described in 
the present paper was to determine the phytosanitary 
status of young grapevine plants produced in three 
grapevine nurseries, and to identify and characterize 
the fungi associated with GTDs.

Materials and methods
Plant material

The phytosanitary status was examined of 150 
young grapevine plants [62 of Vitis vinifera ‘Albariño’; 
22 grafted onto rootstock 196-17 Castel (196-17C); 40 
onto rootstock 110 Richter (110 R); 88 of V. vinifera 
‘Savagnin’ grafted onto rootstock Fercal 242]. The 
plants were produced in three different commer-
cial nurseries, two in Spain (nurseries 1 and 2) and 
one in France (nursery 3). All grafted vines holding 
plant passports had good external condition upon 
submission. The study of ‘Albariño’ variety plants 
grafted onto 196-17C rootstock (from nursery 2) was 
conducted upon arrival to the laboratory. ‘Albariño’ 
plants grafted onto 110R rootstock (nursery 1) and 
‘Savagnin’ plants (nursery 3) were transplanted into 
6 L capacity pots containing a mixture of commercial 
substrate and sand (1:1). These plants were grown 
in a greenhouse for 12 months (‘Albariño’ plants on 
110R rootstock) or 6 months (‘Savagnin’ plants), with 
manual watering each week.

Fungal isolations

To isolate the fungi associated with GTDs, each 
plant was cut into four pieces of approx. 3–5 cm: 
scion, graft union, rootstock, and roots (where frag-
ment “roots” comprised both the base of the rootstock 

and the roots).  The potted plants were carefully re-
moved from their containers, and their roots were 
washed to eliminate any residual substrate. Wood 
pieces were peeled, and all pieces were rinsed for 1 
min. in 1% sodium hypochlorite solution, and then 
rinsed twice (5 min. each) with distilled water. Each 
plant fragment was left to dry on non-sterile paper 
towels for at least 2 h. The pieces were then each cut 
into several small pieces and included in a 2% malt 
extract agar (MEA, Difco, Becton Dickinson) medium 
supplemented with 0.5 g L-1 of streptomycin sulfate 
(MEAs) under sterile conditions. Approximately ten 
to 14 wood pieces from each section were placed in 
two MEAs Petri dishes (five to seven pieces per dish), 
which were sealed with Parafilm® (Bemis Co.), and 
then incubated in the dark at 24ºC for 1 month. The 
dishes were examined daily under the microscope to 
check for fungal growth.

Disease assessments

Incidence of GTDs was calculated as the number 
of plants affected by any GTD divided by the total 
number of plants and the incidence of each disease 
and plant parts was calculated in the same way, con-
sidering one or more species causing one type of GTD 
as one. Associations between GTD and nursery, or be-
tween GTD and grapevine plant parts, were assessed 
using two simple correspondence analyses, conduct-
ed using IBM SPSS Statistics v. 22.0 (SPSS Inc.).

Fungal identification 

Morphological identification
Cultures grown in MEAs were initially classified 

based on the macroscopic mycelium characteristics, 
including colony shape, texture, colour and growth 
rate, as well as on microscopic features, including 
shape and colour of mycelia, and colour, shape and 
size of the conidia. Isolates of fungi associated with 
GTDs were subcultured on potato dextrose agar 
(PDA) (Difco) by hyphal-tip subculturing, and were 
then incubated in the dark at 24ºC. Morphological fea-
tures were analyzed with a Nikon Eclipse E600 micro-
scope, and measurements were made with a Nikon 
digital camera DXM1200 and the measurement mod-
ule of NIS-Elements. The Cylindrocarpon-like isolates 
were grown on Spezieller Nährstoffarmer agar (SNA) 
(Nirenberg, 1976) in Petri dishes also containing four 
pieces (1 cm2) of filter paper (Alaniz et al., 2007), in 
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order to enhance sporulation. The Botryosphaericeae 
spp. isolates were subcultured on pine needle agar 
(PNA) to promote the production of pycnidia (Phil-
lips et al., 2013). The SNA and PNA cultures were in-
cubated at 25ºC under NUV + fluorescent illumina-
tion with a 12-h photoperiod. Cardinal temperatures 
for growth of isolates were determined on PDA incu-
bated in the dark at temperatures from 5 to 40°C (at 
5ºC intervals), with four replicate plates of selected 
cultures at each temperature. Radial colony growth 
of the isolates was measured by taking two colony 
diameter measurements perpendicular to each other.

Molecular identification and characterization
A total of 276 isolates were analyzed using am-

plification and sequencing with different molecular 
markers. This was carried out for 86 Cylindrocarpon-
like isolates, 130 Botryosphaeriaceae isolates, 30 Dia-
porthe isolates, and 30 isolates associated to Petri dis-

ease fungi. Genomic DNA was extracted from 2 to 7 
d old pure colonies of GTD-associated fungi grown 
in PDA, using the commercial kit E.Z.N.A. Fungal 
DNA Mini Kit (Omega Bio-tek), and following the 
short protocol recommended by the manufacturer. 
For preliminary molecular identifications, the inter-
nal transcribed spacer region and intervening 5.8S nr-
RNA gene (ITS) was amplified for all isolates, with 
the primers ITS1F (Gardes and Bruns 1993) and ITS4 
(White et al., 1990). Six additional loci were amplified 
and sequenced according to each GTD-associated 
fungal group, using the primers and PCR protocols 
listed in Table 1.

