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Summary. Species distribution models may provide realistic scenarios to explain the influence of bioclimatic vari-
ables in the context of emerging plant pathogens. Xylella fastidiosa is a xylem-limited Gram-negative bacterium 
causing severe diseases in many plant species. We developed a maximum entropy model for X. fastidiosa in Italy. 
Our objectives were to carry out a preliminary analysis of the species’ potential geographical distribution and 
determine which eco-geographical variables may favour its presence in other Italian regions besides Apulia. The 
analysis of single variable contribution showed that precipitation of the driest (40.3%) and wettest (30.4%) months 
were the main factors influencing model performance. Altitude, precipitation of warmest quarter, mean tempera-
ture of coldest quarter, and land cover provided a total contribution of 19.5%. Based on the model predictions, X. 
fastidiosa has a high probability (> 0.8) of colonizing areas characterized by: i) low altitude (0–150 m a.s.l.); ii) pre-
cipitations in the driest month < 10 mm, in the wettest month ranging between 80–110 mm and during the warmest 
quarter < 60 mm; iii) mean temperature of coldest quarter ≥ 8°C; iv) agricultural areas comprising intensive agri-
culture, complex cultivation patterns, olive groves, annual crops associated with permanent crops, orchards and 
vineyards; forest (essentially oak woodland); and Mediterranean shrubland. Species distribution models showed a 
high probability of X. fastidiosa occurrence in the regions of Apulia, Calabria, Basilicata, Sicily, Sardinia and coastal 
areas of Campania, Lazio and south Tuscany. Maxent models achieved excellent levels of predictive performance 
according to area under curve (AUC), true skill statistic (TSS) and minimum difference between training and test-
ing AUC data (AUCdiff). Our study indicated that X. fastidiosa has the potential to overcome the current boundaries 
of distribution and affect areas of Italy outside Apulia.
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Introduction
Species distribution models can give understand-

ing of the ecological and evolutionary factors that de-
termine the spatial patterns exhibited by organisms 
(Guisan and Zimmermann, 2000). They have been 
used to study the relationships between environ-
mental parameters and species richness (Guisan and 
Thuiller, 2005; Sinclair et al., 2010; Wisz et al., 2013), 
carry out analyses regarding species at risk (Doko et 

al., 2011; Bosso et al., 2013; Roscioni et al., 2013; 2014; 
Russo et al., 2015), and make predictions about spe-
cies distributions in past climatic conditions (Russo 
et al., 2014) or future/projected situations (Rebelo et 
al., 2010). Species distribution models also provide 
increasingly realistic scenarios to explain the influ-
ence of bioclimatic variables on plant diseases and 
epidemiology of pathogens, especially in the context 
of emerging plant diseases (Fabre et al., 2011; Aguayo 
et al., 2014).

Plant pathogens may expand their distributions 
or increase their pathogenic action due to modified 
environmental conditions favourable to disease de-
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velopment in new regions (Garrett et al., 2006). While 
numerous studies have considered the introduction 
of animal and plant species to new regions (e.g. 
Guisan and Zimmerman, 2000; Guisan and Thuiller, 
2005), few have assessed habitat suitability for plant 
pathogens including fungi, viruses and bacteria. 
When plant pathogens reach new areas, they often 
cause dramatic effects on agricultural and native 
plant communities. Famous cases for Europe and 
the Mediterranean include Erysiphe necator (Glawe, 
2008), Ophiostoma ulmi (Solla et al., 2005), Ceratocystis 
platani (Anselmi et al., 1994), and Erwinia amylovora 
(Jock et al., 2002).

