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REVIEW

Copper in plant protection: current situation and prospects
AnnA LA TORRE, VAleriA IOVINO and FedericA CARADONIA

Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria - Centro di ricerca Difesa e Certificazione (CREA-DC), Via 
C. G. Bertero 22, 00156, Rome, Italy

Summary. Copper has been used in agriculture to control oomycetes, fungi and bacteria for over a century. It plays 
important roles in integrated pest management, but is essential in organic farming, where disease management de-
pends almost exclusively on its use. However, the use of this heavy metal may have log-term consequences due to its 
accumulation in the soil, which appears incompatible with organic farming’s objectives. This awareness led the Euro-
pean Union to establish maximum limits on copper in organic farming since 2002 (Commission Regulation 473/2002), 
and further decisions on its use in crop protection are to be taken soon. At present, copper compounds are approved 
as plant protection products until 31 January 2019. This review examines the current state of copper use, the regula-
tory framework, and limits set for copper in organic farming. Strategies to reduce copper inputs are also considered, 
including: preventive phytosanitary measures, innovative formulations with reduced copper content, optimization of 
copper dosages, the use of forecasting models, the use of resistant varieties, optimization of agriculture management, 
and natural alternatives to copper-based products. This review also examines the main research projects exploring 
farming practices and appropriate alternatives to copper use for the control of plant pathogens. The review highlights 
that, while there is currently no replacement for this heavy metal having the same plant protection effectiveness, agro-
nomic measures and management practices can be combined to reduce the amounts of copper used for this purpose.
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Background
General information

Copper is an oligo-element essential for life, that 
participates in cellular physiological processes, such 
as energy production (Alaoui-Sossé, 2004), synthesis 
of phospholipids (Gallagher and Reeve, 1971) and 
haemoglobin (Elvehjem and Hart, 1929), iron ab-
sorption and transport (Alam and Raza, 2001), and 
ribonucleic acid production. It is present in almost 
all foods, with most human diets naturally includ-
ing between 1 and 2 mg of copper per person per day 
(EFSA, 2018). Copper is present in the ecosystem, and 
agricultural soils contain the metal in varying de-
grees. The soil copper inputs from agrarian sources 
are essentially from manure, sewage sludge, fertiliz-

ers and pesticides (Mantovi, 2003). Copper use in ag-
riculture began in the 1880s with Pierre-Marie-Alexis 
Millardet’s discovery of a lime-copper mixture which 
is still known as “Bordeaux mixture” (McBride et al., 
1981; Borkow and Gabbay, 2005). Since that time, cop-
per has been used in agriculture as a fungicide and 
bactericide. The spectrum of activity of copper com-
pounds involves many phytopathogenic microorgan-
isms, making this metal one of the major components 
of fungicide and bactericide formulations throughout 
the world. While copper continues to play key roles 
in integrated pest management, it is essential for or-
ganic farming, since disease management in this sys-
tem depends almost exclusively on its use.

Mechanism of action in plant protection

The active ingredient is the cupric ion (Cu++); in 
the presence of rainwater and other environmental 
factors such as carbon dioxide in the air and dew, it 
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acts against oomycetes, fungi and bacteria. Copper 
ions act non-specifically (multisite) at the cell mem-
brane level, leading to the denaturation of structural 
and enzymatic proteins and altering membrane semi-
permeability. The copper ions dissolved in water lay-
ers on plant surface can enter the cell protoplasm of 
oomycetes, fungi and bacteria. Four classes of trans-
porters have been implicated in copper transport: 
COPT, ZIP, YSL, and HMA (Williams et al., 2000; 
Burkhead et al., 2009; Aguirre and Pilon, 2016). Once 
inside the cells, copper ions interfere with numer-
ous enzymatic reactions, blocking respiratory activ-
ity with consequent inhibition of spore germination. 
Copper is used as protectant, which means that cop-
per ions must be present on plant surfaces before dis-
eases occur.

Pathogen resistance to copper is unlikely to de-
velop because of the multisite mode of action of cop-
per ions. Oomycetes and fungi have shown no resist-
ance to the various copper compounds, as reported 
by Fungicide Resistance Action Committee (FRAC, 
2018). However, several bacterial pathogens have de-
veloped resistance to the metal. Bacterial resistance 
was observed in 1983 in Xanthomonas campestris pv. 
vesicatoria (Marco and Stall, 1983). In 1986, resistance 
was discovered in Pseudomonas syringae pv. tomato 
(Bender and Cooksey, 1986) and then in other pseu-
domonads (Sundin et al., 1989; Cooksey, 1990; An-
dersen et al., 1991; Goto et al., 1991). Copper tolerance 
has also been demonstrated in populations of Erwinia 
amylovora (Sholberg et al., 2001). The selection of cop-
per-resistant strains is the major reason for disease 
control failures following management with copper 
bactericides (Behlau et al., 2012).

Copper resistance in bacteria is regulated by sev-
eral genes (Cooksey, 1990) generally located in mo-
bile genetic elements (plasmids, transposons) (Bond-
arczuk and Piotrowska-Seget, 2013). As reported by 
Yin et al. (2017), the main mechanisms regulating 
copper resistance in bacteria include: (1) the efflux 
ATPase pump encoded by copA can extrude copper 
ions from the cytoplasm into the periplasmic space 
(Rensing and Grass, 2003); (2) the cus system, where 
the cusA gene encodes a resistance nodulation cell 
protein with an antiport system (Outten et al., 2001); 
(3) the pco system, which encodes a multicopper oxi-
dase protein responsible for the oxidation of copper 
(I) to copper (II) in the periplasmic space (Brown et al., 
1997); (4) the cue system, which is the main mecha-
nism responsible for copper resistance in Escherichia 

coli, where cueO encodes a periplasmic multicopper 
oxidase (Outten et al., 2001; Rensing and Grass, 2003); 
and (5) tcrB in Enterococcus faecium belongs to the 
CPX-type ATPase family of heavy metal transporters 
(Henrik and Frankm, 2002).

Effects on soil

Copper is applied as a contact protective foliar 
spray, so it remains deposited on leaf surfaces and is 
not absorbed into plant tissues. For this reason, the 
metal reaches the soil following application, through 
mechanical wind action or after being washed off by 
rain or irrigation. Since copper cannot be degraded, 
and its removal from the soil is negligible through 
leaching, run-off or plant uptake, this heavy metal 
can potentially remain as a contaminant in the en-
vironment for long periods and cause bioaccumula-
tion and toxicity (Flores-Vélez et al., 1996; Eisler, 1998; 
Torres and Johnson, 2001; Xiong and Wang, 2005; 
Komárek et al., 2010; Mackie et al., 2012; Lamichhane 
et al., 2018). Since it is a metallic element, copper does 
not break down and continues to cycle in the envi-
ronment after release (Eisler, 1998). Thus, repeated 
use of copper-based bactericides and fungicides to 
control plant diseases leads to copper accumulation 
in the soil. The metal interacts with soil constituents, 
rendering it insoluble and preventing percolation 
towards deep soil layers. Therefore, it tends to accu-
mulate in surface soil layers with concentration de-
creasing with depth (Deluisa et al., 1996; Flores-Vélez 
et al., 1996; Leonardi et al., 2002; Ceccanti, 2004). Sev-
eral surveys examining copper concentrations in soils 
show significant variations among and within coun-
tries (Komárek et al., 2010; Mackie et al., 2012). Table 
1 presents concentrations of total copper recorded in 
topsoil of different vineyards in Europe, Australia 
and Brazil. Variations in copper concentration also 
depend on the production method. In fact, while con-
ventional agriculture may use different types of pes-
ticides (contact, cytotropic, translaminar or systemic 
pesticides), organic farming primarily uses cupric 
compounds for disease management, due to the lack 
of valid alternatives. Studies examining organic and 
conventional vineyards in Central Italy found greater 
concentrations of copper in organic vineyard soils 
compared with conventional vineyards (Beni and 
Rossi, 2009). Although limit values of copper in soil 
are set from 50 to 140 mg kg-1 of dry matter (Council 
Directive 86/278/EEC), it is difficult to establish the 
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concentration of copper capable of causing toxicity to 
plants, as this does not depend on total copper con-
tent in the soil but on the proportion of available cop-
per (forms of the metal that can be used by plants). 
Copper occurs in soils in different forms (ionic, com-
plexed and precipitated) depending on soil character-
istics such as texture, organic matter and pH. These 
factors vary in the environment, modulating copper 
availability and possible deficiency or toxicity (Flem-
ming and Trevors, 1989). For example, Toselli et al. 
(2006) found a reduction in the growth of grapevines 
at copper concentrations above 400 mg kg-1 in sandy 
soils, while copper concentrations of 1,000 mg kg-1 in 
clay soils did not have this effect (Deluisa et al., 2007).

Copper is immobilised by various components 
(carbonates, iron oxides) or can be absorbed by col-
loids (clay minerals, organic fraction and humic sub-
stances) (Schiatti and Nutricato, 2006) that reduce 
available copper. The fate of organic substance-bound 
copper depends on the nature of the organic molecule 

to which it binds. The metal forms very stable com-
plexes with the less soluble fractions of the organic 
molecules, while soluble organic molecules retain 
copper in solution (with favourable effects in copper 
shortage conditions and unfavourable effects in ex-
cess copper conditions) (Arias et al., 2006; Karlsson et 
al., 2006; Komárek et al., 2010). The complexes copper 
forms with humic and fulvic acids are probably the 
most important copper retention mechanisms in soils 
(Komárek et al., 2010).

In conclusion, if a soil is rich in organic substances 
with a good degree of humification, copper is less 
likely to remain in the soluble phase because it is at-
tracted to the soil particles and is less available for 
plants, and the risk of phytotoxicity is low (Martin, 
2009). Absorption, precipitation and complexation re-
actions are also influenced by pH (Janik et al., 2015); 
copper is immobilized as insoluble precipitates in 
alkaline soils, while the concentration of copper re-
maining in solution increases with decreases in pH, 

Table 1. Total copper concentrations reported in vineyard topsoils (data from Komárek et al., 2010; Mackie et al., 2012).

Continent Country Total copper  
(mg kg-1) Methods used Reference

Europe Czech Republic 2–168 O2 + O3 + NOx at 400°C + HNO3 + HF Komárek et al., 2008

France 323 HF Flores-Vélez et al., 1996

248–378 HClO4 + HF Besnard et al., 2001

20–251 HNO3 + HCl Brun et al., 2001

57–332 LiBO2 at 550°C + HNO3 Parat et al., 2002

22–398 HClO4 + HF Chaignon et al., 2003

17–34 HClO4 + HF Dousset et al., 2007

Island 50–276 Digestion with aqua regia (ISO 11466, 1995) Runjić and Čustović, 2017

Italy 9–945 HNO3 + HCl Deluisa et al., 1996

215–372 HNO3 + HCl Dell’Amico et al., 2008

Portugal 58–130 - Magalhães et al., 1985

Slovenia 87–120 HNO3 + HCl Rusjan et al., 2007

Spain 25–272 HNO3 + HCl + HF Fernández-Calviño et al., 2008

55–112 HNO3 + HCl + HF Fernández-Calviño et al., 2009

Americas Brazil 37–3216 HNO3 + HClO4 + HF Mirlean et al., 2007

Oceania Australia 9–249 15.5 M HNO3 Pietrzak and McPhail, 2004

6–223 HNO3 + HCl Wightwick et al., 2008
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resulting in increased copper availability for plants 
(Mozaffari et al., 1996; Martin, 2009).