The selected gene regions were amplified in a 
SureCycler 8800 thermal cycler (Agilent Technolo-
gies), by adding 1 μL of template DNA (10–20 ng) into 
a PuReTaq Ready-To-Go PCR Beads (GE Healthcare) 
tube containing 0.5 μL each of forward and reverse 
primers (0.2 mM), and adjusting to a final reaction 

Table 1. Loci and primer pairs used to amplify selected gene regions for the main groups of grapevine trunk disease fungi 
obtained in this study.

Fungi Locia Primer pairs References

Cylindrocarpon-like his3 CYLH3F, CYLH3R Crous et al., 2004

ITS ITS4, ITS5 White et al., 1990

LSU LR0R, LR5 Rehner and Samuels, 1994; Vilgalys and Hester, 1990

tef1 EF1-728F, EF1-986R Carbone and Kohn, 1999

CylEF-1, CylEF-R2 Groenewald, unpublished; Crous et al., 2004

tub2 T1, CYLTUB1R O’Donnell and Cigelnik, 1997; Crous et al., 2004

Botryosphaeriaceae ITS ITS1, ITS4 White et al., 1990

LSU LR0R, LR5 Rehner and Samuels, 1994; Vilgalys and Hester, 1990

rpb2 RPB2Bot6F, RPB2Bot7R Sakalidis et al., 2011

tef1 EF1-728F, EF1-986R Carbone and Kohn, 1999

tub2 Bt2a, bt2b Glass and Donaldson, 1995

Diaporthe cmdA CAL-228F, CAL-737R Carbone and Kohn, 1999

CL1, CL2A O’Donnell et al., 2000

his3 CYLH3F, H3-1B Crous et al., 2004; Glass and Donaldson, 1995

ITS ITS1, ITS4 White et al., 1990  

tef1 EF1-728F, EF1-986R Carbone and Kohn, 1999

tub2 Bt2a, Bt2b Glass and Donaldson, 1995
a cmdA: calmodulin; his3: histone H3; ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; LSU: 28S large subunit; 

rpb2: RNA polymerase II second largest subunit; tef1: translation elongation factor 1-alpha; tub2: β-tubulin.
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volume of 25 μL with nuclease-free water. PCR prod-
ucts were separated by electrophoresis in 2% (w/v) 
agarose gels in TBE 0.5X, stained with Midori Green 
(NIPPON Genetics Europe), and then examined un-
der UV light. PCR products were then purified with 
the Illustra ExoProStar 1-Step kit (GE Healthcare Life 
Sciences). Amplicons were sequenced in forward 
and reverse directions using both PCR primers with 
the Big Dye Terminator V3.1 Cycle Sequencing Kit 
(Applied Biosystems), in an ABI Prism 3500 Genetic 
Analyzer (Applied Biosystems). Nucleotide arrange-
ments at ambiguous positions were clarified using the 
forward and reverse sequences. Consensus sequences 
were assembled with the MEGA v.6 software (Tamura 
et al., 2013), and were compared with homologous se-
quences using the BLASTn search of the NCBIs Gen-
bank nucleotide database.

Phylogenetic analyses included representative 
sequences of GTD-causing fungi obtained during 
this study (six Cylindrocarpon-like, nine Botryospha-
eriaceae spp., and six Diaporthe isolates), and related 
sequences retrieved from GenBank, including, where 
possible, sequences from ex-type specimens selected 
for their high similarity to isolate sequences, using 
MegaBLAST (Table 2).

Different gene regions were aligned using the 
MAFFT v.7 online interface (https://mafft.cbrc.jp/
alignment/server/index.html) (Katoh and Stand-
ley, 2013), and manually corrected where necessary. 
Unreliable alignment regions were filtered using the 
GUIDANCE2 online server (Sela et al., 2015). Congru-
ence between the different datasets was tested using a 
70% reciprocal bootstrap criterion on each individual 
locus for each group of GTD-causing fungi (Mason-
Gamer and Kellogg, 1996). Selected genes were then 
combined to infer multigene analyses. The combined 
dataset of five loci (ITS, LSU, tef1, tub2, his3) was used 
to obtain the multilocus phylogeny of Cylindrocarpon-
like fungi, along with five loci (ITS, tef1, tub2, his3, 
cmdA) for Diaporthe spp., and four for (ITS, tef1, tub2, 
rpb2) the Botryosphaeriaceae isolates.