Xylella fastidiosa (Wells et al., 1987) is a xylem-lim-
ited Gram-negative bacterium which is the causal 
agent of severe diseases in plants of prime impor-
tance for agriculture (alfalfa dwarf, almond leaf 
scorch, citrus variegated chlorosis, coffee leaf scorch, 
Pierce’s disease of grapevine and phony peach dis-
ease) and forests (elm leaf scorch, oak leaf scorch, ole-
ander leaf scorch, and sycamore leaf scorch) (Janse 
and Obradovic, 2010; Purcell, 2013). Many wild 
plants, such as grasses, sedges and forest trees may 
carry this pathogen showing symptoms, or, more of-
ten, asymptomatically (Janse and Obradovic, 2010). 
Xylella fastidiosa is native to the Americas, ranging 
from USA to South America, and mainly occurs in 
tropical/subtropical areas, although leaf scorch dis-
eases also occur in much colder climates (Janse and 
Obradovic, 2010). The latest information about the 
worldwide distribution of this bacterium is available 
from the European and Mediterranean Plant Protec-
tion Organization (EPPO). Xylella fastidiosa has been 
assigned quarantine status in the EPPO A1 list. The 
regions affected are requested to adopt immediate 
measures including carrying out extensive surveys 
of susceptible hosts in order to identify the contami-
nated areas and determine the most appropriate dis-
ease management strategies (Janse and Obradovic, 
2010; Carlucci et al., 2013; Loconsole et al., 2014). Once 
restricted to the Americas, the bacterium was first 
discovered in Europe near Gallipoli (Lecce province) 
of southern Italy in October 2013 (Loconsole et al., 
2014). Since the initial outbreak it has spread across 
the Apulia region affecting approximately 10,000 ha 
of olive trees (Saponari et al., 2014).

Xylella fastidiosa is transmitted by various species 
of sap-sucking hopper insects. Each infection occurs 
after a vector has fed on an infected plant and then 
subsequently feeds on a healthy plant. In Apulia, X. 

fastidiosa is vectored to olive trees by the spittlebug, 
Philaenus spumarius (Hemiptera: Aphrophoridae) 
(Saponari et al., 2014). However, other insect vectors 
are suspected to have also spread the bacterium in 
the region (Elbeaino et al., 2014), including Neophilae-
nus campestris Fallén (Hemiptera: Aphrophoridae) 
and Euscelis lineolatus Brullé (Hemiptera: Cicadel-
lidae), an aspect awaiting further investigations. 
Hoddle (2004) modelled the potential distribution 
of X. fastidiosa in California and projected the model 
to the rest of the world. The model was developed 
with CLIMEX (Sutherst and Maywald, 1985) using 
the climatic response of the pathogen from the na-
tive geographic range. The main prediction was that 
cold temperatures would not allow X. fastidiosa to 
colonize France and the northern and central areas 
of grape production in Spain and Italy.

In Italy X. fastidiosa has been studied through con-
ventional field and laboratory approaches, as well as 
using serological and molecular assays (Carlucci et 
al., 2013; Saponari et al., 2013; Cariddi et al., 2014; Lo-
console et al., 2014; Saponari et al., 2014). However, 
no study has addressed the ecological requirements 
of the pathogen at a broad-scale. A fundamental rea-
son to investigate the potential geographic distribu-
tion of X. fastidiosa is that the resulting information 
could be used to determine the suitability of an area 
at risk of invasion in order to adopt urgent and strict 
control measures and prevent further propagation 
and dissemination of the pathogen.

In this study, we developed a maximum entropy, 
presence-only distribution model (Maxent; Phillips 
et al., 2006) for X. fastidiosa, to provide a preliminary 
analysis of its potential geographical distribution 
and determine which eco-geographical variables 
(EGVs) may favour its presence in other Italian re-
gions outside Apulia.

Materials and methods
Study area

We considered the entire Italian territory between 
latitudes 45°N and 36°N and longitudes 6°E and 18°E 
(corresponding to ca. 301,000 km2, elevation range = 
0–4810 m a.s.l.) (Figure 1).

Data collection

Records for X. fastidiosa were collected from the 
online database set up by the Apulia Region govern-
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ment: http://webapps.sit.puglia.it/freewebapps/
MonitoraggioXFSintesi. We used only observations 
referred to olive trees infected by X. fastidiosa in 2014–
2015 (for further details on the records see: http://
cartografia.sit.puglia.it/doc/Uso_del_WebGIS.pdf) 
(Table S.1). The resulting database included 1,258 re-
cords mostly concentrating in the southernmost part 
of Apulia. Records were screened in ArcGis (version 
9.2) for spatial autocorrelation using average nearest 
neighbour analyses and Moran’s I measure of spa-
tial autocorrelation to remove spatially correlated 
data points (e.g. Russo et al., 2014; 2015). The aver-
age nearest neighbour analysis calculates a nearest 
neighbour index based on the average distance from 
each feature to its nearest neighbouring feature. Mo-
ran’s I measures spatial autocorrelation based on 
feature locations. After this selection, 50 fully inde-
pendent presence records for X. fastidiosa were used 
to generate species distribution models (Table S.1).

