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Haplotype analysis and genetic variability of Togninia minima from

different geographic sources
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Summary. Togninia minima (anamorph Phaeoacremonium aleophilum) is one of the main fungi responsible for trunk
diseases of grapevines and other woody hosts worldwide. Sequences of protein-coding genes of isolates from coun-
tries in different continents have been published, presenting a useful resource for examination of the diversity and
spatial distribution of T. minima genotypes. Single nucleotide polymorphisms (SNPs) detected in public sequences
of the actin and partial g-tubulin genes were used to assess the genetic variability and to determine haplotypes of
isolates of this species from different sources. The Italian sample showed the greatest allele number and the largest
number of haplotypes. Most haplotypes were present in more than one country, except for haplotype 11010 which
was found only in Italy and 10111 found only in Canada. Haplotype 11111 was the most conspicuous and cosmo-
politan, being present in six countries and on three host plant species. One observed polymorphism in the non-
coding region of the g-tubulin gene could be targeted with allele-specific primers to detect this particular haplotype.
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Introduction

Togninia minima (anamorph Phaeoacremonium
aleophilum) is a pathogenic fungus responsible for
the development of wood diseases mostly in Vitis
spp. but also in fruit trees and other woody hosts
(Mostert et al., 2006a; Cloete et al., 2011; Carlucci et
al., 2013). Presence of this pathogen in Vitis spp. has
been recorded in several countries, including Alge-
ria (Berraf-Tebbal et al., 2011), Argentina (Dupont et
al., 2002), Australia (Edwards et al., 2001), Canada
(Urbez-Torres et al., 2014), Chile (Auger et al., 2005),
Hungary (Essakhi et al., 2008), Iran (Mohammadi et
al., 2013), Israel (Essakhi et al., 2008), Italy (Mugnai et
al., 1999), France (Larignon and Dubos, 1997), South
Africa (Groenewald et al., 2001), Spain (Armengol et
al., 2001), Turkey (Ari, 2000), Uruguay (Abreo et al.,
2011), USA (Scheck et al., 1998), and former Yugosla-
via (Crous et al., 1996).
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Although the anamorph of T. minima is most fre-
quently found in grapevines, the presence of perithe-
cia resulting from the mating of isolates with oppo-
site mating types has been reported in vitro (Mostert
et al., 2003; Rooney Latham et al., 2005a; Gramaje et
al., 2013), on wood pieces in moist chambers (Pascoe
et al., 2004) and in vineyards in California (Rooney-
Latham et al., 2005b). The genetic variability of T.
minima has been studied in Italy (Tegli et al., 2000),
France (Borie et al., 2002), Algeria (Berraf-Tebbal et al.,
2011), and Spain (Martin and Martin, 2013; Gramaje
et al., 2013; Martin et al., 2014) at national and local
levels. While the Spanish and Italian studies con-
cluded that low levels of linkage disequilibrium or
large numbers of haplotypes at local or plant scales
could be explained in part by the occurrence of some
degree of sexual reproduction, the low genetic vari-
ability found in the French populations of T. minima
was explained by a lower level of recombination or
insufficient number of genetic markers. These stud-
ies were based on the random amplification of the
fungal genome by means of RAPDs, ISSR, MSP-PCR,
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UP-PCR and AFLP, with the exception of Martin and
Martin (2013) who performed a multi-gene sequence
analysis of Spanish isolates of T. minima.

In spite of these efforts, it has been acknowledged
that different molecular tools are needed to obtain
information on introduction frequencies, inoculum
dispersal and geographical spread of T. minima in
different regions of the world (Gramaje et al., 2013).
Whereas the actual DNA or original specimens from
throughout the world may not be readily avail-
able, there is a growing database of DNA sequences
that could be used to assess the genetic diversity of
geographically diverse strains of the fungus. In ad-
dition, as T. minima is a haploid ascomycete, SNPs
and haplotypes can be identified directly from DNA
sequences of the fungus, and these could be used to
evaluate genetic variability.

The objective of the research outlined here was to
explore the use of SNPs detected on publicly avail-
able sequences of two protein-coding nuclear genes
to evaluate the genetic variability of T. minima rep-
resenting the populations of Italy, Spain, Algeria,
South Africa, Canada, and Uruguay.

Materials and methods

A search was conducted in the nucleotide data-
base of GenBank (www.ncbi.org, last accessed 11
January, 2015) and sequences of the actin and partial
B-tubulin genes of T. minima from different countries
and hosts were retrieved. Only the sequences from
strains whose identity as T. minima had been con-
firmed by means of phylogenetic analysis based on
these two genes were used in subsequent analyses.
Original sequences, submitters and information on
related publications are available at GenBank and ref-
erenced by the corresponding accessions in Table 1.

