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First detection of Grapevine rupestris stem pitting-associated virus 
and Grapevine rupestris vein feathering virus, and new phylogenetic 
groups for Grapevine fleck virus and Hop stunt viroid isolates, revealed 
from grapevine field surveys in Spain
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Summary. Evaluation of the prevalence of virus and viroid infections was conducted in a grapevine field collection 
in Valencia, Spain. Samples of autochthonous and traditional grapevine cultivars were collected during November 
2011 and tested for the presence of fourteen viruses and five viroids, using RT-PCR. The prevalent viruses were 
Grapevine rupestris stem pitting-associated virus (GRSPaV: 49% infected samples) and Grapevine leafroll-associated virus 
2 (GLRaV-2: 15% of samples). GLRaV-1, GLRaV-3, GLRaV-4 (variants 4 and 5), Grapevine fanleaf virus, Grapevine fleck 
virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV) and Grapevine virus A were also detected. Hop stunt 
viroid (HSVd: 92% of plants infected) and Grapevine yellow speckle viroid 1 (6% of plants) were also detected. Mixed 
infections with two, and up to six different viruses and/or viroids were common. Only five samples (4%) were free 
from 19 pathogens tested. This is the first report of GLRaV-4 (variants 4 and 5) in the Valencia region of Spain, and 
the first record of GRSPaV and GRVFV in this country. Phylogenetic analyses performed with the sequences of these 
viruses showed that the Spanish isolates of GLRaV-4, GFkV and HSVd belong to new phylogenetic groups.
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Introduction
The wine industry in Spain is very important, 

particularly due to the designation of origin classifi-
cation given to local varieties. In the Valencia region, 
different red and white wines are produced, the lo-
cal cultivars Bobal, Tempranillo, Garnacha, and the 
international cultivars Cabernet Sauvignon, Char-
donnay, Pinot noir and Merlot. Cultivated grapevine 
area is 74,000 ha, so Valencia is one of the largest wine 
producing Spanish regions (MAGRAMA, 2013).

Viral diseases, including leafroll, infectious de-
generation and rugose wood complex, are very im-
portant limiting factors for grape production. Previ-
ous reports have indicated the presence of Grapevine 
fanleaf virus (GFLV), Grapevine leafroll-associated virus 
1, 2, 3, 4, 5, 9 (GLRaV-1, -2, -3, -4, -5, -9), Grapevine 
virus A (GVA), Grapevine virus B (GVB), Grapevine 
fleck virus (GFkV), Arabis mosaic virus (ArMV), Citrus 
exocortis viroid (CEVd), Grapevine yellow speckle viroid 
1 and 2 (GYSVd-1, 2) and Hop stunt viroid (HSVd) in 
different regions of Spain (Flores et al., 1985; Duran-
Vila et al., 1990; Zabalgogeazcoa et al., 1997; Duque et 
al., 2004; Velasco et al., 2004; Abelleira et al., 2010; Ber-
tolini et al., 2010; Cretazzo et al., 2010; Padilla et al., 
2010a; 2010b; 2013). However, there is little informa-
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tion on the phytosanitary condition of the Valencian 
vineyards, although a few studies have reported the 
presence of GFLV, GFkV, GLRaV-1, 2, 3 (Bertolini et 
al., 2010) and CEVd (Flores et al., 1985).

In the present study, samples were collected in 
autumn of 2011 from vineyards of the ‘Escuela de 
Viticultura y Enología’ of Requena, that contain both 
autochthonous and international grapevine varie-
ties. Vegetative material is frequently collected from 
this collection for multiplication by local producers. 
Varieties and rootstocks, used for wine and table 
grape production, were sampled and analyzed us-
ing specific RT-PCR protocols. Amplicons produced 
from positive plants were sequenced, aligned and 
characterized in order to obtain information about 
molecular clustering of the detected viruses and vi-
roids. This study also provided relevant information 
useful for preservation of the local cultivars to be 
submitted to sanitation programs.

Materials and methods
Plant material

In November 2011, 127 grapevine samples, corre-
sponding to 13 rootstocks and 48 varieties, including 
15 Spanish autochthonous cultivars (Table 1), were 
collected from the vineyard collection of the ‘Escue-
la de Viticultura y Enología’ of Requena (Valencia, 
Spain). Samples consisted of mature canes kept up to 
2 weeks after collection under controlled conditions 
of temperature (4ºC) and humidity (100%), before 
being processed for pathogen detection.