Phylogenetic analyses were based on the maxi-
mum likelihood (ML) of all individual loci, and on 
both the ML and Bayesian inference (BI) in the case of 
the multilocus analyses. Substitution models for each 
sequence dataset were inferred with MrModeltest2 v. 
2.3 (Nylander 2004). Both analyses were performed in 
the CIPRES Science Gateway web server (www.phy-
lo.org) (Miller et al., 2010). ML trees were obtained us-
ing the RAxML-HPC Black Box tool v. 8.2.10 (Stama-

takis et al., 2008). A general time reversible (GTR) 
model was applied, with a gamma-distributed rate 
variation including 1,000 bootstrap replicates. Bayes-
ian analyses were inferred with MrBayes in XSEDE V. 
3.2.6 (Ronquist and Huelsenbeck, 2003).

The phylogenetic trees and data files were viewed 
with the MEGA v. 6 and FigTree v. 1.3.1 software 
(Rambaut and Drummond, 2010). Campylocarpon fas-
ciculare (CBS 112613), was used as the outgroup to 
infer the phylogenies of the Cylindrocarpon-like spe-
cies, Diaporthella corylina (CBS 121124) for Diaporthe, 
and Saccharata proteae (CBS 115206) for Botryospha-
eriaceae species.

Results
A total of 2155 fungal isolates were obtained from 

all the sampled plants. Of these, 449 were classified as 
fungi associated with GTDs, 117 associated to Black 
foot disease (BFD), 147 to Botryosphaeria dieback 
(BD), 30 to Petri disease (PD), 126 to Diaporthe die-
back (DD), and 29 to pestalotioid fungi (PF). Ninety-
three percent of the plants were infected by at least 
one grapevine trunk pathogen (82% of ‘Albariño’ 196-
17C plants, 92 % of the ‘Savagnin’ Fercal 242 plants, 
and 100 % of the ‘Albariño’ 110R plants) (Table 3). 
Most of the affected vines presented more than one 
GTD per plant (40% were infected by two, 31% by 
three and 9% by four GTDs). Fungi associated to BFD 
were the most prevalent in ‘Albariño’ plants, regard-
less of the rootstock type, affecting up to 77% of these 
plants. Botryosphaeria dieback fungi were the most 
detected fungi in the ‘Savagnin’ plants (66%). Dia-
porthe dieback was the second most common disease 
detected in ‘Savagnin’ and  ‘Albariño’110R plants, 
with incidence ranging from 59 to 73%. Petri disease 
and pestalotioid fungi were the least prevalent taxa, 
accounting for only 13 to 41% and 0 to 20% of the 
infections, respectively (Table 3). Cylindrocarpon-like 
fungi were isolated principally from the bases of the 
rootstocks and the roots, whereas fungi associated 
with BD and DD were mainly isolated from the graft 
unions and the rootstocks. Using Chi-square analy-
ses, significant differences were detected for GTD 
incidence between the three studied nurseries and 
between GTDs and the different analyzed plant parts 
(P<0.001). Correspondence analyses showed that 
there was a relationship among nurseries and each 
GTD, except for BFD, the common disease in all three 
nurseries (Figure 1). Regarding the different analyzed 
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plant parts, there was an obvious tissue association 
between BFD and the rootstock bases and roots, be-
tween PD and BD and the graft unions, and between 
DD and the rootstocks (Figure 2).

Isolates of the GTD fungi were identified to family 
or genus based on colony and conidium morphologi-
cal characters. Two hundred and seventy six isolates 
(86 Cylindrocarpon-like, 130 Botryosphaeriaceae, 30 
Diaporthe and 30 Petri disease isolates) were also iden-
tified using molecular techniques.

BLAST comparisons and phylogenetic analyses 
followed by checks of morphological features identi-
fied 20 fungal species: six Cylindrocarpon-like species 
(Dactylonectria hordeicola, D. macrodidyma, D. paucisep-
tata, D. torresensis, Ilyonectria liriodendri, and I. robusta), 
five Botryosphaeriaceae species (Botryosphaeria doth-

idea, Diplodia mutila, D. seriata, Neofusicoccum luteum, 
and N. parvum), three Petri disease fungi (Cadophora 
luteo-olivacea, Phaeoacremonium minimum, and Phaeo-
moniella chlamydospora), and six Diaporthe spp. (D. am-
pelina, D. eres, D. foeniculina, D. novem, D. phaseolorum, 
and D. rudis) (Table 4). In all cases, the BLAST search-
es yielded 99-100 % identity with sequences available 
at the GenBank database.

Comparisons of the 70% reciprocal bootstrap tree 
topologies of the individual loci showed no incongru-
ences for the cmdA, his3, ITS, tef1 and tub2 gene re-
gions in the Cylindrocarpon and Diaporthe phylogenies. 
However, the LSU gene region revealed a conflicting 
tree topology in the Cylindrocarpon phylogeny, and 
tef1 and rpb2 loci revealed a conflicting topology in 
the Botryosphaeriaceae phylogeny, compared to the 

Table 3. Incidence of grapevine trunk diseases (%) in plants of ‘Albariño’ and ‘Savagnin’ grapevine varieties from three 
nurseries, grafted onto 110R, 196-17 or Fercal 242 rootstocks, expressed by, plant parts and nursery.