Effects on micro and macroorganisms

Accumulation of copper is hazardous to micro and 
macroorganisms (McBride et al., 1981; Mackie et al., 
2012). Microorganisms are generally more sensitive 
to copper than other organisms in soil biocoenosis 
(Giller et al., 1998). Copper contamination can greatly 
modify both the size of microbial biomass and soil 
processes (Giller et al., 1998; Kunito et al., 2001). High 
copper concentrations can lead to reduced activity of 
some terrestrial microorganisms. These include bacte-
ria (particularly Azotobacter, Clostridium, Nitrosomonas 
and Nitrobacter), particularly in acidic soils with low 
cationic exchange capacity (Fregoni and Bavaresco, 
1984; Fregoni and Corallo, 2001), and fungi (Rühling 
et al., 1984; Arnebrant et al., 1987; El-Sharouny et al., 
1988; Gadd, 1993; Levinskaitë, 2001; Lugauskas et al., 
2005). Rajapaksha et al. (2004) demonstrated that fun-
gal communities were more resistant to copper con-
tamination than bacterial communities.

High copper concentrations can also reduce pop-
ulations of earthworms and carabids (Paoletti et al., 
1988; Stefanelli, 1993; Donnarumma and La Torre, 
2000; Klein, 2011). This can significantly disrupt the 
ecological balance, since earthworms play key roles 
in preserving healthy ecosystems (Maregalli, 2017). 
Several authors, reviewed by Beyer (1981), reported 
that earthworms can take up and accumulate heavy 
metals in their tissues. Chemicals from soil are taken 
up by earthworms, both dermally and orally (Vijver 
et al., 2003; Hobbelen et al., 2006). Body concentrations 
of copper may be attributed completely to the dermal 
uptake (Vijver et al., 2003). Some authors have sug-
gested that earthworms may avoid toxic copper levels 
by migrating to uncontaminated soil. They may also 
adapt to certain levels of contamination, although 
their reproductive capacity may be reduced (Lang-
don et al., 2001; Neaman et al., 2012; Bednarska et al., 
2017). Earthworms are typical ecosystem engineers 
having major impacts on soil structure (Blouin et al., 
2013), with their activity affecting biotic and abiotic 
soil properties and plant growth (van Groenigen et 
al., 2014). Studying the effects of copper amounts on 
soil organism communities, and specifically on earth-
worms in vineyards, Strumpf et al. (2015) suggest that 
adaptation effects of lumbricids cannot be excluded. 
Soil organisms may have developed mechanisms for 

on-demand copper uptake, purging or detoxification 
(e.g., via stress peptides - metallothioneines) through 
evolutionary adaptations.

Effects on aquatic organisms

Copper reaches aquatic systems from natural and 
anthropogenic sources (EPA, 2016). Since agriculture 
is one of the main anthropogenic sources, this heavy 
metal may reach and pollute groundwater through 
land drainage (Nóvoa-Muñoz et al., 2007; Komárek et 
al., 2010). Because it is moderately soluble in water 
and binds to sediments and organic matter, copper 
can interfere with aquatic organisms, such as sedi-
ment dwellers, algae, invertebrates and fish. The tox-
ic effects on algae cause alterations in the entire food 
chain, because they are at its base. This creates cas-
cade effects throughout aquatic ecosystems (Odum, 
1971; Wright and Welbourn, 2002; Taub, 2004). Shell-
fish and fish are also exposed to this heavy metal via 
the food chain through gill extraction,  which is un-
regulated transport of salts that are vital for the nor-
mal functioning of nervous and cardiovascular sys-
tems (Solomon, 2009). A study conducted in Trentino 
(Italy) in a small lowland stream polluted by copper 
at a concentration of 0.05 mg L−1 showed the state of 
physiological stress of the dipteran Chironomus ri-
parius. Chironomidae have been extensively used as a 
model to test pollutant toxicity in sediments and fresh 
water environments (Lencioni et al., 2016). Several 
studies evaluated the responses of copper exposure 
on coho salmon (Oncorhynchus kisutch) across biologi-
cal scales, from the loss of functional responsiveness 
of receptor neurons in the olfactory epithelium (Bald-
win et al., 2003, 2011; Sandahl et al., 2004, 2007; McIn-
tyre et al., 2008), to the olfactory-mediated behaviour 
of individual animals (Sandahl et al., 2007; McIntrye 
et al., 2012), and decreased coho survival in predator–
prey interactions after short-term exposure to 5–20 μg 
L-1 of dissolved copper (McIntrye et al., 2012).

Effects on plants

In plants, excess copper adversely affects the 
metabolic activity of roots and the absorption of nu-
trients, through antagonist and synergistic effects 
(Fregoni and Bavaresco, 1984). Copper is normally 
present in the tissues of many plant species at concen-
trations ranging from 1 to 50 μg g-1 dry weight (Beni 
and Rossi, 2009). Copper deficiency is detected below 
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2–5 μg g-1 dry weight, while first symptoms of copper 
phytotoxicity have been recorded at concentrations 
of 15-20 μg g-1 dry weight (NAS, 1977; Yruela, 2005; 
Xiong and Wang, 2005). Plants growing in contami-
nated soils can accumulate high concentrations of 
copper in their tissues (Bargagli, 1998). Heavy met-
als tend to accumulate in hypogeous structures, with 
poor translocation to epigeous structures (Torres and 
Johnson, 2001). The main symptoms of copper excess 
are impaired root and shoot growth, resulting in less 
soil exploration by roots (Miotto et al., 2014), nutri-
ent deficiency, chlorosis, and, in severe cases, tissue 
necrosis and plant death (Marschner, 1995; Kopsell 
and Kopsell, 2007). Elevated cellular copper concen-
trations can cause oxidative stress by increasing the 
concentrations of reactive oxygen species (ROS), such 
as superoxide anion (O2

-), singlet oxygen (1O2), hydro-
gen peroxide (H2O2) and hydroxyl radical (OH-) (Apel 
and Hirt, 2004; Miotto et al., 2014). However, there are 
heavy metal-tolerant plants that show no or very few 
signs of toxicity, despite growing in highly polluted 
environments and exhibiting high concentrations of 
copper in their tissues. These species belong to sev-
eral families including Cruciferae, Caryophyllaceae, 
Gramineae, Leguminosae and Asteraceae (Xiong and 
Wang, 2005).

Effects on human and animal health

Heavy metals can be transferred easily to animals 
and humans through food chains, causing toxicity 
problems. For example, a relationship was found be-
tween the concentration of copper in Shirpus robustus 
seeds and in the livers of mice (Torres and Johnson, 
2001). Studies examining the effects on animals have 
shown hepatic and gastrointestinal problems caused 
by copper accumulation, if ingested in large quanti-
ties and over long periods (Cohen, 1974; Spitalny et al., 
1984; Eife et al., 1999). Sensitivity to copper toxicosis is 
species dependent. In general, poultry resist chronic 
copper toxicosis better than most mammals (NRC, 
1977). Sheep are particularly sensitive to the toxic ef-
fects of copper, since their elimination mechanism is 
probably less efficient than other animals (Bremmer et 
al., 1976; Linder and Hazegh-Azam, 1996; Oruc et al., 
2009). Oxidative stress is associated with copper tox-
icity because of redox reactivity, e.g. the ability of free 
copper or low molecular weight copper complexes to 
catalyse the reaction between the superoxide anion 
and H2O2, producing the hydroxyl radical (Halliwell, 

1999). Copper can also bind to free thiols of cysteines, 
causing protein crosslinks and their impaired activ-
ity (Cecconi et al., 2002). If ingested in large quantities 
through food or water, copper can also be harmful 
to humans. These include: gastrointestinal disorders 
(the symptom threshold is between 4 and 6 mg kg-1 of 
copper; liver damage (e.g. in rats exposed to dietary 
copper more than 100 times greater than nutritional 
requirement); immunity and neurological disorders 
(headache, vertigo, and drowsiness in factory workers 
exposed to 111–434 mg m-3 copper dust); and repro-
ductive dysfunction (sexual impotence was reported 
in 16% of workers exposed to 111–434 mg m-3 copper 
dust) (Suciu et al., 1981; ATSDR, 2004; Dorsey et al., 
2004; Roychoudhury et al., 2016; Tóth et al., 2016).

In their study of cumulative data on subjects ex-
posed to copper or with presumed related dermato-
logical hypersensitivity symptoms, Fage et al. (2014) 
indicated that a weighted average of 3.8% had posi-
tive patch test reactions to copper. The same study 
affirmed that this heavy metal is a very weak sensi-
tizer compared to other metal compounds. However, 
copper can cause clinically relevant allergic dermato-
logical reactions in some cases. Brewer (2012) consid-
ered the ingestion of inorganic copper through diet 
to be one of the environmental causative factors of 
Alzheimer’s disease. Following inhalation of copper-
containing fungicides, farmers have experienced 
serious acute and chronic respiratory problems, in-
cluding lung cancer (Zuskin et al., 1997; Santić et al., 
2005; Komárek et al., 2010). Some studies have also 
highlighted that working with copper increases the 
risk of developing Parkinson’s disease (Gorell et al., 
2004). Repeated long-term copper intakes greater 
than 30 mg d-1 have toxic effects, intakes of 10 to 30 
mg d-1 have ill-effects, and intakes of up to 10 mg d-1 
have no effect on the homeostatic metabolism (EFSA, 
2018). However, it is difficult to assess the actual rela-
tionships between copper intake and human health 
because of uncertainties regarding copper concentra-
tions in different foods and water (Bost et al., 2016). 

Regulatory frameworks and copper 
limits

Active substance copper compounds were ap-
proved as bactericides and fungicides by Commis-
sion Directive 2009/37/EC, but the approval period 
was limited to 7 years (to 30 November 2016) rather 
than the canonical 10 years, since the risk assessment 
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revealed ecotoxicological problems. The variants of 
copper that were approved were copper hydroxide, 
copper oxychloride, Bordeaux mixture, tribasic cop-
per sulphate and copper oxide, that exhibit different 
phytosanitary activities depending on their avail-
ability to release copper ions in solution (Richardson, 
1997; La Torre et al., 2002; Muccinelli, 2006; Tomlin, 
2009). In 2014, with Commission Implementing Regu-
lation (EU) 85/2014, the expiry of the approval period 
was postponed to 31 January 2018, to provide notifi-
ers time to complete the renewal process.