Total nucleic acids (TNA) extraction and RT-PCR 
analyses

For each sample, approx. 150 mg of phloem scrap-
ings were ground in extraction buffer (guanidine thi-
ocyanate 4.0 M, sodium acetate 0.2 M, EDTA 25 mM, 
potassium acetate 1 M, PVP 40 kdal 2.5% w⁄v and 3 
mM β-mercaptoethanol) and processed according to 
the silica capture method (Malinovski, 1997; Rott and 
Jelkmann, 2001). Purified TNA was eluted in 150 μL 
RNase-free water. Ten microliters of TNA were de-
natured at 95ºC for 5 min, using random DNA hexa-
nucleotides for priming (Roche), and reverse tran-
scribed with Moloney murine leukaemia virus reverse 
transcriptase (M-MLV RT; Promega) at 42ºC for 60 
min. Complementary DNA (cDNA) was stored at 

-20ºC until use. DNA amplification was performed in 
30 μL reaction volume, using 3 μL of cDNA as tem-
plate and 27 μL amplification mixture containing 0.2 
mM of each d-NTP, 0.8 μM of each primer, 1.5 mM 
of MgCl2, 1 U Taq DNA polymerase (Invitrogen, Sao 
Paulo, Brazil), 3 μL of supplied 10 × buffer and deion-
ized sterile water. Target-specific primers are re-
ported in Table 2, and amplification conditions were 
followed according authors’ information. GLRaV-1 
detection was performed using specific primers de-
signed in this study, LR1-For (CGTTTGAAAATC-
CTATGCGTCA) and LR1-Rev (CATTACTTTTC-
CGCCCGA) amplifying 235 bp of a partial coat pro-
tein (CP) gene region. PCR conditions were 94ºC for 
2 min, followed by 35 cycles of 94ºC for 30 s, 60ºC for 
30 s, 72ºC for 30 s, and a final extension of 72ºC for 7 
min. Four additional primers were also designed: for-
ward LRsF (GGYATGAACAARTTCAATGC), used 
in combination with 1:1 mixture of reverse prim-
ers LRsR1 (GCRGTCGGCTCGTTCAC) plus LRsR2 
(GCTGTTGGTTCATTCAC) for detection of the GL-
RaV-4 variants 4, 5, 6 and 9, and with LR6R reverse 
primer (CAACAGCCTGAACCATCAC) for specific 
detection of variant 6. The expected amplified prod-
uct was 312 bp for multi-detection of the GLRaV-4 
variants, and 295 bp for specific GLRaV-6 detection. 
PCR cycling was 94ºC for 2 min, followed by 35 cy-
cles of 94ºC for 30 s, 50ºC for 45 s, 72ºC for 45 s and 
a final extension of 72ºC for 7 min for both analyses.

Cloning, sequencing and phylogenetic analyses

Arbitrarily selected amplicons (Table 3) were pu-
rified and cloned in Escherichia coli DH5α strain, us-
ing the pGEM-T Easy system vector (PROMEGA). 
Putative recombinant clones were analyzed by colo-
ny-PCR using primers to vector sequences flanking 
the polylinker. Amplicons obtained from three colo-
nies per cloned fragment were sequenced in both di-
rections by Macrogen USA Corp.

Reference sequences from GenBank were used in 
alignment with CLUSTAL-W program inside BioEd-
it (Thompson et al., 1997; Hall, 1999). Phylogenetic 
trees were constructed using the neighbour joining 
method, with 1,000 bootstrap replicates as statistic 
support of node separation in MEGA 4.0 environ-
ment (Tamura et al., 2007), on the basis of partial 
gene sequences obtained from amplification. In the 
Closteroviridae family, two trees were constructed be-
cause of the different target genes used for detection. 
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For viroid analyses, the phylogenetic trees were con-
structed using the complete sequence.

Results
All tested plants of the surveyed cultivars were 

infected by at least one virus or viroid, except cv. 

Vermentino (one infected out of two tested plants) 
and 101-14 (two plants), 110-R and 1103P rootstocks 
(nine infected out of 13 tested) (Table 1). HSVd was 
the most widespread pathogen, being present in 92% 
of the analyzed samples. Without considering HSVd 
presence, the incidence of infections with at least 
one other virus or viroid was 69%. The other viruses 

Table 1. Number and rates of infected plants for each grapevine cultivar tested in Requena.