Nursery Cultivar/
Rootstock No. Disease1

% of GTD 
affected plants 
(No. of plants )

% of GTD affected plants part (No. of plants)

Scion Graft union Rootstock Rootstock 
base/roots

1 ‘Albariño’ 40 BFD 77.5 (31) 5 (2) 2.5 (1) - 75 (30)

BD 52.7 (21) 5 (2) 35 (14) 35 (14) 15 (6)

110 Richter PD 15 (6) 7.5 (3) - 5 (2) 5 (2)

DD 72.5 (29) 20 (8) 50 (20) 37.5 (15) 15 (6)

PF 20 (8) 5 (2) 7.5 (3) 12.5 (5) -

 GTD 100 (40) 35 (14) 77.5 (31) 62.5(25) 82.5(33)

2 ‘Albariño’ 22 BFD 77.3 (17) - - 13.6 (3) 68.2 (15)

BD 18.2 (4) - 4.5 (1) - 13.6 (3)

196-17 Castel PD 40.9 (9) 4.5 (1) 22.7 (5) 9.1 (2) 4.5 (1)

DD 22.7 (5) 4.5 (1) 13.6 (3) - 4.5 (1)

PF 0 (0) - - - - 

GTD 81.8 (18) 9.1 (2) 40.9 (9) 22.7 (5) 72.7 (16)

3 ‘Savagnin’ 88 BFD 55.7 (49) 2.3 (2) - 8 (7) 52.3 (46)

BD 65.9 (58) 29.5 (26) 43.2 (38) 35.2 (31) 5.7 (5)

Fercal 242 PD 12.5 (11) 1.1 (1) 5.7 (5) 4.5 (4) 2.3 (2)

DD 59.1 (52) 22.7 (20) 19.3 (17) 35.2 (31) 3.4 (3)

PF 19.3 (17) 11.4 (10) 1.1 (1) 5.7 (5) 3.4 (3)

  GTD 92 (81) 47.7 (42) 63.6 (56) 59.1 (52) 58 (51)
1 BFD = Black foot disease, BD = Botryosphaeria Dieback, PD = Petri Disease, DD = Diaporthe Dieback and PF = Pestalotioid fungi.



Phytopathologia Mediterranea416

C. Pintos et al.

other gene regions. However, as these conflicts only 
involved the placement of single species, this was ig-
nored and the selected gene regions were combined, 
following the argument of Cunningham (1997) that 
combining incongruent partitions increases phyloge-
netic accuracy.

The Cylindrocarpon-like combined analysis of the 
five genes (ITS, LSU, his3, tef1, tub2) clustered the rep-
resentative Cylindrocarpon-like isolates into six clades 
and allowed the identification of the isolate EFA 443 
as D. hordeicola, based on its clustering in a well-sup-
ported group formed by the CBS 162.89 ex-type strain 
retrieved from GenBank (bootstrap support (BS) 
= 100%, Bayesian posterior probability (BPP) = 1.0) 
(Figure 3). Nevertheless, since the CBS 162.89 ex-type 
is a sterile culture, its morphological characteristics 
could not be compared.

The EFA 443 isolate grew on PDA between 5ºC 
and 30ºC, reaching optimal growth at 20ºC, and was 
characterized by felty, ochre-sienna mycelia with a 
whitish, irregular colony margin, differing complete-
ly from other Cylindrocarpon-like colonies examined. 
No sporodochia were observed. The microconidia 
(0–1 septate) were hyaline, cylindrical and straight, 
and most had visible hila; 0- septate (9.5–) 15.4 ± 
2.5 (–20.4) × (3.6–) 4.5 ± 0.5 (–5.6) μm, with length 
to width ratios of 2.6 to 4.2; 1- septate (13.5–) 18.8 ± 

2.7 (–26.3) × (3.6–) 5.0 ± 0.5 (–5.8) μm, with length to 
width ratios of 2.8 to 5.0. The macroconidia 1 (–3)-sep-
tate were hyaline, straight or slightly curved, and cy-
lindrical, but slightly wider towards the obtuse tips 
and more rounded at the bases, mostly with central 
hila: 1 septate- (21.1–) 26.6 ± 2.6 (–32.1) × (4.5–) 5.3 
± 0.4 (–6.1) μm, with length to width ratios of 4.1 to 
6.3; 2 septate- (20.1–) 28.8 ± 4.0 (–35.5) × (4.4–) 5.6 ± 
0.5 (–6.5) μm, with length to width ratios of 4.0 to 6.6; 
3 septate- (26.2–) 36.1 ± 4.7 (–44.8) × (5.1–) 5.9 ± 0.5 
(–6.9) μm, with length to width ratios of 4.4 to 8.0 (n = 
30 observations per structure). Chlamydospores were 
rarely observed, and were either globose or subglo-
bose (9.5–13.4) × (8.1–12.7) μm (n = 10), smooth but 
seemingly rough, intercalary or terminal, forming 
single structures or chains, hyaline, and brownish 
(Figure 4). This isolate was deposited in the Spanish 
Type Culture Collection (Colección Española de Cultivos 
Tipo, CECT) with culture code CECT 20995.