Following the examination of additional submit-
ted data, the presence of some areas of concern led the 
European Commission to request the submission of 
monitoring programmes for vulnerable areas where 
copper contamination of the soil and water (including 
sediments) is, or may become, a concern (Commis-
sion Implementing Regulation (EU) 2015/232). This 
is to allow conclusions on the environmental risk as-
sessments. The same Regulation established that the 
amounts of copper (application rates and number 
of applications) must be the minimum necessary to 
achieve the desired effects and must not cause any 
unacceptable effects on the environment, taking into 
account background levels of copper at each applica-
tion site.

Restrictions on the maximum amounts of metal-
lic copper usable as plant protection products raise 
the problem of the possibility of copper being applied 
at high doses as a leaf fertilizer to mask the use of 
copper-based plant protection products. Allowing the 
free use of copper as a fertilizer may lead to improper 
use of the metal, if it is used as a foliar fertilizer at 
high doses to mask antimicrobial activity that would 
otherwise require plant protection product authorisa-
tion. This illicit situation poses risks for the environ-
ment and human health, as well as unfair competition 
between operators, since fertilizers are not subject to 
the stringent authorization processes of plant protec-
tion products.

On January 2018, EFSA published the conclusions 
of the peer review of the pesticide risk assessment of 
active substance copper compounds (EFSA, 2018). 
Some information, identified as being required by the 
regulatory framework, was missing, and several con-
cerns were identified. It was concluded that addition-
al information should be requested from the appli-
cants, and that EFSA should conduct expert consulta-
tion in the areas of mammalian toxicology, residues, 
environmental fate and behaviour, and ecotoxicology. 

The lack of these data prevents completion of the con-
sumer risk assessment based on representative use.

On 19 January 2018, the European Commission 
approved extension of the approval period for copper 
compounds to 31 January 2019, because assessment 
of the substances was delayed for reasons beyond 
the applicants’ control, and copper approvals would 
have expired before decision on their renewal (Com-
mission Implementing Regulation (EU) 2018/84). In 
2015, because copper fulfils two of the criteria (bio-ac-
cumulation and toxicity) for persistent, bio-accumu-
lative and toxic (PBT) substances, Commission Imple-
menting Regulation (EU) 2015/408 included copper 
compounds in the list of candidates for substitution, 
i.e. the list of active substances that have intrinsic 
hazard characteristics causing concern. Plant protec-
tion products containing candidates for substitution 
are subjected to a comparative assessment procedure, 
leading to their gradual replacement with products 
with safer toxicological and eco-toxicological profiles.

Discussion is currently (2018) underway regard-
ing the possibility of reducing the contribution of 
copper to agriculture. This reduction must be com-
patible with actual effectiveness, and consider the 
use of copper in organic farming. The European Un-
ion had already set a maximum limit for the use of 
copper in organic farming in 2002, expressed in kilo-
grams per hectare per year (Commission Regulation 
(EC) 473/2002). 

The long-term environmental issues caused by 
copper due to its accumulation in the soil are incom-
patible with organic farming principles. The current 
accumulation rate limit is 6 kg ha-1 year-1, although 
Member States may grant exemptions from this for 
perennial crops. The average quantity applied over 
5 years, i.e. the year considered and the previous 4 
years, must not exceed 6 kg ha-1 year-1. This allows op-
erators to apply more treatments during particularly 
rainy years, and fewer in drought years. Further limi-
tations on copper use, or even its elimination from the 
list of authorized plant protection products in organic 
farming, is being debated in Europe.

The issue of copper use is viewed differently in 
different countries, because of differing pedoclimatic 
conditions. This has led to bans on the use of cop-
per in some countries and to limit its use in others. 
Table 2 reports the restrictions and bans established 
for copper in some European countries. In Turkey 
the Organic Regulation is fully harmonized with EU 
Regulations on organic production, and there are the 
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same limits set for copper compounds in the Euro-
pean Union (http://www.organicexport.info/turkey.
html). Copper use can be avoided in Northern Europe 
because environmental conditions are unfavourable 
for disease development. In the Mediterranean basin, 
however, where the climate is conducive for occur-
rence and spread of several plant pathogens, complete 
elimination of this heavy metal in organic farming is 

not yet practicable. In Canada and the United States 
of America copper compounds are allowed, and there 
are no limits on their use. Only for organic farming it 
is suggested that copper-based materials are used to 
minimize accumulation of the metal in soil, as build-
up of copper in soil may prohibit future use (Canadi-
an General Standards Board, 2006; Departments and 
Agencies of the Federal Government of the United 

Table 2. Restrictions and bans on copper use in some European countries.

Country Organic farming Integrated pest managementa Reference

Austria Limit ranges from 2 to 4 kg 
Cu++/ha/year depending on the 
crop; for vines, the limit is 3 kg 
Cu++/ha/year 

http://organicrules.org/
custom/differences.php?id=2bbc

Czech Republic Copper use is limited to 3 kg 
Cu++/ha/year

http://organicrules.org/
custom/differences.php?id=2bbc

Denmark Copper is banned Copper is banned http://organicrules.org/
custom/differences.php?id=2bbc

Finland Copper is banned Copper is banned http://organicrules.org/
custom/differences.php?id=2bbc

Germany Copper use is limited to a 
maximum of 3 kg Cu++/ha/year 
for all crops, with the exception 
of hops for which a limit of 4 kg 
Cu++/ha/year was set

www.naturland.de

Netherland Copper is banned Copper is banned http://organicrules.org/
custom/differences.php?id=2bbc

Norway Copper is banned Copper is banned http://organicrules.org/
custom/differences.php?id=2bbc

Slovenia Copper use is limited to 5 kg 
Cu++/ha/year

Rusjan et al., 2007

Sweden Copper is banned 
It is allowed only as fertilizer at 
a maximum of 0.3 kg Cu++/ha/
year (higher doses of up to 1 kg/
ha, are permitted only when a 
shortage of copper in the soil has 
been demonstrated)

Copper is banned
It is allowed only as fertilizer at 
a maximum of 0.3 kg Cu++/ha/
year (higher doses of up to 1 kg/
ha, are permitted only when a 
shortage of copper in the soil has 
been demonstrated) 

KRAV, 2017

Switzerland Copper use is limited to a 
maximum of 4 kg Cu++/ha/
year for fruit-growing and 
horticulture and 6 kg Cu++/
ha/year for viticulture (within 5 
consecutive years maximum 20 
kg copper metal per ha)

Federal Ordinance 910.181 on 
Organic Farming of the Federal 
Department of Economic Affairs, 
Education and Research of 22 
September 1997 as amended

a Directive 2009/128/EC (article 14) imposed the obligation to apply the principles of integrated pest management by all professional 
users of plant protection products by 1 January 2014. 
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States, 2018). Moreover, in Canada in organic farming 
no visible pesticide residues are allowed on harvest-
ed crops. Basic copper sulphate, copper oxide, cop-
per sulphate and copper oxysulphate may be used 
to correct documented copper deficiencies. Copper 
ammonia base, copper ammonium carbonate, copper 
nitrate and cuprous chloride are prohibited as sourc-
es of copper for plant nutrients (Canadian General 
Standards Board, 2006). The International Federa-
tion of Organic Agriculture Movements (IFOAM) has 
limited total copper input in organic farms to a maxi-
mum of 6 kg ha-1 year-1 (IFOAM, 2014). In biodynamic 
agriculture, copper is permitted up to a maximum of 
3 kg ha-1 year-1, based on a 5-year average, and using, 
preferably, a maximum of 500 g per treatment (www.
demeter.it/wp-content/uploads/2015/08/STAND-
ARD-PRODUZIONE-DEMETER-AGGIORNAMEN-
TO-2016.pdf). 

Strategies to reduce copper inputs
Innovative formulations

The need to reduce copper inputs has led to re-
search on innovative formulation technologies with 
reduced copper contents, to provide comparable ef-
ficacy to that achieved with the use of traditional 
formulations, but with small copper amounts distrib-
uted per hectare. One strategy to maximize the effec-
tiveness of the copper ion is to reduce the particle size 
of the active substance (micronization) to improve 
coverage of treated surfaces (Brunelli and Palla, 
2005). Small particles with high surface/volume ra-
tios ensure increased uniformity of coverage, distri-
bution and adhesion, giving increased resistance to 
run-off (Flori et al., 2006). Another strategy is to use 
copper microencapsulates (Weihrauch and Schwarz, 
2014) to control the release of active ingredients and 
improve product adhesiveness and rainfastness. The 
amount of copper can also be reduced by combining 
with such as zeolites (Kim et al., 2000; Demirci et al., 
2014; Rossainz-Castro et al., 2016), clay-like bentonite 
(Tamm et al., 2004; Caleca et al., 2011), or homeopathic 
substances (Weihrauch and Schwarz, 2014) and ter-
penic alcohols (Gilardi et al., 2015).

Zeolites have a high affinity for copper, and they 
adhere firmly to leaves, providing the metal differ-
ent modes of action and release. The copper-zeolite 
combination makes a fraction of copper immediately 
available, while the other fraction, linked to the min-

eral phases, is released more slowly (Barbarick and 
Pirela, 1984; Reháková et al., 2004; Ramesh et al., 
2011). The copper-clay combination may also facili-
tate the release of copper ions in the presence of fo-
liar wetting, holding the copper in a condition of low 
humidity. Moreover, by absorbing water, clay keeps 
the vegetation dry, reducing the risk of pathogen in-
fections. Homeopathic substances may strengthen 
natural plant defences against pathogens or environ-
mental stresses reducing copper requirements over 
long periods (Betti et al., 2009; Dagostin et al., 2011; 
Weihrauch and Schwarz, 2014; Jäger et al., 2015). 
Combinations with terpene alcohols derived from co-
niferous oils is advantageous, as these alcohols can 
improve the coverage of treated vegetation, reduce 
drainage and increase copper efficiency (Borgo et al., 
2004; Bortolotti et al., 2006; Dagostin et al., 2011). These 
new formulations may allow distribution of copper at 
far below the large quantities used previously (Leon-
ardi et al., 2002; Gomez et al., 2007; Mohr et al., 2007, 
2008; Kovačič et al., 2013).

Dosage reduction

Copper input can also be limited by reducing dos-
es in single treatments, while still ensuring good effi-
cacy. Available formulations contain different propor-
tions of copper and recommend different dose rates, 
depending on the type of copper compound. Recom-
mended dosages have reduced significantly (Leonar-
di et al., 2002; Weihrauch and Schwarz, 2014). Until re-
cently, copper formulations required the distribution 
of high copper doses per hectare per single treatment 
(Brunelli, 2016). Currently, however, authorized plant 
protection products recommend average doses of ap-
prox. 1 kg Cu++ ha-1 per treatment (Cabús et al., 2017). 
Although this rate is applied, for example, in areas 
where climatic conditions are conducive to develop-
ment of grape downy mildew, with 12–14 treatments 
per year, the quantity of distributed copper metal is 
more than twice the limit set for copper by Commis-
sion Regulation (EC) no. 889/2008 in organic farming 
(Cabús et al., 2017).