Cultivar
Infected /
analyzed 

plants

Infection 
rate (%) Cultivar

Infected /
analyzed 

plants

Infection 
rate (%)

Asirtiko 1/1 100 Macabeoa 2/2 100

Barbera 1/1 100 Monastrella 2/2 100

Bronx 1/1 100 Petit verdot 2/2 100

Cardinal 1/1 100 Pinot gris 2/2 100

Fiano 1/1 100 Riesling 2/2 100

Malvasia 1/1 100 Sauvignon blanc 2/2 100

Malvasia Candía 1/1 100 Sylvaner 2/2 100

María 1/1 100 Verdejoa 2/2 100

Marsanne 1/1 100 Vermentinoa 1/2 50

Marselan 1/1 100 Victoria 2/2 100

Maturanaa 1/1 100 Xarel·loa 2/2 100

Merlot 1/1 100 Chenin blanc 3/3 100

Mersegueraa 1/1 100 Crujideraa 3/3 100

Nebbiolo 1/1 100 Viognier 3/3 100

Parelladaa 1/1 100 Chardonnay 4/4 100

Red Globe 1/1 100 Moscatela 4/4 100

Rousanne 1/1 100 Cabernet Sauvignon 5/5 100

Sagrantino 1/1 100 Pinot noir 5/5 100

Semillon 1/1 100 Bobala 6/6 100

Superior 1/1 100 Gracianoa 6/6 100

Thompson Seedless 1/1 100 Syrah 6/6 100

Tintoreraa 1/1 100 Garnachaa 9/9 100

Cabernet Franc 2/2 100 Tempranilloa 10/10 100

Gewürtraminer 2/2 100 Rootstocks 9/13 69

Italia 2/2 100 Overall infectionb 122/127 96
a	 Spanish autochthonous grapevine cultivars.
b	 Total number of positive samples for at least one virus or viroid against all analyzed samples.
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and viroids detected included: GFLV, GLRaV-1, GL-
RaV-2, GLRaV-3, GLRaV-4 (variants 4 and 5), GVA, 
GFKV, GRSPaV, GRVFV, and GYSVd-1. HSVd, GR-
SPaV and GLRaV-2 showed the highest prevalence 
levels, followed by GFkV, GLRaV-3, GFLV, GRVFV, 
GYSVd-1, GLRaV-1, GLRaV-4 variant 5, GVA and 
GLRaV-4 variant 4 (Table 4).

In the case of GLRaV-4 variant 5, all isolates were 
detected using LRsF/LRsR1-LRsR2 universal prim-
ers (LRs) and primers previously described by Good 
and Monis (2001). Sequence analysis of the corre-
sponding amplicons confirmed previous detection 
data and also showed the presence of a new variant 
of GLRaV-4 (named “Req”) in the sample E26. This 
was detected using LRs universal primers, sharing 
88% of nucleotide identity (94% of aminoacid iden-

tity) with a GLRaV-10 isolate from the Mavro vari-
ety from Cyprus (GenBank Acc. number FM244689). 
Single and mixed infections (two to six viruses and/
or viroids) were present (Table 5). The prevalent 
mixed infections were GRSPaV + HSVd (20%) fol-
lowed by GLRaV-2 + HSVd (5%). The most common 
mixed infections with three pathogens were GFkV + 
GRSPaV + HSVd (6%), followed by GLRaV-3 + GR-
SPaV + HSVd (4%).

Virus and viroid origin of amplicons was con-
firmed using BLAST tools, selecting one sequence 
per isolate, because no differences were observed 
among the three clones of the same sample. Select-
ed sequences were deposited in GenBank (Table 3). 
Three sequences of GLRaV-1 had nucleotide identi-
ties of 94.9 to 99.6% with reference isolates, nine se-

Table 2. Primer pairs used in this study.

Virus Target gene Size (bp) Reference

GLRaV-2 CP 514 Bertazzon and Angelini, 2004

GLRaV-3 HSP70 546 Boscia et al., 2001

GLRaV-4

variant 4 HSP70 321 Pei et al., 2010

variant 5 CP 690 Good and Monis, 2001

variant 9 HSP70 393 Jarugula et al., 2008

GLRaV-7 HSP70 507 Engel et al., 2008

GVA CP 432 Minafra and Hadidi, 1992

GVB CP 155 Boscia et al., 2001

GVD CP 574 Osman and Rowhani, 2008

GFLV CP 312 MacKenzie et al., 1997

GFkV RdRp 353 Shi et al., 2000

GRVFV RdRp 328 Al Rwahnih et al., 2009

GRSPaV CP 334 Osman and Rowhani, 2006

ArMV CP 440 Nassuth et al., 2000

GVCV RdRp 530 Zhang et al., 2011

CEVd Complete genome 369 Eiras et al., 2006

HSVd Complete genome 300 Astruc et al., 1996

AGVd Complete genome 369 Elleuch et al., 2002

GYSVd-1 Complete genome 220 Eiras et al., 2006

GYSVd-2 Complete genome 363 Eiras et al., 2006
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Table 3. Spanish isolates used for phylogenetic analyses.