The phylogenetic analysis of the selected Botry-
osphaeriaceae isolates, based on ITS, rpb2, tef1, and 
tub2 sequences grouped them in seven different clad-
es (Figure 5). The identification of four Neofusicoccum 
isolates (namely EFA 436, 437, 471 and 472) was not 
conclusive. They were clustered into a distinct, but 
not well-supported, clade, closely grouped with N. 
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Figure 2. Correspondence analysis biplot between GTDs 
and the analyzed plant parts (A: scion; B: graft union; C: 
rootstock; D: roots). BFD = Black foot disease, BD = Bot-
ryosphaeria dieback, PD = Petri disease, DD = Diaporthe 
dieback, and PF = Pestalotioid fungi.

Figure 1. Correspondence analysis biplot between GTDs 
and the three nurseries. BFD = Black foot disease, BD = Bot-
ryosphaeria dieback, PD = Petri disease, DD = Diaporthe 
dieback, and PF = Pestalotioid fungi.
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Table 4. Isolates of grapevine trunk disease fungi obtained from plants of grapevine varieties ‘Albariño’ or ‘Savagnin’ 
grafted on 110R, 196-17 or Fercal 242 rootstocks.

Species isolated

Number of isolates by variety or plant parts1

‘Albariño’ /110R ‘Albariño’ /196-17C ‘Savagnin’ / Fercal 242

A B C D A B C D A B C D

Dactylonectria hordeicola        1a

Dactylonectria macrodidyma 8     4
Dactylonectria pauciseptata 17     1 4
Dactylonectria torresensis 3    6 2 17
Ilyonectria liriodendri 2 1 5   2 9 3
Ilyonectria robusta     1
“Cylindrocarpon” sp.2 2   1 3 1 5 19
Black Foot Disease total 2 1  35   3 18 2  7 49

Botryosphaeria  dothidea 1 7 7 5     8 13 16 3
Diplodia mutila 1     1
Diplodia seriata 1 1    1 2 4
Neofusicoccum luteum     2 1
Neofusicocccum parvum 1 4 4 1  1  2 12 14 9 2
Neofusicoccum sp. 1 1b 2c 1d     
Neofusicoccum sp. 2 1e 1     
Botryosphaeriaceae 2     2 7 8
Botryosphaeria Dieback total 2 15 15 7  1  3 26 40 33 5

Cadophora luteo-olivacea 1  2 2 1 4 2 1 1 4 1  
Phaeoacremonium minimum     1
Phaeomoniella chlamydospora 2 1  1   1 3 2
Petri Disease total 3  3 2 1 5 2 1 2 5 4 2

Diaporthe ampelina 1 1f 1   1 3
Diaporthe eres 4g 2     
Diaporthe foeniculina 1 1h 1     
Diaporthe novem 1  1i   1 3
Diaporthe phaseolorum 1 1j     
Diaporthe rudis 2k  1   2 1
Diaporthe sp.2 8 10 12 4    1 19 15 27
Diaporthe Dieback total 8 20 15 6 1 3  1 21 17 30 4

Pestalotiopsis sp.2 2 3 5      10 1 5 2
Truncatella sp.2     1
Pestalotiod Fungi total 2 3 5      10 1 5 3

Total    145    39    265
1 A: Scion; B: Graft-union; C: Rootstock; D: Rootstock base and roots. 2: Isolates identified only by morphological analysis to genus or 

family level.a  EFA 443; b EFA 436; c EFA 471; d EFA 472; e EFA 437, f  EFA 460; g EFA 464; h EFA 465; i EFA 461; j EFA 462 k  EFA 463.



Phytopathologia Mediterranea418

C. Pintos et al.

algeriense and N. italicum (BS <70%, BPP) <0.9) (Figure 
3). The morphology of these isolates growing on PNA 
was characterized by dark and septate conidia as N. 
italicum, and spermatia as N. algeriense, which match-
es the findings described, respectively, by Marin-Felix 
et al., (2017) and Berraf-Tebbal et al., (2014). The iso-
late EFA 437 formed a highly supported and separate 
group comprised by the ex-type strain of N. australe 
(CMW 6837) (BS >70 %, BPP >0.9). However, the mor-
phological characteristics of EFA 437 did not match 
those of the CMW 6837 ex-type (Phillips et al., 2013), 
as two-septate conidia and spermatia were observed. 
The isolates EFA 436 and EFA 437 were deposited in 
CECT with culture codes, respectively, CECT 20988 
and CECT 20989.