Selection of ecogeographical variables

To carry out species distribution models for X. 
fastidiosa, we used a set of 21 Ecogeographical Vari-

ables (EGVs). We included altitude, 19 bioclimatic 
variables and land cover. Altitude and the 19 biocli-
matic variables were obtained from the WorldClim 
database (www.worldclim.org/current) (Hijmans et 
al., 2005). The data layers were generated through 
interpolation of average monthly climate data from 
weather stations on a 30 arc-second resolution grid 
(corresponding to a 1 km2 resolution). Land cover 
was obtained from the Corine Land Cover IV level 
for the year 2012 (available at http://www.sinanet.
isprambiente.it/it/sia-ispra/download-mais/co-
rine-land-cover/corine-land-cover-2012/view). The 
complete list of all Corine Land Cover classes of the 
fourth level is available at http://www2.dmu.dk/1_
Viden/2_Miljoe-ilstand/3_natur/nordlam/nldocs/
wsOct01T1/jferanec.pdf. All variable formats were 
raster files (grid) with a 30-arc second resolution 
(0.93 × 0.93 km = 0.86 km2 at the equator). To select 
the number of variables for the final distribution 
models, we first eliminated the highly correlated 
predictors by retaining those with a Pearson’s |r| ≤ 
0.80. From this first set of predictors, we considered 
those most relevant to the ecological requirements 
of X. fastidiosa, according to expert opinion and cur-
rent knowledge (Hoddle, 2004; Janse and Obradovic, 
2010; Carlucci et al., 2013; Saponari et al., 2013; Carid-
di et al., 2014; Loconsole et al., 2014; Saponari et al., 
2014). This led to a final set of 11 variables (Table 1) 
used for model training.

Habitat suitability procedure

We used Maxent ver. 3.3.3k (http://www.
cs.princeton.edu/~schapire/maxent) (Phillips et 
al., 2006) to model the potential distribution of X. 
fastidiosa in Italy. This approach relied on presence-
only datasets and is especially useful when presence 
data are scarce. A target probability distribution is 
estimated by identifying the probability distribution 
of maximum entropy (most spread out, or closest to 
uniform), subject to a set of constraints that constitute 
the incomplete information about the target distribu-
tion. The pixels of the study area represent the space 
on which the Maxent probability distribution is de-
fined: pixels with known species occurrence records 
constitute the sample points, and the environmental 
predictors comprise climatic variables, altitude, land 
use type or other environmental variables (Phillips 
et al., 2006). This algorithm usually results in good 
predictive models compared with other presence-

Figure 1. Study areas considered to model the potential 
distribution of Xylella fastidiosa in Italy: Apulia (training 
region, black) and the rest of Italy (projection area, black 
+ dark grey).
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only models (e.g. Elith et al., 2006). It is based on a 
generative approach, rather than a discriminative 
one, which can give important advantages when 
the amount of training data is limited (Phillips et 
al., 2006). Furthermore, it has good ability to pre-
dict new localities for poorly known species (Rebelo 
and Jones, 2010; Bosso et al., 2013; Russo et al., 2014; 
Russo et al., 2015). To build the models, we used the 
presence records of X. fastidiosa selected as described 
above and the EGVs shown in Table 1. In the setting 
panel, we selected the following options: random 
seed, remove duplicate presence records, write plot 
data, regularization multiplier (fixed at 1), and 1000 
maximum iterations. These settings are conservative 
enough to allow the algorithm to get close to conver-
gence and the best performance (Phillips et al., 2006); 
and, finally, 50 replicate effects with cross-validate 
replicated run type. For the latter procedure, 70% of 
records were randomly extracted to train the model 
and the remaining 30% to test it, and the procedure 
was repeated 50 times. In this way the training/
testing datasets used by Maxent are independent of 
each other and selected at random. The 30% testing 
data subset is the most appropriate when dealing 
with datasets including a limited number of records 