Virus or 
viroid Isolate Cultivar

Origin 
of 

plants 

Other viruses and viroids 
in mixed infection Symptomatology Accession

number

GLRaV-1 E41 LR1 Verdejo Spain GVA, GRSPaV, HSVd Asymptomatic KU884968

E42 LR1 Moscato Spain GFkV, GRSPaV, HSVd Asymptomatic KU884969

E115 LR1 Chenin blanc Spain GFLV, GRSPaV, HSVd Asymptomatic KU884970

GLRaV-2 E2 LR2 Crujidera Spain GRSPaV, GRVFV, HSVd Asymptomatic KJ466285

E4 LR2 Bobal Spain GRSPaV, HSVd Asymptomatic KJ466289

E24 LR2 Victoria Spain GLRaV-4 variant 5, GRSPaV, HSVd Asymptomatic KJ466286

E26 LR2 María Spain GLRaV-4 variant Req, GFkV, 
GRSPaV, HSVd

Mosaic, yellowing 
of leaves

KJ466288

E40 LR2 Chardonnay Italy GRSPaV, GYSVd-1, HSVd Asymptomatic KJ466290

E52 LR2 Syrah Italy GLRaV-3, GFkV, GRSPaV, HSVd Asymptomatic KJ466291

E54 LR2 C. Sauvignon Italy HSVd Asymptomatic KJ466292

E57 LR2 S. blanc Italy GRSPaV, HSVd Asymptomatic KJ466293

E112 LR2 Macabeo Spain GFLV, GRSPaV, HSVd Mosaic KJ466287

GLRaV-3 E37 LR3 Garnacha Spain GLRaV-2, GFkV, GRSPaV,GYSVd-1, 
HSVd

Leafrolling KJ466294

E39 LR3 Sagrantino Italy GFLV, GRSPaV, HSVd Reddening of 
leaves, leafrolling

KJ466295

E63 LR3 Graciano Spain GRSPaV, HSVd Asymptomatic KJ466296

E81 LR3 Fiano Italy GFLV, HSVd Leafrolling, 
mosaic

KJ466297

E82 LR3 Vermentino Italy HSVd Leafrolling KJ466298

E93 LR3 Chenin blanc Italy GRSPaV, HSVd Asymptomatic KJ466299

GLRaV-4

variant 4 E28 LR4 Superior Spain GLRaV-4 variant 5, HSVd Asymptomatic KJ466300

variant 5 E22 LR5 Maturana Spain GRSPaV, HSVd Leafrolling KJ466301

E23 LR5 Moscatel Spain HSVd Yellowing of 
leaves

KJ466302

E24 LR5 Victoria Spain GLRaV-2, GRSPaV, HSVd Asymptomatic KJ466303

E28 LR5 Superior Spain GLRaV-4 variant 4, HSVd Asymptomatic KJ466304

variant 
Req

E26 LR-Req María Spain GLRaV-2, GFkV, GRSPaV, HSVd Mosaic, yellowing 
of leaves

KJ466305

GVA E32 GVA Italia Spain GYSVd-1, HSVd Reddening of 
leaves

KJ466321

E41 GVA Verdejo Spain GRSPaV, HSVd Asymptomatic KJ466322

E83 GVA Malvasia Candía Italy GLRaV-2, HSVd Asymptomatic KJ466323

(Continued)
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Virus or 
viroid Isolate Cultivar

Origin 
of 

plants 

Other viruses and viroids 
in mixed infection Symptomatology Accession

number

GRSPaV E2 RSP Crujidera Spain GLRaV-2, GRVFV, HSVd Asymptomatic KJ466309

E4 RSP Bobal Spain GLRaV-2, HSVd Asymptomatic KJ466311

E37 RSP Garnacha Spain GLRaV-2,GLRaV-3,GFkV,GYSVd-1 
HSVd

Leafrolling KJ466310

E46 RSP Syrah Italy GLRaV-3, HSVd Reddening of 
leaves, leafrolling

KJ466312

E57 RSP S. blanc Italy GLRaV-2, HSVd Asymptomatic KJ466313

E78 RSP Tempranillo Spain HSVd Asymptomatic KJ466314

E98 RSP Pinot noir Italy HSVd Asymptomatic KJ466315

E118 RSP Gewürztraminer Spain HSVd Asymptomatic KJ466306

E120 RSP Riesling Spain GFLV, HSVd Asymptomatic KJ466307

E127 RSP Syrah Italy HSVd Reddening of 
leaves, stem 
pitting

KJ466308

GFLV E39 GFLV Sagrantino Italy GLRaV-3, GRSPaV, HSVd Mosaic, 
reddening of 
leaves, leafrolling