Sequences of actin and partial S-tubulin genes
were concatenated in MEGAG6 (Tamura et al., 2013),
aligned and trimmed at the irregular ends to a fi-
nal span of 740 characters including gaps (TreeBase
code: 517038). SNPs were visually identified. Point
mutations and insertions/deletions (indels) were
considered as SNPs if present in at least 10% of the
retrieved sequences. This value was considered safe
to avoid recent point mutations and errors at the se-
quencing stage.

Alleles were named for the corresponding gene
abbreviation followed by the nucleotide position of
the SNP on each gene sequence (referenced to strain
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FI 2096, accessions KJ569197 and HQ159856) and by
the first letter of the alternative nucleotides to dis-
tinguish between both alleles: Act89-A/Act89-C,
Act110-G/ Actl110-A, Act166-A/Actl66-G, pT459-C/
BT459-G or 0 in the case of absence of the indel
BT360-AT/ BT360-0.

A matrix was constructed in which strains were
characterized by the presence of the alternative SNP
forms indicated by 1 or 0 (Table 1). Numbers of alleles,
allelic frequencies and Nei's gene diversity were ob-
tained using PopGene 1.31 software (Yeh et al., 1997) to
describe country samples with at least six representa-
tive isolate sequences (a total of 63 isolates from Italy,
Spain, Algeria, South Africa, Canada and Uruguay).

Haplotypes were defined as strains sharing 100%
of the alleles. A cluster analysis (Euclidean distance,
paired group option) of all 66 retrieved strains from
nine countries in Table 1 was carried out with soft-
ware PAST (Hammer et al., 2001) to analyze the
genotypic similarity among haplotypes. A principal
components analysis (variance — covariance option)
was applied on single copies of the different haplo-
types with software PAST (Hammer et al., 2001) to
confirm the groups obtained in the cluster analysis.
Numbers of haplotypes were calculated for the six
countries with at least six representative isolates.

Results
Genetic variability analysis

Five SNPs were identified in the non-coding re-
gions of the actin and B-tubulin genes. Four loci were
biallelic and one locus was the result of a two-nucle-
otide indel in positions 360 and 361 in the g-tubulin
partial sequence. SNP frequency was 0.7%. The mean
observed number of alleles was 2.0 for Italy, 1.8 for
Spain, South Africa and Uruguay and 1.6 for Algeria
and Canada.

Allele distribution varied between country sam-
ples. SNPs in the actin gene were mostly unbalanced,
except for Actl10 in Spain and Act166 in Algeria that
exhibited an even presence of both alleles. Miss-
ing alleles were only observed in this gene. Allele
Act166-G was absent from Canada, Uruguay, Spain
and South Africa and present only in Hungary, Italy
and in higher frequency in Algeria (Table 1, 2). Sam-
ples from Algeria and Canada comprised fewer al-
leles since Act89-C was absent from both countries,
Act110-A was absent from Algeria and Act166-G was
absent from Canada.
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Table 2. Distribution of the allele frequencies across the Togninia minima samples from six countries.

Uruguay Spain Italy Algeria SouthAfrica Canada Average
Act89-A 0.75 0.67 0.95 1.00 0.82 1.00 0.86
Act89-C 0.25 0.33 0.05 0.00 0.18 0.00 0.14
Act110-G 0.75 0.50 0.86 1.00 0.82 0.78 0.78
Act110-A 0.25 0.50 0.14 0.00 0.18 0.22 0.22
Actl66-A 1.00 1.00 0.86 0.57 1.00 1.00 091
Actl166-G 0.00 0.00 0.14 0.43 0.00 0.00 0.09
BT360-AT 0.63 0.17 0.50 0.57 0.73 0.44 0.50
BT360-0 0.38 0.83 0.50 0.43 0.27 0.56 0.50
pT459-C 0.63 0.17 0.41 0.57 0.73 0.44 0.49
pT459-G 0.38 0.83 0.59 0.43 0.27 0.56 0.51

SNPs in the partial p-tubulin gene were mostly
balanced, except for the Spanish sample that showed
low frequency in alleles BT360-AT and 3T459-C. No
B-tubulin allele was missing in any population.

Nei’s gene diversity within samples was 0.33 for
Uruguay, 0.31 for Italy, 0.30 for Spain, 0.29 for Alge-
ria, 0.28 for South Africa and 0.27 for Canada.

Genotype variability analysis

Seven haplotypes were identified based on the
observed combination of alleles. Among the coun-
tries with at least six strains available, Italy showed
six haplotypes, Spain four, Uruguay, South Africa
and Canada three, and Algeria only two (Table 3).