(Pearson et al., 2007). A set of 10,000 background 
points was then randomly placed over the Apulia re-
gion. The average final map obtained had a logistic 
output format with suitability values from 0 (unsuit-
able habitat) to 1 (suitable habitat). We selected the 
10th percentile (the value above which the model 
classifies correctly 90% of the training locations) as 
the threshold value to define the presence of X. fas-
tidiosa. This is a conservative value commonly used 
in species distribution modelling studies especially 
when considering datasets gathered over a long time 
by different observers and methods of collection 
(e.g.: Rebelo and Jones, 2010; Bosso et al., 2013; Russo 
et al., 2015). We used this threshold to reclassify our 
model into binary presence/absence maps. Jacknife 
analysis was used to estimate the actual contribution 
that each variable provided to the geographic distri-
bution models. During this process, Maxent gener-
ated three models. Firstly, each EGV was excluded 
in turn and a model was created with the remain-
ing variables to check which one of these was the 
most informative. Secondly, a model was created by 
each individual EGV to detect which variable had 
the most information not featuring in the other vari-
ables. Thirdly, a model was generated based on all 
variables. Response curves derived from univariate 
models were plotted to assess how each EGV influ-
enced presence probability. The model was projected 
to the whole Italian territory. In order to project the 
models calibrated in Apulia over the rest of Italy, the 
variables in the projection area must meet a condi-
tion of environmental similarity to the environmen-
tal data used to train the model. Therefore, we first 
ascertained that this condition was met by inspect-
ing the Multivariate Environmental Similarity Sur-
faces (MESS) generated by Maxent (Elith et al., 2010).

Model validation

We tested the predictive performance of the mod-
els with different methods: the receiver operated 
characteristics, analyzing the area under curve (AUC) 
(Fielding and Bell, 1997); the true skill statistic (TSS) 
(Allouche et al., 2006); and the minimum difference 
between training and testing AUC data (AUCdiff) 
(Warren and Seifert, 2011). Such statistics were aver-
aged across the 50 replicates run on the 70% (train-
ing) versus 30% (testing) dataset split. AUC assesses 
the discrimination ability of the models and its value 
ranges from 0 (equalling random distribution) to 1 

Table 1. List of Ecogeographical Variables used in this 
study, their types and measurement units. 

Type Ecogeographical Variable Unit

Topographical Altitude m 

Habitat Land cover -

Climatic Annual Mean Temperature °C

Mean Temperature of Wettest 
Quarter

°C

Mean Temperature of Driest 
Quarter

°C 

Mean Temperature of Warmest 
Quarter

°C

Mean Temperature of Coldest 
Quarter

°C

Precipitation of Wettest Month mm

Precipitation of Driest Month mm

Precipitation of Warmest Quarter mm

Precipitation of Coldest Quarter mm
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(perfect prediction). AUC values > 0.75 correspond 
to high discrimination performances (Fielding and 
Bell, 1997). TSS compares the number of correct fore-
casts, minus those attributable to random guessing, 
to that of a hypothetical set of perfect forecasts. It 
considers both omission and commission errors, and 
success as a result of random guessing; its values 
range from -1 to +1, where +1 corresponds to perfect 
agreement and zero or less to a performance no bet-
ter than random (Allouche et al., 2006). The difference 
between training and test AUC data is minimized to 
reduce the risk that models are over-parameterized 
in such a way as to be overly specific to the training 
data (Warren and Seifert, 2011).

Results
Species distribution models for Xylella fastidiosa and 
model validation

Our model showed excellent levels of predic-
tive performance, as indicated from AUC, TSS and 
AUCdiff values (Table 2). The model predicted a high 
probability of presence at the Apulia’s region tip 
(Figures 2a and 3a) and in Calabria, Basilicata, Sicily, 
Sardinia and coastal areas of Campania, Lazio and 
south Tuscany (Figures 2b and 3b). MESS analysis 
showed that the projection area had a medium to 
high environmental similarity with several regions 
in the training area (Table 3). The model achieved a 
regularized gain value of 1.8, indicating a good fit 
with occurrence data (Figure S.1). Six variables con-
tributed to a total 90% of model prediction. The anal-
ysis of single variable contributions showed that pre-
cipitation during driest (40.3%) and wettest (30.4%) 
months were the main factors influencing model 
performance. Altitude, precipitation during warm-
est quarter, mean temperature for warmest and cold-
est quarter, and land cover provided a total contri-