The combined dataset of multigene phylogenetic 
analysis of ITS, cmdA, his3, tef1, and tub2 loci ena-
bled the classification of six representative Diaporthe 
isolates (namely EFA 460, 461, 462, 463, 464 and 465) 
into six well-supported clades (BS = 100%; BPP = 1.0), 
with each isolate corresponding to a separate species: 
Diaporthe ampelina, D. eres, D. foeniculina, D. novem, D. 
phaseolorum, and D. rudis (Figure 6).

The remaining 1,706 isolates belonged to 28 differ-
ent genera. Six genera were common in the analyzed 
plants and are considered to be grapevine pathogens, 
including Aspergillus, Botrytis, Colletotrichum, Fusari-
um, Phoma, and Rhizoctonia. The prevalence of Fusar-
ium fungi, of which five species were identified (F. 
avenaceum, F. lateritium, F. oxysporum, F. proliferatum, 
and F. solani), was very high in all V. vinifera plants, 
affecting 92 to 98%.

Discussion
Based on their morphological characteristics, se-

quencing and phylogenetic analysis, 20 different spe-
cies of fungi were identified associated with GTDs on 
150 young nursery-produced plants of Vitis vinifera 
(varieties ‘Albariño’ and ‘Savagnin’). The incidence 
of this complex disease was very high, with 93% of 
the analyzed plants affected by at least one GTD-
associated fungus. Previous studies carried out in 
Spanish nurseries and young vineyards have report-
ed incidence rates of GTDs of 31% to 48.8% (Aroca et 
al., 2006), 9.5% to 73.8 % (Aroca et al., 2010), 75.8 % 
(Gramaje et al., 2009), and 76.4% (Giménez-Jaime et al., 
2006). Young vineyards may become infected by the 
planting material used, either systemically in plants 
due to infected mother vines, through contamina-
tion during the propagation processes (Gramaje and 
Armengol, 2011) or through annual pruning wounds 
providing many infection sites each growing season 
(Gramaje et al. 2018).

Black foot fungi were the most frequently isolated 
from ‘Albariño’ grafted rootstocks. This disease is 
considered to be the most significant phytosanitary 
problem in nurseries (Gramaje and Armengol, 2011; 
Carlucci et al., 2017). BFD was first associated with 
Cylindrocarpon obtusisporum and C. destructans (Hal-
leen et al., 2004; Agustí-Brisach and Armengol 2013); 
however, up to 24 other species of the genera Campy-
locarpon, Cylindrocladiella, Dactylonectria, Ilyonectria, 
Neonectria and Thelonectria have also been reported 
to cause BFD (Gramaje et al., 2018). In the present 
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Figure 3. Phylogram generated from Maximum Likelihood 
analysis of Cylindrocarpon species isolated in this study and 
their closely related species based on combined ITS, LSU, 
his3, tef1 and tub2 sequence data. Thickened branches are 
those present in the maximum likelihood and Bayesian 
inference trees. Bayesian posterior probabilities ≥0.90 and 
bootstrap support values for ML ≥70% are indicated at the 
nodes. The tree was rooted to Campylocarpon fasciculare 
(CBS 122613). Isolates obtained in this study are in bold and 
ex-type reference strains are indicated withT. The scale bar 
represents the expected changes per site.
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study, five species of fungi associated with BFD were 
identified, namely; D. macrodidyma, D. pauciseptata, D. 
torresensis, I. liriodendri, and I. robusta. These species 
were also detected by Úrbez Torres et al,. (2014) as the 
causes of BFD in a field survey of young vineyards 
in British Columbia. Spanish research reported the 
prevalence of the D. macrodidyma-complex associated 
with BFD in Spain (Alaniz et al. 2011; Agustí-Brisach 
et al. 2013a). Nevertheless, in the present study inci-
dence of BFD pathogens was different in each of the 
three nurseries, and Dactylonectria pauciseptata and 
I. liriodendri were the most frequently isolated spe-
cies from the two surveyed Spanish nurseries while 
D. torresensis was the most common fungus from the 
French nursery. These three species are also consid-
ered to be the prevalent causes of BFD (Cabral et al., 
2012b). One isolate obtained from the base of Fer-
cal 242 rootstock, namely EFA 443, was identified as 
Dactylonectria hordeicola. This species was identified 
based on phylogenetic analyses of the CBS 162.89 

ex-type sterile culture (Lombard et al., 2014). To our 
knowledge, this is the first morphological description 
of D. hordeicola. Further pathogenicity tests should be 
performed to confirm this specie as a BFD-causing 
pathogen in grapevine.