KJ466284

E109 GFLV Garnacha Spain HSVd Asymptomatic KJ466279

E110 GFLV C. Sauvignon Spain HSVd Mosaic KJ466280

E114 GFLV Parellada Spain GRSPaV, GYSVd-1, HSVd Asymptomatic KJ466281

E115 GFLV Chenin blanc Spain GRSPaV, HSVd Mosaic KJ466282

E122 GFLV C. Franc Spain HSVd Mosaic KJ466283

GFkV E3 GFkV Crujidera Spain HSVd Asymptomatic KJ466275

E26 GFkV María Spain GLRaV-2, GLRaV-4 variant Req, 
GRSPaV, HSVd

Mosaic, yellowing 
of leaves

KJ466274

E30 GFkV Cardinal Spain GRSPaV, HSVd Asymptomatic KJ466276

E52 GFkV Syrah Italy GLRaV-2, GLRaV-3, GRSPaV, 
HSVd

Asymptomatic KJ466277

E95 GFkV Bobal Spain GRSPaV, HSVd Asymptomatic KJ466278

GRVFV E1 GRVFV Crujidera Spain HSVd Asymptomatic KJ466316

E36 GRVFV Garnacha Spain HSVd Asymptomatic KJ466317

E45 GRVFV C.Sauvignon Italy GFkV, GRSPaV, HSVd Asymptomatic KJ466318

E66 GRVFV Graciano Spain HSVd Asymptomatic KJ466319

E75 GRVFV Tempranillo Spain HSVd Asymptomatic KJ466320

GYSVd-1 E27 YS1 Bronx Spain GRSPaV, HSVd Reddening of 
leaves, leafrolling

KJ466324

E40 YS1 Chardonnay Italy GLRaV-2, GRSPaV, HSVd Asymptomatic KJ466326

Table 3. (Continued).

(Continued)



231Vol. 55, No. 2, August, 2016

Grapevine viruses and viroids in Valencia region, Spain

quences of GLRaV-2 had 71.5 to 99.8% identities, and 
four of GLRaV-4 variant 5, corresponding to a partial 
sequence of CP gene, had 91.7 to 95.5% identities with 
reference isolates. The partial sequences of the Heat 
Shock Protein 70 (HSP70) gene of six GLRaV-3 had 
of 92.4 to 99.4% identities with the reference strain, 
and one of the GLRaV-4 variant 4 isolates had 99.4% 
identity with the reference strain. GLRaV-4 variant 
Req (E26) showed the highest nucleotide identity 
level (88.7%) with the unique sequence available 
in GenBank of variant 10 (GenBank Acc. number 
NC011702). Six GFLV isolates on a partial sequence 
of CP gene showed nucleotide identities with refer-
ence strains ranging among 84.5 to 92.6%.

Aminoacidic sequence identity percentages 
were greater than those obtained with nucleo-
tide sequences, but phylogenetic trees constructed 
with protein sequences had the same distribution 
of those obtained with nucleotide sequences (data 
not shown). The nucleotide identity comparison of 
the partial CP gene sequence of three GVA showed 
75.0 to 92.2% similarity with reference strains, and 
for ten GRSPaV isolates was 87.5 to 100%. Ampli-
fication of a short region of the RNA-dependent 
RNA polymerase (RdRp) gene of five GFkV isolates 
had nucleotide identity with reference isolates of 
80.2 to 98.2%, and for five GRVFV isolates this was 
78.0 to 83.5%. For isolates where the complete ge-
nomes were compared with reference strains, HSVd 
showed 89.7 to 97.3% nucleotide similarity, and 
GYSVd-1 93.7 to 97%.