Several studies have been carried out to iden-
tify minimum effective copper doses. Dagostin et al. 
(2011) highlighted the possibility of effectively con-
trolling grape downy mildew with 0.25 g L-1 of cop-
per, obtaining greatest protection (99% efficiency) 
with 0.6 g L-1 of copper. Cabús et al. (2017) confirmed 
these results, and laboratory surveys have demon-
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strated effective downy mildew control with concen-
trations of 5 mg Cu++ m-2 of leaf area (equal to 0.2 g L-1 
of copper). The concentration to be used in the field, 
corresponding to 5 mg Cu++ m-2 leaf area, has been 
calculated to be approx. 200 g Cu++ ha-1 (Cabús et al., 
2017). Therefore, copper doses from 200 to 400 g ha-1 
treatment-1 can provide good grape downy mildew 
control while respecting the copper limits imposed by 
European Community regulations for organic farm-
ing. Reduced amounts of copper have also been used 
to control Pseudoperonospora humuli on hop; copper 
compounds were found to be effective at 2–3 kg Cu++ 

ha-1, compared to the maximum limit of 4 kg Cu++ ha-1 
allowed in Germany for this crop (Weihrauch and 
Schwarz, 2014). Reduced amounts of copper have 
also been used to control late blight in organic potato. 
Six field trials were conducted in northern Germany 
to evaluate the efficacy of copper hydroxide at re-
duced rates compared to the common practise of the 
most important German organic farmer associations 
(3 kg copper ha−1). There was clear tendency that re-
ducing copper amounts did not impair tuber yields 
(Bangemann et al., 2014).

Crop cover systems

Net crop covers can be used to reduce the use of 
agrochemicals in crop protection, and copper in par-
ticular. Crop cover systems protect plants from atmos-
pheric precipitation (rain, hail, snow), and from frost. 
In addition, they offer anti-insect function, with sub-
sequent reductions in virus infections, by preventing 
contact between plants and insect vectors (Scarascia-
Mugnozza et al., 2012). Nets are available in different 
textures and colours. The colour gives them photo-
selection properties, affecting intensity and spectrum 
of luminous flux, with different effects on photosyn-
thesis and hence the quality and the quantity of pro-
duction. Photoselective nets also influence the under-
cover temperature. Alaphilippe et al. (2016) reported 
an average increase in temperature (0.7°C) in Italian 
conditions, and decreases in photosynthetically ac-
tive radiation (10 and 15%, respectively, in Southern 
France and Northern Italy) for fruit grown under 
row-by-row netting during summer, 2011 (Choui-
nard et al., 2016). Nets can be especially useful in late 
spring, where increased temperatures may facilitate 
plant development. By influencing the microclimate 
under coverage, these systems can also be used for 
plant protection since they create unfavourable con-

ditions for pathogen development, protecting plants 
from infection assisting rains and reducing moisture 
(Iglesias and Alegre, 2006). Decreased relative humid-
ity (2.3%) was reported during summer 2011 in Italy 
(Chouinard et al., 2016). Efficacy trials for these nets 
against grape downy mildew and apple scab showed 
a reduction of disease symptoms (Sévérac and Sieg-
wart, 2013; Chouinard et al., 2017). The disadvantages 
of net use are the installation cost and the high cost 
of labour required for net management (Chouinard 
et al., 2016).

“Natural” alternative formulations to copper

Many studies have focused on identifying natural 
derivative molecules to replace copper or reduce its 
dosage, through their use alternately or in combina-
tion with copper. Good results have been achieved, 
although investigations need to be continued to 
permit the use in agricultural practice of the most 
promising substances (Ferrari et al., 2000; Cao et al., 
2003; Dagostin et al., 2008; La Torre et al., 2012b, 2013, 
2014a). Some substances that may represent an al-
ternative to copper are also included in Annex II to 
Commission Regulation (EC) 889/2008, which lists 
the products permitted for plant protection in organic 
crop production. Copper alternatives include plant 
extracts, inorganic substances and clays, biocontrol 
agents, seaweed, or chitosan. Among plant extracts, 
that from Equisetum arvense was shown to control dis-
eases caused by Plasmopara viticola (Dagostin et al., 
2011; Marchand, 2016), Venturia inaequalis (Kowalska 
et al., 2011), Phytophthora infestans (Nechwatal and 
Zellner, 2015; Messgo-Moumene et al., 2017) and Al-
ternaria solani (Wszelaki and Miller, 2005); Inula visco-
sa extract controlled late blight in potato and tomato, 
downy mildew in cucumber, and downy mildew in 
grapevine (Cohen et al., 2006; Dagostin et al., 2011); 
extract of Salvia officinalis was reported to be active 
against downy mildew of grapevine (Dagostin et al., 
2010) and cucumber (Scherf et al., 2010); nettle extract 
(Urtica spp.) was shown to control diseases caused by 
Pl. viticola (Robotic et al., 2000; Bunea et al., 2013), Phy-
tophthora capsici (Lin et al., 2005), Alternaria alternata 
(Feliziani et al., 2013; Wojciechowska et al., 2014), A. 
solani (Tapwal, 2011; Nabrdalik and Grata, 2015), Bot-
rytis cinerea and Monilinia laxa (Feliziani et al., 2013); 
Yucca schidigera extract was shown to control grape-
vine downy mildew (Gomez et al., 2007; Dagostin et 
al., 2011) and apple scab (Bengtsson et al., 2009; Kunz 
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and Hinze, 2014); tea tree (Melaleuca alternifolia) ex-
tracts were shown to be effective against grapevine 
downy mildew (Dagostin et al., 2011; La Torre et al., 
2014a), and diseases caused by Ph. infestans (Reuveni 
et al., 2009) and Xanthomonas vesicatoria (Lucas et al., 
2012); extracts from Glycyrrhiza glabra (licorice) were 
shown to control diseases caused by Pseudoperonos-
pora cubensis (Scherf et al., 2010), Ph. infestans (Schus-
ter et al., 2010; Treutwein et al., 2010; Nechwatal and 
Zellner, 2015), and V. inaequalis (Treutwein et al., 2010).

Inorganic substances are also copper alternatives 
for diseases control. Potassium hydrogen carbonate 
was shown to control V. inaequalis on apple (Schulze 
and Schönherr, 2003; Jamar et al., 2007, 2008; Kunz and 
Hinze, 2014; Wallhead et al., 2017), Pl. viticola (Sawant 
and Sawant, 2008; Dagostin et al., 2011), and B. cinerea 
and Monilinia spp. on stone fruits (Palmer et al., 1997; 
Amadei et al., 2014). Sodium hydrogen carbonate was 
shown to be effective against Pl. viticola (Lukas et al., 
2016), V. inaequalis (Ilhan et al., 2006; Jamar et al., 2007; 
Kelderer et al., 2008) and A. solani (El-Mougy and 
Abdel-Kader, 2009). Calcium hydroxide can be used 
for V. inaequalis control (Schulze and Schönherr, 2003; 
Montag et al., 2006). Lime sulphur is indicated pri-
marily for V. inaequalis control on apples (Jansonius 
et al., 2000), but also against pear scab caused by Ven-
turia pirina (Jamar et al., 2017) and against Pl. viticola 
(Lukas et al., 2016). Sulphur can play a physiologically 
nutritional role reducing the appearance of Alternaria 
spp. and V. inaequalis symptoms on apple. Kunz and 
Hinze (2014) reported that sulphur products applied 
during the germination of V. inaequalis gave protec-
tive efficacy, although sulphur compounds are less 
effective than copper-based compounds for reducing 
apple scab (Holb and Kunz, 2016).

Potassium phosphonate has reduced diseases 
caused by Pl. viticola, Pythium or  Phytophthora spp. 
(Speiser et al., 2000; Cook et al., 2009; Kelderer and 
Lardschneider, 2010). To reduce applications of cop-
per-based fungicides, German authorities applied to 
the European Commission for the inclusion of potas-
sium phosphonate in Annex II of Commission Regu-
lation (EC) 889/2008 for organic viticulture, but the 
Expert Group for Technical Advice on Organic Pro-
duction (EGTOP) rejected this request. The reasons 
for this refusal were that potassium phosphonate is 
synthetically manufactured, making it unsuitable for 
use on organically certified food crops, and because it 
leads to persistent phosphite residues in grapes and 
wine (EGTOP, 2014).

Clay preparations are used in crop protection to 
reduce or replace copper-based fungicides. They were 
reported to be active against grape downy mildew 
(Hofmann, 1996, 2002; Schmitt et al., 2002; Dagostin et 
al., 2011), late blight of potato (Michelante and Haine, 
2004; Dorn et al., 2007), fire blight of apple (Plagge 
and Rommelt, 1997; Rommelt et al., 1999), and apple 
scab (Balaž et al., 2010). Clays control plant diseases 
through increasing aluminium at plant surfaces (En-
kelmann and Wohlfarth, 1994). Aluminium ions were 
shown to inhibit spore germination of fungal patho-
gens (Andrivon, 1995; Van Zwieten et al., 2007).

Biocontrol agents may also be used to reduce cop-
per use (Dagostin et al., 2011). Many of these have dis-
ease control capabilities, but only some are commer-
cially available due to their variable effectiveness and 
to difficulties in registration processes. This is because 
these agents have inconsistent field performance, 
short shelf-lives, induce production of secondary me-
tabolites of concern for human health and the envi-
ronment, and/or incur high industrial production or 
formulation costs (Pertot et al., 2017). Bacillus subtilis 
was reported to reduce severity of downy mildew in 
cucumber plants (Mohamed et al., 2016), to control 
sugar beet Cercospora leaf spot (Collins and Jacob-
sen, 2003), and in combination with copper, reduce 
the number of copper treatments to effectively control 
citrus bacterial canker (Ibrahim et al., 2016) and early 
blight of tomato (Abbasi and Weselowski, 2014). The 
commercially available B. subtilis QST 713 was shown 
to be significantly or partially effective against Ps. sy-
ringae pv. syringae and Xanthomonas spp. on tomato 
under greenhouse conditions (Roberts et al., 2008; 
Gilardi et al., 2010). Xenorhabdus bovienii metabolites 
were reported to be active against Ph. infestans on 
potato plants (Ng and Webster, 1997). Streptomyces 
violatus was shown to control grape downy mildew 
(El-Sharkawy et al., 2018). Application of a commer-
cial formulation containing Pantoea agglomerans strain 
C9-1 and Pseudomonas fluorescens strain A506 reduced 
severity of Xanthomonas leaf blight of onion, caused 
by Xanthomonas axonopodis pv. allii. New management 
strategies for Xanthomonas leaf blight are needed to 
reduce the amount of copper bactericides and delay or 
prevent the development of copper tolerance in pop-
ulations of X. axonopodis pv. allii (Gent and Schwartz, 
2005). Lysobacter capsici AZ78 was shown to control Pl. 
viticola (Puopolo et al., 2014a, 2014b) and Ph. infestans 
(Puopolo et al., 2014b). Trichoderma harzianum was re-
ported to be effective against Pl. viticola (Palmieri et 
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al., 2012; El-Sharkawy et al., 2018), and in combination 
with Streptomyces viridosporus, to control wheat leaf 
rust caused by Puccinia triticina (El-Sharkawy et al., 
2015). Trichoderma virens DAR 74290 and T. harzianum 
T39 alone and in combination were reported to con-
trol pink rot of potato and root and stem rot of tomato 
caused by Phytophthora erythroseptica (Etebarian et al., 
2000). Trichoderma atroviride was shown to control Ph. 
infestans (Al-Mughrabi, 2008). Trichoderma asperellum 
strain T34 was shown to control Ph. capsici in pepper 
(Segarra et al., 2013), Ps. syringae pv. lachryimans in cu-
cumber (Segarra et al., 2007) and Ps. syringae pv. toma-
to in tomato (Segarra et al., 2009). Water extract of dry 
mycelium of Penicillium chrysogenum was reported to 
be active against Pl. viticola (Thuerig et al., 2006; Harm 
et al., 2011), Ph. infestans (Thuerig et al., 2006; Unger et 
al., 2006), Peronospora destructor (Thuerig et al., 2006) 
and V. inaequalis (Thuerig et al., 2006). A. alternata was 
shown to be effective in limiting Pl. viticola sporula-
tion (Musetti et al., 2006). Saccharomyces cerevisiae com-
bined with calcium chloride and chitosan was report-
ed to reduce early and late blights caused by A. solani 
and Ph. infestans on tomato plants (El-Mougy et al., 
2012). Saccharomyces extracts were shown to reduce 
grapevine downy mildew when applied either alone 
(Pujos et al., 2014) or in combination with laminarin 
(Romanazzi et al., 2016).