bution of 19.5%. Based on the model’s predictions, 
X. fastidiosa has a greater probability of occurring (> 
0.8) at low altitudes (0–150 m a.s.l.) in areas charac-
terized by low precipitation in the driest month (< 10 
mm) and in the warmest quarter (< 60 mm), medium 
precipitation in the wettest month (80–110 mm), and 
by mean temperature > 8°C in the coldest quarter. 
Land cover analysis revealed that X. fastidiosa might 
essentially occur in: i) agricultural areas (75.5%) with 
intensive agriculture, complex cultivation patterns, 
olive groves, annual crops associated with perma-
nent crops, orchards and vineyards; ii) forest (12.8%) 
mostly oak woodland; and iii) Mediterranean shrub-
land (11.8%) (Table 4).

Table 2. Predictive performances (mean and standard deviation values) achieved for species distribution models devel-
oped for Xylella fastidiosa in Apulia and the rest of Italy.

Territory AUC 
Training SD AUC Test SD AUCdiff SD TSS SD

Apulia 0.971 0.030 0.952 0.039 0.019 0.001 0.854 0.024

Italy 0.982 0.021 0.966 0.081 0.016 0.086 0.814 0.011

	 AUC = Area under curve; AUCdiff = Minimum difference between training and testing AUC data; TSS = True skill statistic; SD = Stand-
ard Deviation.

Table 3. Potential distribution of Xylella fastidiosa in the 
Italian regions (percent regional surface area potentially 
suitable for the bacterium) and environmental similarity 
between training and projection regions, according to the 
Maxent model and MESS analysis, respectively. 

Region Potential distribution 
(%)

Environmental 
similarity (Category)

Sicily 100 Medium

Sardinia 100 Medium

Calabria 93 Medium

Puglia 35 High

Lazio 35 Medium

Campania 32 High

Basilicata 30 High

Tuscany 15 High

Other 0 Low
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Discussion
Model performance

Our model detected a set of environmental vari-
ables useful for assessing the potential distribution 
of X. fastidiosa in Italy. The model’s prediction power 
was firstly supported by the high gain value (1.8) 
achieved (e.g. Bosso et al., 2013). In general, models 

whose AUC > 0.75 are regarded as reliable (Elith, 
2002). In our case, AUC values > 0.9 demonstrate 
a very high predictive capacity – among the great-
est obtained for published models (e.g. Rebelo and 
Jones, 2010; Domíguez-Vega et al., 2012; Russo et al., 
2014). The model’s high predictive capacity was also 
confirmed by the excellent values of AUCdiff and TSS 
(Russo et al., 2014; 2015). The projections of our mod-

Figure 2. Species distribution models of Xylella fastidiosa in: 
Apulia (a) calibrated with Apulia records only; and Italy 
(b) calibrated with presence records from Apulia.

Figure 3. Binary map of Xylella fastidiosa in: (a) Apulia cali-
brated with Apulia records only; and (b) Italy calibrated 
with presence records from Apulia.
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el to other regions of the Italian territory was legiti-
mate, as shown by MESS analysis.

Model limitations

Although our model showed an excellent statis-
tical validation and led to a robust map of the po-
tential distribution of X. fastidiosa, caution is needed 
when interpreting its results for two main reasons. 

First, some limitations may arise from the ab-
sence of “realized niche” predicting factors, such as 
biotic factors, including plant-pathogen-antagonist 
interactions. Our model did not take into account 
the potential distribution of the bacterium’s vector. 
Philaenus spumarius, the known vector of X. fastidiosa 
in Italy (Saponari et al., 2014), is widespread and eco-
logically flexible (Halkka et al., 1967) so its presence 
is unlikely to act as a limiting factor for the expan-
sion of X. fastidiosa. Besides, several other insect spe-
cies are likely to carry the pathogen (Elbeaino et al., 
2014), reinforcing the X. fastidiosa invasion potential. 
Overall, we suggest that the reliability of our predic-
tions is not significantly affected by the absence of 
the vector influence in the model.