Phylogenetic analyses for GLRaV-1, GLRaV-2, 
GLRaV-3 and GLRaV-4 variant 5 showed their close 
relationship with previously reported strains. Valen-
cian isolates of GLRaV-1 E41, E42 clustered in phy-
logenetic group 1, and E115 with reference strain 
BL4, belonging to phylogenetic group 3, according 
to the distribution proposed by Esteves et al., 2013. 
GLRaV-2 isolates E4, E24, E26, E40, E52, E54, E57 and 
E112 clustered with PN reference strain, while the E2 
isolate clustered in 93/955 lineage. In the phyloge-
netic tree constructed using fragments of CP gene, 
four isolates of GLRaV-4 variant 5 clustered with 
reference isolate Y217 from France (GenBank Acc. 
number NC016081) (Figure 1a). The phylogenetic 
tree using the HSP70-like gene sequences showed a 
close relationship among isolates of GLRaV-4, -5, -6, 
-9, and 10 and Spanish isolates of GLRaV-4, variants 
4 and Req. The unique reference sequences of GL-
RaV-4 variants 4 and 10 available from GenBank, are 
those included in the phylogenetic tree of Figure 1b. 
Spanish isolate E28 (variant 4) grouped with its cor-
responding reference isolate, and E26 (variant Req) 
grouped with variant 10 (Figure 1b). 

The GLRaV-3 isolates E39, E81, E82 and E93 clus-
tered with the NY1 strain forming a closely related 
lineage, while isolates E37 and E63 clustered in the 
GP18 lineage.

GRSPaV isolates were clustered in three lineages 
according to the classification described by Alabi et 
al., (2010). Isolate E78 clustered in group GRSPaV I; 
isolates E2, E4, E37, E57, E98, E118 and E120 clus-

Virus or 
viroid Isolate Cultivar

Origin 
of 

plants 

Other viruses and viroids 
in mixed infection Symptomatology Accession

number

E114 YS1 Parellada Spain GFLV, GRSPaV, HSVd Asymptomatic KJ466325

HSVd E3 HSVd Crujidera Spain GFkV Asymptomatic KJ466329

E4 HSVd Bobal Spain GLRaV-2, GRSPaV Asymptomatic KJ466327

E5 HSVd Bobal Spain GRSPaV, GYSVd-1 Leafrolling KJ466330

E32 HSVd Italia Spain GVA, GYSVd-1 Reddening of 
leaves

KJ466331

E64 HSVd Graciano Spain No Asymptomatic KJ466332

E65 HSVd Graciano Spain No Asymptomatic KJ466328

E77 HSVd Tempranillo Spain GRVFV Asymptomatic KJ466333

Table 3. (Continued).
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tered in the SG1 lineage, and isolate E46 clustered 
in the BS lineage. Isolate E127 was separated from 
known groups, out of the BS reference group clus-
ter and more closely related with the Syrah reference 
isolate from USA. Among GVA isolates, E32, E41, 
and E83 clustered in group I, according to the clas-
sification proposed by Goszczynski and Jooste (2003) 

(Figure 1c), and very distant from mild isolates of 
GVA in group III, with values of nucleotide identity 
near 75.0% (Figure 1c).

GFLV isolates E39, E109, E110, E114, E115, and 
E122 were grouped in the same cluster associated 
with reference isolates from France (data not shown).

Viruses belonging to the Tymoviridae family, GFkV 
and GRVFV, clustered, respectively, with reference 
strains of the Maculavirus and Marafivirus genera. 
GFkV isolates E3, E26, E30, and E95 grouped togeth-
er, separately from reference strains, and isolate E52 
clustered with L630 isolate from China (Figure 1d).

Valencian isolates of HSVd grouped in one same 
cluster, named Valencia-g, separated from the two 
known groups that included grapevine isolates, 
sharing the same root with Prunus isolates (Figure 
2a). GYSVd-1 isolates clustered in two groups: E114 
was associated with group III, according to the clas-
sification proposed by Szychowski et al., (1998). E27 
and E40 isolates grouped together in a separate clus-
ter sharing the same root as group III GYSVd-1 iso-
lates (Figure 2b).

Discussion
Previous studies in the Valencia region (Alicante 

province) have reported the presence of six viruses 
in grapevines, with detection rates of 99% for GVA 
followed by 95% for GLRaV-3, 65% for GFkV, 62% 
for GLRaV-1, 47% for GFLV and  47% for GVB. The 
present study had shown large differences in the 
detection rates of the same viruses. This may be 
explained by the different method used for detec-
tion: RT-PCR assays were used here, while in pre-

Table 4. Results of virus and viroid testing by RT-PCR.

Tested viruses or 
viroids

No. of 
infected/127 
tested plants

Infection rate (%)

GLRaV-1 7 5.5

GLRaV-2 19 15.0

GLRaV-3 11 8.7

GLRaV-4

variant 4 1 0.8

variant 5 4 3.1

variant 6 0 0.0

variant 9 0 0.0

variant Req 1 0.8

GLRaV-7 0 0.0

GVA 4 3.1

GVB 0 0.0

GVD 0 0.0

GFLV 10 7.9

GFkV 13 10.2

GRSPaV 62 48.8

GRVFV 9 7.1

ArMV 0 0.0

GVCV 0 0.0

GYSVd-1 8 6.3

GYSVd-2 0 0.0

CEVd 0 0.0

AGVd 0 0.0

HSVd 117 92.1

Overall infectiona 122 96.1
a	 Total number of positive samples for at least one virus or viroid 

against all analyzed samples.