Seaweed extracts can be used in crop protection 
as alternatives to copper. The most known and used 
seaweeds are brown algae, with Ascophyllum and 
Laminaria as the main genera. Extracts of Ascophyllum 
nodosum were shown to control Pl. viticola (Lizzi et al., 
1998; Dagostin et al., 2011). Laminarin extracted from 
Laminaria digitata can be used to control B. cinerea 
(Aziz et al., 2003), V. inaequalis (Mery and Joubert, 
2012), and Pl. viticola (Aziz et al., 2003; Trouvelot et 
al., 2008; Chalal et al., 2015; Garde-Cerdán et al., 2017). 
Laminarin is not directly bactericidal or fungicidal, 
but the activity is related to enhancing plant resist-
ance to pathogens.

Chitosan is a natural biodegradable polymer ob-
tained from chitin. It was reported to be active against 
a variety of microorganisms (Rabea et al., 2003). 
Though chitosan has no direct action on pathogens, 
it can help reduce the need for copper by stimulat-
ing plant defence mechanisms. Chitosan has been 
shown to control A. solani (Abd-El-Kareem and Hag-
gag, 2014), Ph. infestans (Atia et al., 2005; Nechwatal 
and Zellner, 2015), Pl. viticola (Aziz et al., 2006; Maia et 
al., 2012; Romanazzi et al., 2016; Garde-Cerdán et al., 

2017), and B. cinerea (Ait Barka et al., 2004; Trotel-Aziz 
et al., 2006).

Disease forecasting models

Forecasting models can be used to reduce the 
amounts of copper applied, through increased effi-
ciency of treatment timing. Study of the relationships 
between weather conditions and disease develop-
ment can simulate the course of infections and iden-
tify optimal intervention periods. This knowledge al-
lows reductions in the number of treatments, while 
maintaining efficient disease control with consequent 
benefits for crop production, the environment and 
human health. Disease forecasting models use infor-
mation about the environment, crop, and pathogen 
to predict future occurrence of a disease. In this way, 
farmers and technicians are alerted at times of high 
disease risk, allowing them to perform timely disease 
control treatments. Many forecasting models have 
been developed to control fungal pathogens, oomy-
cetes and pests. Some of the models useful for reduc-
ing copper inputs are reported in Table 3.

Disease resistant cultivars

The need to reduce agrochemical inputs has led 
researchers to develop disease resistant crop cul-
tivars. In the case of grapevine, the use of downy 
mildew-resistant varieties can limit the use of copper 
(Pedneault and Provost, 2016), which is why these 
varieties are recommended as the most valid choice 
for organic viticulture (Pavloušek, 2010; Sivčev et al., 
2010; Becker, 2013). Resistant plant varieties are se-
lected from one or more generations of interspecific 
crosses where resistance features are transmitted by 
American and Asian species with low organolep-
tic characteristics to precious Vitis vinifera cultivars, 
which are highly susceptible to fungi and oomycetes 
(Wiedemann-Merdinoglu and Hoffmann, 2010; Zini 
et al., 2015). When vinified, the first hybrids obtained 
from crosses between European and American spe-
cies, defined as first-generation hybrids, produced 
poor quality products and were therefore unsuccess-
ful with winegrowers. These were followed by sec-
ond, third and fourth generations, in which the por-
tions of the genomes from American and Asian spe-
cies were gradually reduced in favour of the European 
genomes. In this way, the quality characteristics of V. 
vinifera and a small portion of the genome from Asian 
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Table 3. Main plant disease forecasting models used to reduce copper inputs.

Host/Pathogen Model Parameters considered Reference

Apple and pear tree/ 
Erwinia amylovora

COUGARBLIGHT 2010 Hourly temperature
Hourly or daily rainfall

Smith and Pusey, 2011

MARYBLYTTM Daily minimum and maximum 
temperature
Daily rainfall
Daily leaf wetness

Lightner and Steiner, 1992

Apple tree/Venturia 
inaequalis

A-SCAB 
(Apple-SCAB)

Hourly temperature 
Hourly relative humidity
Hourly rainfall 
Hourly leaf wetness 

Rossi et al., 2007

MILLS A-3 Daily average temperature 
Leaf wetness

Mills, 1944  
MacHardy and Gadoury, 1989

RIMproa 
(Relative Infection Measure 
PROgram)

Temperature 
Humidity 
Rainfall 
Leaf wetness 
Wind speed and direction 
Solar radiance 
Barometric pressure 
Phenological stage of plants 

Trapman and Polfliet, 1997

Grapevine/ 
Plasmopara viticola

USCS -  
DOWGRAPRI 
(DOWny mildew GRApe 
PRimary Infection)

Hourly temperature 
Hourly relative humidity 
Hourly rainfall 
Hourly leaf wetness

Rossi et al., 2005 
Caffi et al., 2006 
Rossi et al., 2006 
Rossi et al., 2008

EPI-Plasmopara 
(État Potentiel d’Infection - 
Plasmopara)

Temperature
Rainfall
Relative humidity

Strizyk, 1983 
Brunelli et al., 1990 
Franchi et al., 2010 
Sanna et al., 2014

PLASMO 
(PLAsmopara Simulation 
MOdel)

Hourly temperature 
Hourly relative humidity 
Hourly rainfall 
Hourly leaf wetness (0=dry, 
1=wet)

Orlandini  et al., 1993a 
Orlandini  et al., 1993b 
Orlandini  et al., 1993c 
Rosa et al., 1993 
Rosa et al., 1997 
Orlandini and Rosa, 1997 
Rosa and Orlandini, 1997

- Temperature 
Rainfall
Forecasted rainfall

Pellegrini et al., 2010

Vinemild Temperature 
Rainfall
Relative humidity

Blaise and Gessler, 1992 
Blaise et al., 1999a 
Blaise et al., 1999b

PRO 
(Plasmopara Risk Oppenheim)

Temperature 
Relative humidity
Leaf wetness

Hill, 1990

SIMPO 
(SIMulation of  P. viticola 
Oospore-maturation)

Daily average temperature  
Relative humidity 
Rainfall 

Hill, 2000

(Continued)
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Host/Pathogen Model Parameters considered Reference

Grapevine/ 
Plasmopara viticola

DMCAST 
(Downy Mildew foreCAST)

Hourly temperature 
Hourly relative humidity 
Hourly leaf wetness 

Park et al., 1997

POM 
(Prediction of Oospore 
Maturity)

Rainfall Tran Manh Sung et al., 1990

MILVIT Temperature 
Relative humidity

Magnien et al., 1991

Kiwifruit/ 
Pseudomonas syringae 
pv. actinidiae

- Hourly temperature
Hourly rainfall
Hourly relative humidity

Beresford et al., 2017

Lettuce/Bremia 
lactucae

BREMCAST 
(BREMia foreCAST)

Temperature during the night 
Leaf wetness duration 
Relative humidity 

Kushalappa, 2001

Onion/Peronospora 
destructor

ONIMIL 
(ONIon downy MILdew)

Hourly temperature 
Hourly or daily rainfall 
Hourly relative humidity

Battilani et al., 1996a 
Battilani et al., 1996b 
Battilani et al., 1998a 
Battilani et al., 1998b

Peach tree/Taphrina 
deformans

- Temperature 
Daily rainfall 
Phenological stage of plants

Giosuè et al., 2000 
Thomidis et al., 2010

Pear tree/
Stemphylium 
vesicarium

BSP-Cast  
(Brown Spot Pear Cast)

Hourly leaf wetness 
Average temperature during 
wetness period

Montesinos et al., 1995 
Llorente et al., 2000

Sugar beet/
Cercospora beticola

CERCOPRI 
(CERCOspora PRimary 
Infection) 

Hourly temperature
Rainfall 
Relative humidity
Varietal resistance index (From 
susceptible to resistant)
Day of appearance of disease 
symptoms 

Battilani and Rossi, 1986

CERCODEP 
(CERCOspora Development of 
EPidemics) 

Hourly temperature
Rainfall 
Relative humidity

Rossi, 1995

Tomato and Potato/ 
Phytophthora infestans

IPI 
(Infection Potential Index)

Crop emergence or transplant 
date
Minimum, average and 
maximum daily temperature 
Daily average relative 
humidity
Total daily rainfall 

Bugiani et al., 1993

MISP 
(Main Infections and 
Sporulation Period)

Hourly temperature 
Hourly relative humidity
Hourly rainfall 

Ruckstuhl and Forrer, 1998

Öko-SIMPHYT Temperature
Rainfall 

Tschöpe et al., 2010 
Tebbe et al., 2014 
Bruns et al., 2017

(Continued)

Table 3. (Continued).
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or American species, bearers of disease resistance, led 
to good quality wines (Van der Meer and Lévite, 2010; 
Pedneault et al., 2012; Rousseau et al., 2013; Zini et al., 
2015). After more than a century from the first ge-
netic improvement projects, new impetus to obtain-
ing resistant varieties is being derived from modern 
breeding techniques, based particularly on the use of 
recombinant DNA, cisgenesis and genome editing. 
The genetic knowledge being acquired of complex 
characters that determine the quality of production, 
together with the possibility of identifying the best 
allelic variants within the Vitis genus, represent im-
portant innovation to obtain new varieties (Grando, 
2007). To date, European breeding programmes have 
produced more than a hundred varieties and selec-
tions that have not retained the negative oenological 
characteristics of wild vines. For this reason, the Eu-
ropean Union has allowed the cultivation of some of 
these in Union Member States (Zini et al., 2015).