Botryosphaeria dieback was the most prevalent 
disease among the ‘Savagnin’ grafted plants, affect-
ing up to 66% of the analyzed specimens. Surveys car-
ried out in other nurseries have shown that grapevine 
infections by Botryosphaeriaceae fungi may originate 
from the propagation nurseries (Rumbos and Rum-
bou, 2001; Aroca et al., 2006; Giménez-Jaime et al., 
2006; Billones-Baaijens et al., 2013a; 2013b; 2015). To 
date, 26 Botryosphaeriaceae taxa from the genera Bot-
ryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofu-
sicoccum, Neoscytalidium and Phaeobotryosphaeria, have 
been identified as associated with the Botryosphaeria 
dieback in grapevines (Gramaje et al., 2018). In the 
present study, Botryosphaeriaceae species were the 
most frequently detected GTD-causing fungi. The 

Figure 4. Dactylonectria hordeicola. (a-b): upper and lower sides of 20-d-old colony on PDA plate at 24ºC. (c-d): conidiophores 
and phialides (bars =20 μm). (e-f): chlamydospores (bar = 10 μm). (g-h): microconidia and macroconidia (bar = 10 μm).
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five species identified, B. dothidea, D. mutila, D. seriata, 
N. luteum, and N. parvum, matched those detected in 
Portuguese vineyards (Phillips, 2002). 

The results of morphological and phylogenetic 
analyses of the isolates of Neofusicoccum sp. 1 were in-
conclusive. However, BLAST search comparisons of 
isolates EFA 436, EFA 471, and EFA 472 yielded 99% 
homology with sequences of N. italicum (KY856755) 
and N. algeriense (KX505906). The multigene analysis 
of combined ITS, rpb2, tef1, and tub2 sequence data 
was unable to distinguish our isolates from those of N. 
parvum, N. algeriense, or N. italicum, thus comprising 
an unresolved clade. In addition, single phylogenies 
obtained from each individual locus revealed incon-
sistencies among each locus and the combined loci. 
Similar results were obtained by Lopes et al., (2017), in 
phylogenetic analyses of Neofusicoccum species based 

on MAT genes and the combination of genes ITS, tef1, 
and tub2. According to the authors, by applying the 
principle of phylogenetic species recognition (Taylor 
et al., 2000), N. algeriense is phylogenetically indistin-
guishable from N. parvum. Therefore, both would rep-
resent a single species. Additionally, Neofusicoccum 
italicum Dissan. & K.D. Hyde, was recently described 
in Marin-Felix et al., (2017), exclusively on the basis 
of ITS and tef1 sequences of a single isolate (ex-type 
MFLUCC 15-0900). The morphological characteris-
tics of the Neofusicoccum sp. 1 isolates in our study 
matched those of N. algeriense, although fewer dark 
and septate conidia were observed in comparison 
with the original description of N. italicum (Marin-Fe-
lix et al., 2017), and these differed from those observed 
in N. parvum (ex-type CMW 9081) by Phillips et al., 
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Figure 6. Phylogram generated from Maximum Likelihood 
analysis of Diaporthe species isolated in this study and their 
closely related species based on combined ITS, cmdA, his3, 
tef1 and tub2 sequence data. Thickened branches are those 
present in both the maximum likelihood and Bayesian in-
ference trees. Bayesian posterior probabilities ≥0.90 and 
bootstrap support values for ML ≥70% are indicated at the 
nodes. The tree was rooted to Diaporthella corylina (CBS 
121124). Isolates obtained in this study are in bold, ex-type 
reference strains are indicated withT and ex-epitype refer-
ence strains withET. The scale bar represents the expected 
changes per site.

Figure 5. Phylogram generated from Maximum Likeli-
hood analyses of Botryosphaeriaceae species isolated in 
this study and their closely related species based on com-
bined ITS, LSU, his3, tef1 and tub2 sequence data. Thickened 
branches are those present in both the maximum likelihood 
and Bayesian inference trees. Bayesian posterior probabili-
ties ≥0.90 and bootstrap support values for ML ≥70% are 
indicated at the nodes. The tree was rooted to Saccharata 
proteae (CBS 115206). Isolates generated in this study are in 
bold, ex-type reference strains are indicated withT and ex-
epitype reference strains withET. The scale bar represents the 
expected changes per site.
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(2013). For the EFA 437 isolate, in spite of the phylo-
genetic analyses clustering the isolate in a well-sup-
ported clade with N. australe, its few morphological 
characteristics differed from those of the CMW 6837 
ex-type (Phillips et al., 2013), as two-septate conidia 
and spermatia were observed. Hence, further investi-
gation is warranted to identify these isolates.