Table 5. Numbers and rates of single and mixed virus and 
viroid infections detected in grapevines in this study.

No. of viruses and/or 
viroids in mixed infections

No. of infected 
plants

Infection 
rate (%)

1 36 28.3

2 47 37.0

3 25 19.7

4 11 8.7

5 2 1.6

6 1 0.8
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vious tests quantitative RT-PCR was used (Bertolini 
et al., 2009; 2010). Nevertheless, prevalence of viral 
infections does not differ substantially from the re-
sults obtained in the Atacama region in Chile (Fiore 
et al., 2011). To our knowledge this is the first report 
of GLRaV-4 variants 4 and 5 in the Valencia region, 

and the first record in Spain of GRSPaV and GRVFV. 
HSVd and GYSVd-1 were previously reported in the 
Valencia region, but there is no information about in-
fection rates (Duran-Vila et al., 1990). The presence 
of viruses and viroids was determined in grapevine 
plants with and without symptoms, while specific 

Figure 1. Neighbour-joining phylogenetic analysis of partial nucleotide sequences of viral isolates. a: CP gene analysis of 
Closteroviridae family viruses including GLRaV-1 (235 bp), GLRaV-2 (509 bp) and GLRaV-4 variant 5 (LR5) (534 bp) Span-
ish isolates; b: HSP70 gene analysis of Closteroviridae family viruses including GLRaV-3 (501 bp), GLRaV-4 variant 4 (321 
bp) and variant Req (312 bp) Spanish isolates; c: CP gene analysis of Betaflexiviridae family viruses including GRSPaV (330 
bp) and GVA (396 bp) Spanish isolates; d: RdRp gene analysis of Tymoviridae family viruses including GFkV (283 bp) and 
GRVFV (280 bp) Spanish isolates. Numbers at nodes indicate bootstrap values of 1,000 replicates. Information about ref-
erence virus isolates used to determine phylogenetic relationships is achievable by the corresponding accession number. 
Spanish isolates sequenced for this study are marked with ♦ and GenBank accession numbers are listed in Table 3.
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Figure 2. Neighbour-joining phylogenetic analysis of complete nucleotide sequences of viroid isolates. a: Phylogenetic 
analysis of HSVd Spanish isolates (300 bp); b: Phylogenetic analysis of GYSVd-1 Spanish isolates (367 bp). Numbers at 
nodes indicate bootstrap values of 1,000 replicates. Information about reference viroid isolates used to determine phyloge-
netic relationships is achievable by the corresponding accession number for GYSVd-1, and by Amari et al., 2001 for HSVd. 
Spanish isolates sequenced for this study are marked with ♦ and GenBank accession numbers are listed in Table 3
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disease symptoms related to particular cultivars was 
not observed.

Sequence analyses confirmed the results of RT-
PCR detection in all the cases. The phylogenetic 
results presented here are based on analyses of a 
small portion of the virus genomes, and the possi-
bility obtaining different topologies using the full 
virus genomes cannot be discarded. Regarding the 
Spanish GLRaV-1 isolates, they belong to the groups 
1 (the worldwide prevalent group) and 3, which in-
cludes isolates from throughout the world (Esteves 
et al., 2013). Most of the GLRaV-2 isolates clustered 
in the PN lineage, as reported for the majority of the 
worldwide isolates. The exception was the E2 iso-
late, which was associated with the reference strain 
from South Africa.

GLRaV-3 isolates were in two lineages from USA 
and South Africa. In both cases, the relationships 
with the reference strains were not associated with 
geographic origin of the plants nor with the symp-
toms observed (Martelli et al., 2012; Maree et al., 
2013). Despite the distribution of GFLV isolates in 
two monophyletic groups, bootstrap values were 
very low, generating a polytomy with all GFLV iso-
lates when ArMV was used as the outgroup. This 
supports previous reports of high stability of the 
GFLV CP gene sequence, mainly related with the 
high selective pressure exerted on this gene (Meku-
ria et al., 2009; Oliver et al., 2010). 