In the case of apple, the use of varieties that are 
resistant to scab caused by V. inaequalis or fireblight 
caused by E. amylovora can contribute to reduced cop-
per inputs. A breeding programme to produce apple 

cultivars resistant to scab was initiated early in the 20th 
Century at the University of Illinois. This was based 
on a modified backcross programme to combine genes 
for resistance to apple scab from the crab apple Malus 
floribunda 821, and other species with commercially-
acceptable traits (Hough, 1944). Resistance was con-
ferred by a single qualitative dominant gene named 
Vf (Venturia resistance from floribunda) (Williams et 
al., 1966). Subsequent hybridization and selection pro-
duced scab-resistant eating apples (Afunian et al., 2004; 
Gessler and Pertot, 2012). Very few apple cultivars 
carry other sources of scab resistance. The widespread 
use of Vf may increase the risk of selecting for patho-
gen genotypes that are able to overcome this resistance 
(Lespinasse, 1989). In 1988, scab lesions were found 
on ‘Prima,’ a Vf selection, in an orchard in Germany 
(Parisi et al., 1993). Only high diversity of resistance, as 
present in natural conditions (MacHardy et al., 2001), 
can sustainably reduce V. inaequalis populations.

The use of fireblight resistant apple and pear cul-
tivars is another approach to limit copper inputs, and 
resistant cultivars should be considered when estab-
lishing new orchards. As fire blight is known to in-

Host/Pathogen Model Parameters considered Reference

Tomato and Potato/ 
Phytophthora infestans

Bio-PhytoPRE Daily temperature 
Daily rainfall 
Daily relative humidity

Musa-Steenblock and Forrer, 
2005a 
Musa-Steenblock and Forrer, 
2005b

BLITECAST Maximum and minimum daily 
temperature 
Hourly rainfall 
Relative humidity 
Leaf wetness

Krause et al., 1975 
MacKenzie, 1981 
MacKenzie, 1984

Winter wheat/ 
Puccinia triticina  
(syn. P. recondita f. sp. 
tritici)

RUSTPRI 
(RUST PRimary Infection)

Hourly temperature
Hourly rainfall 
Hourly relative humidity
Hourly leaf wetness

Rossi et al., 1996

RUSTDEP 
(RUST Development of 
Epidemics)

Hourly temperature
Hourly rainfall 
Hourly relative humidity
Hourly leaf wetness

Rossi et al., 1997

Winter wheat/ 
Puccinia striiformis f. 
sp. tritici

- Hourly temperature
Hourly relative humidity
Hourly rainfall

El Jarroudi et al., 2017

a RIMpro provides also risk estimates for other diseases controlled by copper (pear scab, fire blight, sooty blotch, apple canker and 
Marssonina blotch).

Table 3. (Continued).
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fect rootstocks as well as scions, fire blight resistance 
breeding is relevant for both tissue types (Peil et al., 
2009). Selection for resistance to fireblight was initi-
ated in the 19th Century in the USA, and at present it is 
conducted in other countries, particularly within Eu-
rope, using classical breeding or genetic engineering 
methods (Toth et al., 2006; Peil et al., 2008; Kellerhals et 
al., 2011; Ozrenk et al., 2012); However, most resistant 
cultivars do not meet fruit quality standards required 
by consumers.

The use of resistant varieties for late blight control 
in potatoes and tomatoes is also a promising strat-
egy to reduce or replace the need for applications 
of copper-based products. Assuming that resistant 
varieties require 0 to 33% of the copper fungicides 
used to protect currently grown susceptible varie-
ties, a reduction of 16.5 to 50% of copper fungicides 
could be achieved by growing more resistant potato 
varieties, and this result is very important in organic 
farming (Speiser et al., 2006). Resistant genes were 
first described in potato (Wastie, 1991), but have also 
been reported (as Ph genes) in tomato (Gallegly and 
Marvel, 1955). Potato resistant genes (R-genes) were 
discovered in the closely related species Solanum de-
missum (Malcolmson and Black, 1966; Wastie, 1991). 
The tomato resistance genes have been identified in 
tomato wild species Solanum pimpinellifolium (Foolad 
et al., 2008; Moreau et al., 1998). Varieties with race 
specific (based on R-genes) are usually highly effec-
tive, but resistance is often not durable, as new and 
more aggressive Ph. infestans strains appear that 
overcome the resistance (Brouwer et al., 2004; Pacilly 
et al., 2016). Currently the number of resistant culti-
vars available is limited and there is a need to con-
tinue to search for new and more durable resistant 
genes (Pacilly et al., 2016).

In the case of wheat, breeders have been select-
ing for resistance to rust diseases. Stem rust (Puc-
cinia graminis f. sp. tritici), leaf rust (P. triticina) and 
stripe or yellow rust (Puccinia striiformis f. sp. tritici) 
can cause significant and severe losses to crops (Roe-
lfs et al., 1992). Using resistant varieties to prevent or 
avoid rust diseases is an important strategy to reduce 
copper inputs while reducing environmental impacts 
and increasing long-term agricultural sustainability. 
More than 187 rust resistance genes (80 for leaf rust, 
58 for stem rust and 49 for stripe rust) have been de-
rived from diverse wheat or durum wheat cultivars 
and related wild species, using different molecular 
methods (Aktar-Uz-Zaman et al., 2017). The problem 

has been that other rust races have appeared in vari-
ous parts of the world, reducing the efficacy of the 
newly identified sources of resistance (Figueroa et al., 
2018). Consequently, there is a constant need to de-
velop new sources of resistance for controlling rust 
diseases (Kolmer, 2013).

In conclusion, reducing the use of copper through 
the use of resistant cultivars or varieties can reduce 
both crop production costs and the environmental 
impacts resulting from this important crop protection 
metal.

Research on copper-related issues
Farmers, advisors, industry, policymakers and re-

searchers are all interested in solving the problems of 
copper use in plant protection. EU organic farmers 
are seeking help from the research community, since 
the use of this heavy metal can undermine the image 
of organic production, whose strong points are pro-
duction safety and quality. In addition, some retail 
chains have recently begun demanding copper-free 
products with zero copper residues on food, and this 
affects the behavior of farmer producers. Several re-
search projects have been initiated to find new strate-
gies and appropriate alternative solutions (Table 4). 
The main features of these studies are summarized 
in Table 5. The projects have examined several strate-
gies, outlined below.

Agronomic strategies

Measures to pre-empt onset of diseases. Studies 
have demonstrated the effectiveness of early crop 
establishment (for reducing potato late blight), the 
importance of the removal and destruction of crop 
residues, crop rotation and low plant population den-
sity. Adequate fertilization and balanced irrigation 
also play key roles. The Blight-MOP project showed 
that alternating rows of resistant and susceptible po-
tato varieties in a field, or combining different vari-
eties within rows, is an effective strategy. However, 
it was found that this system could cause problems 
for harvesting operations, and it has been evaluated 
on a small scale and is effective only when disease 
pressure is low (http://orgprints.org/10650/12/
leifert-wilcockson-2005-blight_mop-report-Annexes.
pdf). For grapevine protection, canopy management 
could be essential, reducing leaf populations and in-
creasing fruit exposure to create microclimates that 
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Table 4. List of the main research projects on copper-related issues.

Project Aim Starting 
date

Ending 
date

After-Cu
(Anti-infective environmentally friendly 
molecules against 
plant pathogenetic bacteria for reducing Cu)
http://www.lifeaftercu.com/

Demonstration of  the anti-infective properties 
of innovative peptide molecules against plant 
pathogenic bacteria, in order to reduce copper 
compounds and develop environmentally 
friendly and sustainable strategies for the 
control of plant bacterial diseases

1st January 
2014

31st 
December 

2015

ALT.RAMEinBIO
(Reduction strategies and possible 
alternatives to the use of copper in organic 
farming)
http://www.sinab.it/ricerca/altrameinbio-
strategie-la-riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame

Identification of strategies and products 
able to replace or reduce the use of copper 
in organic viticulture, fruit growing and 
horticulture

15th 
January 

2015

31st March 
2018

Bio Bug Bang
(Bioformulations with antimicrobial activity)

Identification and characterization of 
natural products or active substances and 
development of new formulations for the 
control of pathogenic bacteria of tomato and 
kiwifruit to reduce copper use in organic 
farming

11th 
November 

2010

31st May 
2012

BioImpuls
(Organic potato breeding program)
www.louisbolk.nl

Identification of a strategy to protect organic 
potatoes against late blight disease

2008 2019

Blight-MOP
(Development of a systems approach for late 
Blight Management in EU Organic Production 
systems)
http://research.ncl.ac.uk/nefg/blightmop/
page.php?page=2

Reduction or replacement of copper for potato 
late blight control

1st March 
2001

31st 
December 

2005

CO-FREE
(Innovative strategies for copper-free low 
input and organic farming systems)
http://www.co-free.eu/

Development of  plant protection products of 
natural origin including optimization of field 
application, characterization of the mode of 
action and identification of the spectrum of 
activity to improve “copper-free” production 
strategies without altering yield or quality of 
the cultures while reducing the environmental 
impact

1st January 
2012

30th June 
2016

EVERGREEN
(Environmentally friendly biomolecules from 
agricultural waste as substitutes of pesticides 
for plant diseases control)
http://life-evergreen.com/it/il-progetto/

Demonstration of the in vitro and in vivo 
efficacy and reliability of polyphenolic-based 
biomolecules extracted from agricultural 
non-food biomass and waste against 
phytopathogenic bacteria and nematodes, to 
replace current pesticides and application of 
copper compounds in both traditional and 
organic agriculture

1st October 
2014

30th 
September 

2016

PRADA
(Setting-up a system to assess grapevine 
downy mildew infection on a territorial scale)
http://www.ita-slo.eu/projects/
projects_2000_2006/

Setting up an agro-meteorological system 
to assess the evolution of grapevine downy 
mildew on a regional scale

November 
2004

March 
2008

(Continued)
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are unfavourable to pathogen development. The 
ALT.RAMEinBIO project demonstrated the possibil-
ity of controlling grapevine downy mildew and ap-
ple scab by covering the crops with anti-rain protec-
tion (Keep in Touch® system). However, this strategy 
would lead to increased grapevine powdery mil-
dew and increase the number of phytoseiid mites 
on apples (http://www.sinab.it/ricerca/altramein-
bio-strategie-la-riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame).