Second, the WorldClim dataset we employed has 
its own limitations, because: 1) it is obtained by in-
terpolating records from weather stations according 
to latitude, longitude and elevation; and 2) it is de-

veloped from records dating back to at least 15 years 
ago. However, these limitations apply to many other 
studies because WorldClim data are routinely used to 
model species potential distribution (Rebelo et al., 2010; 
Doko et al., 2011; Domíguez-Vega et al., 2012; Bosso et 
al., 2013; Aguayo et al., 2014; Russo et al., 2014; 2015). 

We advise caution in interpreting our results and 
note that our model should not be interpreted as a 
risk map, which would have required the inclusion 
of further variables, such as natural (e.g. wind speed 
or direction) or artificial features (human-made infra-
structures) potentially influencing invasion routes. 
As with most invasive species, infected vectors may 
also be potentially spread by accidental transporta-
tion by humans (Primack, 2014), making the resulting 
picture even more difficult to predict. Nonetheless, 
we have detected the most important environmen-
tal predictors occurring in the areas surrounding the 
likely introduction site and predicted the pathogen’s 
potential distribution based on this analysis.

Predicting the potential distribution of Xylella 
fastidiosa in Italy

The two most important variables character-
izing the potential distribution of X. fastidiosa were 
precipitation during the driest and wettest months, 
corresponding to a 70.4 % overall contribution. The 

Table 4. Land use classified after Corine Land Cover 2012 IV level, according to the MaxEnt model developed for Xylella 
fastidiosa in Italy. 

Macro category Corine land cover IV level Suitable habitat (%)

Agriculture Intensive agriculture 22.49

Olive groves 20.54

Complex cultivation patterns 18.15

Orchards 5.77

Arable land with significant areas of natural vegetation 4.49

Annual crops associated with permanent crops 4.01

Forest Quercus ilex/Quercus suber and evergreen woods 5.07

Deciduous mixed oaks woods 3.82

Agroforestal areas 2.22

Mixed woodland and shrubs 1.67

Mediterranean shrubland Mediterranean shrubs (high and low shrubs) 11.77
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importance of low levels of precipitation in the driest 
month (< 10 mm), medium levels of precipitation in 
the wettest month (80–110 mm) and high mean tem-
perature of the coldest quarter (> 8°C) may likewise 
also be explained in terms of climatic requirements 
of the bacterium and of its determined vector in Italy 
i.e. P. spumarius (Halkka et al., 1967; Ejere and Okpara, 
2010). The areas of greatest probability of presence 
corresponded to intensive agriculture – especially of 
olive trees – and to Mediterranean shrubland (low 
shrubs) situated at low elevations between ca. 0–150 
m a.s.l (Table 4), particularly along the Tyrrhenian 
and Ionian coast (Figures 2 and 3). Calabria, Sicily 
and Sardinia have the greatest probability of offering 
suitable habitats for X. fastidiosa (Figure 2b; Table 3). 
Furthermore, the potential to attack vineyards, cit-
rus and peach orchards by X. fastidiosa should not 
be underestimated, as this bacterium causes Pierce’s 
and Phony peach diseases with extensive damage 
to the wine and peach industries in the USA (Pur-
cell, 1997; Perring et al., 2001). Furthermore, natural 
ecosystem such as Mediterranean shrubland (high 
shrubs) and oak forests (e.g. Quercus ilex, Quercus 
suber, Quercus pubescens, Quercus robur and Quercus 
cerris) could also be attacked by X. fastidiosa in in-
ternal areas of Calabria, Lazio, Sicily and Sardinia. 
As in the American continent, we have predicted a 
preference for internal and coastal areas with mild 
winters at low altitudes. For instance, in the USA, X. 
fastidiosa occurs with winter temperatures ≥ 1–4°C 
(Purcell, 1997). By contrast, the pathogen is probably 
less harmful where winter temperatures are colder, 
such as at higher altitudes, because freezing events 
can strongly decrease X. fastidiosa infections (Hop-
kins and Purcell, 2002; Hoddle, 2004).