GRSPaV distribution showed high heterogene-
ity, with seven isolates clustering with SG1 group, 
one isolate with the GRSPaV I type strain group and 
one isolate with the BS group. Isolate E127, which 
clustered between Syrah and BS reference strains, 
was obtained from a declining cv. Syrah plant, and 
is probably associated with the Syrah reference 
strain. This is also supported by the topology of the 
tree, that showed the same lineage distribution ob-
tained when complete CP gene and a partial region 
of RdRp helicase subunit gene were used (Lima et 
al., 2006; Alabi et al., 2010). However, this approxi-
mation should be further clarified considering larger 
genomic regions for alignments.

For the GFkV isolates E3, E26, E30 and E95, despite 
being grouped in the same cluster as isolate L630, the 
genetic distances greater than 8.0% suggest differen-
tiation of Spanish isolates into a new group, different 
to those previously reported (Glasa et al., 2011).

GRVFV was mainly detected in local varieties 
Crujidera, Garnacha, Graciano and Tempranillo, us-

ing previously reported primers (Al Rwahnih et al., 
2009). Even though phylogenetic distribution associ-
ated the isolates with the unique reference of GRVFV, 
the low percentage of identity of isolates E1 and E36 
(near 78%), suggest the presence of variants of the 
same viral species.

Regarding viroid analyses, both HSVd and GYS-
Vd-1 were previously reported in grapevine in Spain, 
but no genetic studies had been performed. Consid-
ering the high rate of detection of HSVd, similar to 
that described for this viroid in apricot trees (81%) 
(Cañizares et al., 1998), and in grapevines growing 
in Italy in commercial vineyards and germplasm col-
lections (100%) (Gambino et al., 2014), randomly se-
lected isolates were used for phylogenetic analysis. 
According to phylogenetic classification proposed 
by Amari et al., (2001), all Valencian isolates obtained 
in the present study grouped together in a new clus-
ter (Valencia-g). This opens the possibility of a com-
mon origin (in this case Valencia region) or a com-
mon host (grapevine). Future more extensive studies 
of different isolates of HSVd of grapevine may give 
information related to the real situation, and also de-
termine if recombination events among isolates from 
different hosts has occurred, as previously reported 
in Prunus HSVd isolates (Amari et al., 2001; Pallás et 
al., 2003; Mandic et al., 2008).

GYSVd-1 isolates have been classified in three 
major groups by Szychowski et al., (1998). Of these, 
groups II and III were associated to symptomatic 
grapevines. One of the viroid isolates (E114), detected 
in the autochthonous cultivar Parellada, was strictly 
clustered in group III, although its host plant (also in-
fected with GFLV) did not showed the typical “yellow 
speckle” symptom of GYSVd-1, or “vein banding”, as 
observed in plants infected by GYSVd and GFLV (Szy-
chowski et al., 1995). This may be explained by the role 
played by the grapevine variety in symptom develop-
ment. The other two sequenced isolates grouped to-
gether, sharing the same root with type III GYSVd-1 
group, but genetically distant. This result suggests the 
possibility of a geographic differentiation, unlike that 
proposed by Ward et al. (2011) and Jiang et al. (2012). 
No symptoms were observed in the plants infected 
with E40 and E114 isolates of GYSVd-1. The redden-
ing and leafroll of the leaves observed on the plant 
infected by isolate E27 were probably induced by a 
virus not included in this study.

Adverse economic effects have not been associ-
ated with viroids in grapevines (Krake et al., 1999). 
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However, Kawaguchi-Ito et al. (2009) demonstrated 
that cultivated grapevines represent a symptomless 
reservoir for the transmission of HSVd to other crops 
(hop in this case). In the Valencian region, vineyards 
overlap with large extensions of almond crops, which 
have been shown to host HSVd (Cañizares et al., 1999). 
In addition, a recent phylogenetic analysis of Chinese 
HSVd isolates suggests possible cross transmission 
between grapevine and stone fruit hosts (Zhang et 
al., 2012). In any case, although apparently single vi-
roid infections do not significantly affect grapevines, 
mixed infections could trigger synergistic effects 
having significant economic impacts. Mixed infec-
tions of GYSVd with HSVd may alter grape juice pH 
and reduce vegetative growth, or GYSVd with GFLV 
may trigger vein banding disease (Szychowski et al., 
1995). The high rate of co-infection with viruses and/
or viroids in grapevines in Requena, together with 
the observation that GYSVd-1 and HSVd could be 
transmitted by grapevine seeds (Wan Chow Wah and 
Symons, 1999), indicate that propagation protocols 
should be applied, to avoid the spread of viral and 
viroid diseases. It is advisable that sanitation by ther-
motherapy associated with in vitro culture of meris-
tems should be used, followed by strict control of the 
virus- and viroid-free clones produced.
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