Selection of resistant cultivars

The Blight-MOP project highlighted the useful-
ness of varieties resistant to potato late blight, such as 
Eden, Naturella, Escort, Sarpo Axona, Sarpo Mira and 
Sarpo Tomina (Speiser et al., 2006). The BioImpuls 
project has begun a long-term genetic improvement 
programme, to seek late blight resistant parental lines 
suitable for markets. To date, five parental lines have 
been developed: Solanum bulbocastanum, S. edinense, 
R8, R9 and Sarpo Mira (Lammerts van Bueren et al., 

Project Aim Starting 
date

Ending 
date

ProLarix
(Development of a botanical plant protection 
product from Larix by-products)
www.prolarix.eu

Optimization of extraction and up-scale the 
production of standardised technical grade 
Larix extract;
Validation of the efficacy and integrate 
Larix extracts in state-of-the-art grapevine 
production systems;
Development of a roadmap for registration 
and market introduction at EU and member 
state level

1st 
November 

2013

31st 
October 

2015

PRO.VI.SE.BIO
(Vine and seed protection in organic farming)

Identification of strategies to reduce or replace 
the use of copper for grape downy mildew

18th 
February 

2009

30th 
December 

2011

PURE
(Pesticide Use-and-risk Reduction in 
European farming systems with Integrated 
Pest Management)
http://www.pure-ipm.eu/

Devolompment of practical Integrated Pest 
Management (IPM) solutions to reduce the 
dependence on pesticides in major farming 
systems in Europe, thereby contributing to 
the reduction of pesticide use while ensuring 
good pest control

1st March 
2011

28th 
February 

2015

RepCo
(Replacement of Copper Fungicides in 
Organic Production of Grapevine and Apple 
in Europe)
http://cordis.europa.eu/publication/
rcn/11903_en.html

Identification of ways to reduce or replace 
copper fungicides in organic agriculture

1st 
November 

2003

31st 

October 
2006

STU.LI.RA.
(Studies to comply with the limitations on 
copper quantities through the use of low-dose 
formulations or alternative means)

Assessment of alternative technical means 
(microbial antagonists, plant extracts, 
inorganic substances) and new copper 
formulations with low copper dosage to 
protect grapevines, fruit trees and vegetable 
crops in organic farming

1st January 
2005

31st 

December 
2009

VineMan.org.
(Integration of plant resistance, cropping 
practices, and biocontrol agents for enhancing 
disease management, yield efficiency, and 
biodiversity in organic European vineyards)
http://www.vineman-org.eu/

Development of innovative crop systems for 
more efficient control of key grape diseases 
(downy mildew, powdery mildew and grey 
mould), given the need to reduce the amount 
of copper in organic farming.

1st March 
2010

31st August 
2013

Table 4. (Continued).
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Table 5. The principal features of projects on copper carried out in recent years.

Host/Pathogen Project Acronyma More effective products or strategies Reference

Apple tree/
Alternaria mali

ALT.RAMEinBIO Calcium polysulfide; lime sulphur; acid 
clays; sulphur-based products

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

Apple tree/
Marssonina 
coronaria

ALT.RAMEinBIO Calcium polysulfide; lime sulphur; acid 
clays

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

Apple tree/
Venturia inaequalis

ALT.RAMEinBIO Low-dose copper formulations; lime 
sulphur; liquorice extract; sulphur-
based products; cover crop system 
Keep In Touch®

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

CO-FREE Cladosporium cladosporioides H39 Köhl et al., 2015; Schmitt et al., 2017

PURE Cladosporium cladosporioides H39 Heijne et al., 2015; 
http://www.pure-ipm.eu 

RepCo Yucca schidigera extract; potassium 
hydrogen carbonate; coconut 
extract; rapeseed oil; Cladosporium 
cladosporioides R406; Cladosporium 
cladosporioides H39

Bengtsson et al., 2006; De Jong and 
Heijne, 2006; Heijne et al., 2006, 2007; 
Köhl, 2007; Köhl et al., 2008; Dagostin  
et al., 2011; 
http://cordis.europa.eu/publication/
rcn/11903_en.html 

STU.LI.RA Lime sulphur; carbonate + sulphur Kelderer et al., 2008, 2010

Grapevine/
Botrytis cinerea

VineMan.org Epidemiological models; Aureobasidium 
pullulans; low copper dosages + 
sulphur; Bacillus subtilis QST713 + 
sulphur; agricultural practice (early leaf 
removal)

Legler et al., 2013; Galbignani et al., 
2014; 
http://www.vineman-org.eu/
nqcontent.cfm?a_id=11235&tt=t_law_
market_www 

Grapevine/
Plasmopara 
viticola

ALT.RAMEinBIO Reduced copper dosages; liquorice leaf 
extract; laminarin from brown seaweed 
(Laminaria digitata); cell walls of 
Saccharomyces cerevisiae; Yucca schidigera 
extract; potassium hydrogen carbonate; 
lime sulphur; acid clay; cover crop 
system Keep In Touch®

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame  

CO-FREE Preventive measures; low dose copper; 
potassium hydrogen carbonate; lime 
sulphur; Lysobacter capsici AZ78; 
RIMpro model

Puopolo et al., 2014a, 2014b; Lukas et al., 
2016; Schmitt et al., 2017; 
http://www.biofruitadvies.nl/rimpro/
rimpr o_e.htm 

PRADA Forecasting models Cicogna et al., 2005; Dietrich et al., 2007

ProLaris Extract from Larix decidua James et al. 2016; 
www.prolarix.eu; 
https://cordis.europa.eu/result/
rcn/186831_en.html

PRO.VI.SE.BIO Forecasting model; low dose copper 
formulations

La Torre et al., 2010, 2011, 2012a, 2014b; 
Lo Scalzo et al., 2012; Menesatti et al., 
2013

(Continued)
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Host/Pathogen Project Acronyma More effective products or strategies Reference

Grapevine/
Plasmopara 
viticola

RepCo Camellia oleifera seeds + Chenopodium 
quinoa; Chenopodium oleifera seeds + 
Quillaja saponaria; Yucca schidigera 
extract; low dose copper formulations; 
potassium phosphonates; chitosan; 
fatty acids and potassium salts; tea tree 
oil; Abies sibirica extract; aluminium 
silicate

Dagostin et al., 2006, 2011; Gomez et 
al., 2007; Köhl, 2007; Mohr et al., 2007; 
Parveaud et al., 2010; http://cordis.
europa.eu/publication/rcn/11903_
en.html 

STU.LI.RA Low copper-based formulations; Salvia 
officinalis extract

La Torre et al., 2007, 2008; Spera et al., 
2007; Dagostin et al., 2010

VineMan.org FR-010 (substance not properly 
specified); epidemiological models; 
agronomic practices (canopy density, 
fruit exposure, leaf removal)

Legler et al., 2013; 
http://www.vineman-org.eu/
nqcontent.cfm?a_id=11235&tt=t_law_
market_www 

Kiwifruit/
Pseudomonas 
syringae pv. 
actinidiae

After-Cu Innovative peptide molecules (AP17, 
Li27, PSA21)

Mota and Cornelis, 2005; Cerboneschi 
et al., 2015; Tegli et al., 2015; 
http://www.lifeaftercu.com/

Bio Bug Bang Plant extracts (Ficus carica and Punica 
granatum)

Quattrucci and Balestra, 2011; 
Quattrucci et al., 2011

Lemon and 
orange tree/
Pseudomonas 
syringae pv. 
syringae

After-Cu Innovative peptide molecules (AP17, 
Li27, PSA21)

Mota and Cornelis, 2005;  
http://www.lifeaftercu.com/

Oleander/ 
Pseudomonas 
savastanoi pv. 
nerii strain Psn 23

After-Cu Innovative peptide molecules (AP17, 
Li27, PSA21)

Mota and Cornelis, 2005; Cerboneschi 
et al., 2015; Tegli et al., 2015; 
http://www.lifeaftercu.com/

EVERGREEN Polyphenolic extracts from vegetable 
residues 

Biancalani et al., 2016

Olive tree/
Pseudomonas 
savastanoi

After-Cu Innovative peptide molecules (AP1, 
Li27, PSA21)

Mota and Cornelis, 2005; Cerboneschi 
et al., 2015; Tegli et al., 2015; 
http://www.lifeaftercu.com/

Potato/
Phytophthora 
infestans

BioImpuls Resistant varieties (partecipatory plant 
breeding)

Lammerts van Bueren et al., 2008, 
2009; Lammerts van Bueren, 2010; 
Almekinders et al., 2014; 
www.louisbolk.nl

Blight-MOP Agronomic techniques (early sowing, 
removal and destruction of infected 
leaves, fertilization and crop rotation, 
removal of crop residues and low plant 
density); Bio-PhytoPRE forecasting 
model; resistant varieties; Xenorhabdus 
bovienii; Pseudomonas putida; low-dose 
copper formulations 

Phillips et al., 2002; Musa-Steenblock 
and Forrer, 2005a; Speiser et al., 2006; 
http://orgprints.org/10650/12/leifert-
wilcockson-2005-blight_mop-report-
Annexes.pdf 
http://research.ncl.ac.uk/nefg/
blightmop/page.php?page=2. 

CO-FREE Öko-SIMPHYT (decision support 
system) Lysobacter capsici AZ78

Puopolo et al., 2014a, 2014b 
http://www.zepp.info/ackerbau/75-
kartoff el/61-oeko-simphyt

Table 5. (Continued).
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2008, 2009; Lammerts van Bueren, 2010; Almekinders 
et al., 2014). Expanding the cultivation of resistant 
cultivars may become particularly important in the 
future.

Use of copper alternatives

The RepCo, PURE, ALT.RAMEinBIO, Blight-MOP, 
Bio Bug Bang, ProLarix and After-Cu projects fo-
cussed on research and development for copper alter-
natives for control of plant diseases such as Pl. viticola, 
V. inaequalis, Ph. infestans, Pseudomonas savastanoi, Ps. 

syringae pv. actinidia, Ps. syringae pv. syringae, Ps. sy-
ringae pv. tomato, X. axonopodis pv. vesicatoria. The best 
results were obtained using plant extracts, biocontrol 
agents and inorganic products (Mota and Cornelis, 
2005; Quattrucci and Balestra, 2011; Quattrucci et al., 
2011; Cerboneschi et al., 2015; Heijine et al., 2015; Tegli 
et al., 2015; James et al., 2016; Giovanale et al., 2017). 