Fungi associated with Petri Disease were de-
tected in 18% of analyzed plants, less frequent than 
for the other diseases. PD is also considered an im-
portant trunk fungal disease affecting young grape-
vines (Mugnai et al., 1999; Mostert et al., 2006; Agustí-
Brisach et al., 2011; Gramaje and Armengol, 2011), 
which causes significant losses in newly planted 
vineyards (Mostert et al., 2006). The disease can be 
spread by planting infected plants (Aroca et al. 2006). 
The following PD-causing species have been identi-
fied to date: Phaeomoniella chlamydospora, Pleurostoma 
richardsiae, 29 species of Phaeoacremonium, and six Ca-
dophora spp. (Gramaje et al., 2018). In our study three 
species were detected: C. luteo-olivacea, P. minimum, 
and P. chlamydospora, the three main species related to 
this disease (Gramaje et al., 2018). Unless P. minimum 
is considered to be the most common and widely dis-
tributed species affecting grapevines (Gramaje et al., 
2015), we only identified this fungus in one plant. PD 
detection could be underestimated probably due to 
the high incidence of other grapevine trunk diseases 
and endophytes growing in the same sections with 
high growth rates, like Botryosphaeriaceae, Diaporthe, 
Fusarium or Trichoderma spp.

Diaporthe dieback was the second most important 
GTD after BFD in nursery 1 and BD in nursery 3. As 
the others, this disease is often detected in propaga-
tion material and young vines (Fourie and Halleen, 
2004; Rego et al., 2009; Aroca et al., 2010; Moreno-Sanz 
et al., 2013), and for many years, was mostly associat-
ed with Diaporthe ampelina. Recent studies have iden-
tified eleven new species as grapevine wood patho-
gens (Gramaje et al., 2018; Guarnaccia et al., 2018). In 
the present study, six species were identified amongst 
30 isolates, including; Diaporthe ampelina, D. eres, D. 
foeniculina, D. novem, D. phaseolorum and D. rudis, 
showing high diversity within this genus in grape-
vine. The taxa Diaporthe ampelina, D. eres, and D. rudis 
have specifically been reported as GTD-associated 
species in Spain (Sánchez-Torres et al., 2008; Guarnac-
cia et al., 2018). Diaporthe novem and D. phaseolorum 
have also been detected in grapevines (Larignon, 
2016), although no infections by these fungi have been 

identified to date in Spain. Guarnaccia et al. (2018) re-
cently suggested that D. foeniculina isolates could be 
misidentified, as this species is closely related to D. 
baccae, which has also been detected in grapevines 
(Úrbez-Torres et al., 2013; Guarnaccia et al., 2018). Fur-
ther research is required to verify the identity of the 
isolates of D. foeniculina, and other species of the Dia-
porthe not included in this study.

In the last five years, an increasing number of 
studies have reported pestalotioid fungi in grape-
vines (Arzanlou et al., 2013; Maharachchikumbura et 
al., 2016; Lawrence et al., 2018). These fungi have been 
isolated from wedge-shape cankers and their asso-
ciation with dark streaking of the wood, light-brown 
discoloration and central necrosis in diseased grape-
vines (Úrbez-Torres et al., 2012). Recent results suggest 
that pestalotioid fungi are involved in the grapevine 
trunk-disease complex (Lawrence et al., 2018). To our 
knowledge, at least four genera have been included 
in this group, including Neopestalotiopsis, Pestalotiop-
sis, Truncatella and Seimatosporium, and two of these 
have been reported in the present study.

Molecular and morphological analyses allowed 
the identification of fungal isolates to species level for 
most of the GTD isolates. However, BLAST searches 
and morphological examination were unable to iden-
tify 11 GTD isolates, so it was necessary to perform 
multi-locus phylogeny to determine their identity. 
Previous studies have demonstrated that sequence 
alignments with four loci allow separation and re-
naming sterile fungi as new species (Lombard et al., 
2014), to identify cryptic species within Neofusicoccum 
(Sakalidis et al., 2011), whereas five loci are necessary 
to give successful classification of Diaporthe species 
(Santos et al., 2017).

Other potential pathogens, including Colletotri-
chum, Fusarium, or Rhizoctonia, were also isolated from 
the grapevine plants. Fusarium spp. were the most 
prevalent fungi isolated from the grapevine tissues. 
The pathogenic nature of this genus remains unclear; 
some authors have suggested that Fusarium oxysporum 
may be an aggressive grapevine pathogen (Highet 
and Nair, 1995; Brum et al., 2012), while other studies 
report that the presence of Fusarium spp. is normal in 
vines and regard these fungi as common endophytes 
(Rumbos and Rumbou, 2001; Moreno-Sanz et al., 2013; 
Bruez et al., 2014). In a recent study, pathogenicity 
tests with several species of Fusarium present in vines 
revealed similar damage to that resulting from BFD-
causing fungi (Úrbez-Torres et al., 2017).
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Results obtained in the present study confirm 
that grapevine trunk diseases are significant threats 
to nursery plants, and through them to newly estab-
lished grapevines. Preventive measures should there-
fore be implemented during nursery propagation 
processes to guarantee the use of healthy rootstock 
plants, and reduce the propagation of these diseases 
in vineyards. Integrated disease management pro-
grammes, including physical, fungicide, biological, 
and other control strategies, has been suggested as 
the most effective strategy to reduce infections by 
fungal trunk pathogens in nurseries (Halleen and 
Fourie, 2016; Gramaje et al., 2018).
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