A fundamental requirement for the establishment 
of any species outside its native range is that the re-
cipient location must have a climate comparable to 
that of the invader’s original range. Within agree-
ment with findings obtained using CLIMEX by Hod-
dle (2004), our model confirms that Mediterranean 
climates can be particularly favourable for X. fastidio-
sa. Hoddle (2004) predicted that the bacterium could 
colonize the Italian central and southern grape-
growing areas. Here the climate is especially favour-
able for its vector. By contrast, cold stress would not 
allow the bacterium to spread in the grape-growing 
provinces of Northern Italy. Cold stress represents 
the principal factor limiting the northern range of X. 
fastidiosa (Hoodle, 2004). Our model identified Tus-

cany as the latitudinal limit for the range expansion 
of X. fastidiosa. European, and especially Euro-Med-
iterranean areas, are characterized by a broad spec-
trum of climatic conditions and plant species, pro-
viding the bacterium with high chances to encounter 
hosts and environmental conditions favouring inva-
sion and establishment.

Xylella fastidiosa is an emerging threat for Italy 
and the entire Mediterranean basin, not only for the 
grape industries (Hoddle, 2004) but also for stone-
fruit and citrus cultivations, as well as Mediterra-
nean shrub and forest species, as confirmed by our 
analysis. Besides Apulia, other Italian regions such 
as Basilicata, Campania, Tuscany, Lazio, Sicily and 
Sardinia are at risk, with potential highly detrimen-
tal consequences for the agro-forestry systems found 
there. The present research emphasises that these re-
gions should be targeted with appropriate phytosan-
itary preventive measures to avoid the spread of the 
bacterium and the severe diseases it causes.
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Table S.1. Latitude, longitude e altitude of X. fastidiosa records used in Maxent model.

No. Latitude Longitude Altitude (m)

1 40.502 17.615 125

2 40.442 17.992 28
3 40.224 18.279 95
4 40.133 18.358 91
5 39.841 18.299 97
6 39.940 18.256 149
7 40.112 18.438 74
8 40.156 18.272 82
9 40.141 18.477 25

10 40.076 18.032 19
11 40.028 18.061 32
12 40.042 18.192 145
13 39.996 18.266 118
14 40.082 18.464 98
15 40.093 18.204 99

16 40.178 18.135 82

No. Latitude Longitude Altitude (m)

17 40.244 18.229 96

18 40.420 18.062 47

19 40.345 17.908 60

20 40.427 18.086 38

21 40.340 18.014 38
22 40.303 17.859 27
23 40.278 17.948 47
24 40.281 18.069 44
25 39.924 18.130 39
26 39.959 18.060 56
27 39.877 18.224 100
28 40.273 18.242 47
29 40.182 17.996 38
30 40.424 18.164 21
31 40.303 17.858 27

32 39.936 18.097 42
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No. Latitude Longitude Altitude (m)

33 39.877 18.224 100

34 40.281 18.069 44
35 40.203 18.414 27
36 40.454 18.160 6
37 40.293 18.108 46

38 40.273 18.242 47

39 40.094 18.204 99

40 40.061 18.342 82

41 39.996 18.265 118

No. Latitude Longitude Altitude (m)

42 40.361 18.109 35

43 40.445 17.886 12

44 40.088 18.265 54

45 39.986 18.162 59

46 40.117 18.103 95
47 40.235 18.028 35
48 40.062 18.123 116
49 40.286 18.182 46

50 40.156 18.421 49

Figure S.1. Jackknife of regularized training gain for X. fastidiosa. The EGVs used for X. fastidiosa models were: Alt = Alti-
tude; bio1 = Annual Mean Temperature; bio10 = Mean Temperature of Warmest Quarter; bio11 = Mean Temperature of 
Coldest Quarter; bio13 = Precipitation of Wettest Month; bio14 = Precipitation of Driest Month; bio17 = Precipitation of 
Driest Quarter; bio18 = Precipitation of Warmest Quarter; bio8 = Mean Temperature of Wettest Quarter; bio9 = Mean Tem-
perature of Driest Quarter; lc2012 = Corine Land Cover 2012.
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