Effective substances from different origins have 
been identified for Pl. viticola control. The formulation 
based on extracts of Chenopodium quinoa and of Camellia 
oleifera seeds (Teawet TQ Liquid), and the formulation 
based on extracts of Quillaja saponaria and C. oleifera 

Host/Pathogen Project Acronyma More effective products or strategies Reference

Tobacco/
Pseudomonas 
savastanoi pv. 
nerii strain Psn 23

EVERGREEN Polyphenolic extracts from vegetable 
residues 

Biancalani et al., 2016

Tobacco/
Pseudomonas 
syringae pv. tabaci

After-Cu Innovative peptide molecules (AP17, 
Li27, PSA21)

Mota and Cornelis, 2005; Cerboneschi 
et al., 2015; Tegli et al., 2015; 
http://www.lifeaftercu.com/

Tomato/
Phytophthora 
infestans

ALT.RAMEinBIO Low dose copper formulations; 
liquorice leaf extract; potassium 
hydrogen carbonate Bacillus subtilis 
strain QST 713; Yucca schidigera; Abies 
sibirica extract; chitosan hydrochloride

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

Tomato/
Pseudomonas 
syringae pv. 
tomato

ALT.RAMEinBIO Natural substances of plant origin 
(carvacrol, thymol, eugenol, gallic acid 
and coumarin)

Giovanale et al., 2017; http://www.
sinab.it/ricerca/altrameinbio-strategie-
la-riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

Bio Bug Bang Microencapsulated based on extracts 
from Punica granatum containing 
gallic acid and ellagic acid; essential 
oils (Lavandula hybrida and Mentha × 
piperita)

Quattrucci and Balestra, 2011; 
Quattrucci et al., 2011

Tomato/
Xanthomonas 
axonopodis pv. 
vesicatoria

ALT.RAMEinBIO Natural substances of plant origin 
(carvacrol, thymol, eugenol, gallic acid 
and coumarin)

http://www.sinab.it/ricerca/
altrameinbio-strategie-la-
riduzione-e-possibili-alternative-
all%E2%80%99utilizzo-del-rame 

a Project Acronyms and titles: After-Cu: Anti-infective environmentally friendly molecules against plant pathogenetic bacteria for reduc-
ing Cu; ALT.RAMEinBIO: Reduction strategies and possible alternatives to the use of copper in organic farming; Bio Bug Bang: Biofor-
mulations with antimicrobial activity; BioImpuls: Organic potato breeding program; Blight-MOP: Development of a systems approach 
for late Blight Management in EU Organic Production systems; CO-FREE: Innovative strategies for copper-free low input and organic 
farming systems; EVERGREEN: Environmentally friendly biomolecules from agricultural waste as substitutes of pesticides for plant 
diseases control; PRADA: Setting up a system to assess grapevine downy mildew infection on a territorial scale; ProLarix: Development 
of a botanical plant protection product from Larix by-products; PRO.VI.SE.BIO: Vine and seed protection in organic farming; PURE: 
Pesticide Use-and-risk Reduction in European farming systems with Integrated Pest Management; RepCo: Replacement of Copper 
Fungicides in Organic Production of Grapevine and Apple in Europe; STU.LI.RA: Studies to comply with the limitations on copper 
quantities through the use of low-dose formulations or alternative means; VineMan.org: Integration of plant resistance, cropping prac-
tices, and biocontrol agents for enhancing disease management, yield efficiency, and biodiversity in organic European vineyards.

Table 5. (Continued).
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seeds (Quiponin BS Liquid) have shown good poten-
tial, although the formulations need to be improved 
due to run-off problems (Dagostin et al., 2011). Extract 
from Abies sibirica gave very good control of downy 
mildew symptoms on grape bunches, with activity 
only 10% less than that of copper. Studies conducted in 
northern Italy, under the STU.LI.RA. project, showed 
efficacy of Salvia officinalis extract in greenhouse and 
field tests, although the formulation needs to be im-
proved, as it presented run-off problems. The Larixine 
product, based on Larix decidua bark extract, that has 
been developed in the ProLarix project, showed good 
efficacy under field conditions (James et al., 2016). The 
chitosan-based product Chitoplant gave good control 
of grapevine downy mildew on leaves and bunches. 
Among inorganic products, formulations such as Tec-
nobiol (based on fatty acids and potassium salts) and 
Mycosin (based on aluminium silicate), and potas-
sium phosphonates gave good results on leaves and 
clusters (Dagostin et al., 2006). The ALT.RAMEinBIO 
project highlighted the good activity of liquorice leaf 
extract, laminarin and a formulation based on cell 
walls of S. cerevisiae against grapevine downy mildew. 
Potassium hydrogen carbonate and lime sulphur have 
been shown to be effective if used within a few hours 
of an infection period initiated when rainfall begins. 
Acid clay Ulmasud was also effective when used in 
particularly dry years and on robust and non-phyto-
toxicity sensitive varieties. 

For control of Ph. Infestans (causing late blight of 
potato and tomato) the bacteria X. bovienii and Ps. 
putida gave good results in greenhouse tests on artifi-
cially inoculated potato plants. Laboratory and green-
house tests demonstrated the efficacy of liquorice leaf 
extract, potassium hydrogen carbonate, B. subtilis 
strain QST 713, Yucca schidigera and Abies sibirica ex-
tract, and chitosan hydrochloride.

Against V. inaequalis causing apple scab, Yucca 
schidigera extract initiated leaf and fruit defences (De 
Jong and Heijne, 2006). Coconut extract, rapeseed oil 
and potassium hydrogen carbonate also showed the 
same control level as copper formulations against ap-
ple scab, during the primary infection period. Stud-
ies conducted in Italy under the STU.LI.RA. project 
showed best control of primary infection from lime 
sulphur, followed by carbonates combined with sul-
phur. Lime sulphur  was also the most efficacious 
for preventing disease and for controlling secondary 
infections, second only to the copper-based formula-
tions (Kelderer et al., 2008, 2010).

Potassium hydrogen carbonate, investigated in 
the RepCo project, showed good efficacy, and these 
results contributed to the registration of this product 
in Europe (Heijne et al., 2007).

In the PURE project, the biocontrol agent Clad-
osporium cladosporioides H39 controlled apple scab 
in field trials, with efficacy comparable to copper 
hydroxide (Heijne et al., 2015). The RepCo project 
showed that C. cladosporioides R406 reduced as-
cospore production by V. inaequalis from treatments 
on overwintering leaves in autumn. When applied in 
summer, C. cladosporioides H39 reduced sporulation of 
the pathogen (Köhl et al., 2015). The ALT.RAMEinBIO 
project confirmed efficacy of lime sulphur.

For control of phytopathogenic bacteria, the After-
Cu project demonstrated the anti-infective properties 
of peptide molecules such as AP17, Li27 and PSA21 
against pathogenic bacteria such as Ps. savastanoi, Ps. 
syringae pv. actinidiae, Ps. syringae pv. syringae and Ps. 
syringae pv. tabaci, with efficacy comparable to that of 
copper sulphate (Mota and Cornelis, 2005; Cerbon-
eschi et al., 2015; Tegli et al., 2015). The EVERGREEN 
project demonstrated good efficacy of phenolic ex-
tract from agricultural waste against Ps. savastanoi pv. 
nerii strain Psn23 (Biancalani et al., 2016). The Bio Bug 
Bang project showed good antibacterial activity of 
gallic acid and ellagic acid (extracts from Punica gra-
natum) against Ps. syringae pv. tomato and Ps. syringae 
pv. actinidia (Quattrucci and Balestra, 2011; Quattrucci 
et al., 2011). The ALT.RAMEinBIO project demonstrat-
ed the inhibitory activity of essential oil constituents 
(carvacrol, thymol and eugenol), gallic acid and cou-
marin against Ps. syringae pv. tomato and X. axonopo-
dis pv. vesicatoria, the causal agents, respectively, of 
tomato bacterial speck and bacterial spot (Giovanale 
et al., 2017).

Use of products with low copper contents

The RepCo, STU.LI.RA and PRO.VI.SE.BIO pro-
jects demonstrated ability to adequately control 
grapevine downy mildew using formulations with 
low amounts of copper, such as Labicuper, Naturam 
5 and Glutex Cu 90 (Spera et al., 2007; La Torre et al., 
2007, 2008, 2010, 2011, 2012a, 2014b).

Use of reduced copper dosages

The ALTRAMEinBIO project verified the effective-
ness of copper doses against grapevine downy mil-
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dew at rates of 200 and 400 g ha-1 per treatment, much 
less than average dosages recommended for commer-
cially available copper compounds (http://www.
sinab.it/ricerca/altrameinbio-strategie-la-riduzione-
e-possibili-alternative-all%E2%80%99utilizzo-del-
rame)

Disease forecasting models

The use of forecasting models can play a key 
role for optimizing treatments. The PRADA project 
demonstrated prediction of the course of grapevine 
downy mildew on a territorial scale, by combining 
data collected from meteorological stations with 
that from meteorological radar (Cicogna et al., 2005; 
Dietrich et al., 2007). Operators were accurately in-
formed of disease development in their territories al-
lowing them to provide adequate control measures. 
The RIMpro forecasting model, developed under the 
CO-FREE project for grapevine downy mildew con-
trol, showed good correlation between disease simu-
lation and development. The Bio-PhytoPRE model, 
developed under the Blight-MOP project, enabled 
potato late blight control in field tests using copper-
based formulations, applied with reduced doses, 
with no significant yield losses (Musa-Steenblock 
and Forrer, 2005a).

Conclusions
This review has examined aspects of the use of 

copper in plant disease management, and problems 
due to its environmental animal and plant toxicity. 
EFSA’s conclusions on copper risk assessments have 
identified critical concerns for three organism groups 
(birds and mammals, aquatic organisms includ-
ing sediment dwellers, and soil macro-organisms) 
(EFSA, 2018). Although different approaches have 
been studied, copper is still necessary at present, es-
pecially in organic farming, to contain plant diseases 
that are widespread among numerous crop species 
grown in the Mediterranean regions (grapes, olives, 
stone fruits, pome fruits) (Heibertshausen et al., 2007; 
Dagostin et al., 2011; Cabús et al., 2017; Kühne et al., 
2017). Although no substances have yet been iden-
tified to replace copper in plant protection, and re-
search efforts in this direction must continue, mean-
ingful reductions in the quantities of copper used can 
be achieved with no concomitant economic losses, 
using this metal with care and only when strictly 

necessary. It is important to adopt appropriate meas-
ures and promote the adoption of an agro-ecological 
model that can increase agroecosystem resilience and 
prevent the occurrence of diseases. Location of the 
area and pedological characteristics must be evaluat-
ed when vineyards or orchards are planted, and crop 
varieties appropriate for the climate and the growing 
environment should be used. Where available, varie-
ties resistant to major crop pathogens should be used. 
All measures to prevent pathogen occurrence must 
be taken (e.g. pruning for improved ventilation and 
light, under-sowing to prevent waterlogging, appro-
priate and balanced irrigation and fertilization, re-
moval of crop residues, low plant population density, 
and cultural practices aimed at inoculum reduction). 
It is essential to understand pathogen biological path-
ways, and the phenological phases where infection 
risk is greatest. Phytosanitary status should be contin-
uously monitored to modulate disease management 
treatments based on actual infection risks. It may 
also be useful to use copper in a combined strategy 
with other products, to reduce copper inputs, and to 
use products that increase plant resistance to patho-
gens (Hofmann, 2002). Appropriate and efficient 
equipment must be used for treatments, and disease 
forecasting models must be adopted, if available, to 
identify the optimal pesticide application times. At 
present, pathogens can be adequately controlled with 
reduced copper application rates (Heibertshausen et 
al., 2007; Cabús et al., 2017). Thus, the integration of 
different strategies can minimize concerns about per-
sistence and toxicity of this important disease man-
agement metal.
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