Cluster analysis of haplotypes showed four
main clusters (Figure 1). Cluster “A” was separated
from the others and included haplotypes 11111 and
10111. Haplotype 11111 was the most abundant and
most cosmopolitan including 29 strains from Alge-
ria, Spain, Uruguay, Italy, South Africa and Canada
(on Vitis spp., Prunus spp., and Olea spp.), while
haplotype 10111 (two strains) was exclusively from
Canada (Vitis spp.). Cluster “B” grouped haplo-
types 11010, restricted to Italy, and 11000, found in
Algeria, Hungary and Italy (Vitis spp.). Cluster “C”
contained haplotype 11100 with sixteen strains from
Italy, Uruguay, Spain, South Africa and Canada (Vitis
spp. and Prunus spp.). Cluster “D” contained hap-
lotype 10100, with strains from Spain, Italy and the

Table 3. Distribution of haplotypes of Togninia minima in samples from six countries.

Haplotype Uruguay Spain Italy Algeria South Africa Canada Total
11111 5 1 9 4 8 2 29
10111 0 0 0 0 0 2 2
00100 2 2 1 0 2 0 7
11100 1 2 7 0 1 5 16
10100 0 1 2 0 0 0 3
11010 0 0 2 0 0 0 2
11000 0 0 1 3 0 0 4
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Figure 2. Principal component analysis of seven haplo-
types showing a Minimal Spanning Tree to indicate the
shortest possible set of connected lines linking all points.
Symbols represent: o cluster A, o cluster B, o cluster C, and
- cluster D in the cluster analysis.

only representatives from Israel and former Yugo-
slavia (Vitis spp. and Prunus), and haplotype 00100
with sequences from Spain, Italy, South Africa and
Uruguay (Vitis spp. and Prunus spp.). The principal
component analysis of haplotypes (Figure 2) also
clearly separated haplotypes 11111 and 10111 from
the others along the x and y axes representing com-
ponents 1 and 2, which explained, respectively, 41%
and 38% of the variance.

Haplotype 11111 and its Canadian variant haplo-
type 10111 could also be individualized by the pres-
ence of a C (1) in the fifth SNP, corresponding to po-
sition 459 in the fourth intron of the -tubulin gene.

Discussion

Sequences of the actin and partial g-tubulin genes
have been considered useful for the phylogenetic
analysis of species of Togninia (Mostert et al., 2006b).
At population levels, the introns of the p-tubulin
gene have been used to analyze differences between
populations of the enteric protozoan parasite Crypto-
sporidium parvum (Widmer et al., 1998) and the grape-
vine powdery mildew Erysiphe necator (Amrani and
Corio-Costet, 2006; Brewer and Milgroom, 2010).
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In the present study sequences from both of these
genes from T. minima from several countries were re-
trieved from GenBank and used for SNPs detection
and haplotype determination. SNPs from introns of
both genes were defined with a high and restrictive
threshold (minor nucleotide present in at least 10%
of sequences) to account for errors at sequencing and
to minimize the effect of late point mutations shared
only by local clonal lines.

The final SNP frequency of 0.7% was similar to
that found in other fungi, such as 1% in Candida al-
bicans (Jones et al., 2004) and 1.1-1.7% in Tricholoma
matsutake (Xu et al., 2007).

Gene diversity was equal to or greater than 0.30
in Uruguay, Italy and Spain, and below this value
in samples from South Africa, Algeria and Canada.
Although the sample from Italy was the only one
where all alleles were present, its gene diversity
ranked second to samples from Uruguay as a result
of three out of five SNPs being unbalanced, showing
a very high frequency of one of the two alternative
forms. Nevertheless, the Italian sample exhibited
greater genotypic variability due to the presence of
six out of seven haplotypes. The same number of
haplotypes was only reached when adding together
the samples from all the other countries, which sug-
gest that the large number of haplotypes found in
Italy is not just an effect of the greater number of se-
quences that were included from this country.

Opposite to the Italian sample, the Uruguayan
sample showed the greatest gene diversity but only
three haplotypes. This apparent contradiction has
been observed before in populations of introduced
pathogens and could be a consequence of the delay
in the onset of sexual reproduction after migration,
which might have attenuated the expected loss of ge-
netic diversity due to the founder effect, as suggest-
ed by Travadon et al. (2012) in their study on Eutypa
lata world populations. Brewer and Milgroom (2010)
also found similar results of high gene diversity but
low genotypic diversity in introduced populations of
E. necator. In this case, one possible explanation was
that the occurrence of two distinct genetic groups
in the introduced populations resulted in high gene
diversity because of fixed nucleotide differences be-
tween lineages, but low genotypic diversity because
there was little or no variation within groups.

In contrast, the South African, Canadian and the
Algerian sampled populations, with lower genetic
and genotypic diversity, could be an example of the



loss of genetic diversity due to genetic drift, which
may occur after many generations since the arrival
of a founder population.

The sample from Spain showed intermediate
gene diversity but high genotypic variability with
four haplotypes identified in six sampled individu-
als. The greater genotypic variability of T. minima
samples in Italy and Spain could be a consequence
of both the degree of gene diversity and greater lev-
els of sexual reproduction and recombination. In this
context, Tegli (2000) found that sexual reproduction
was highly feasible in Italian T. minima populations
in view of the high genetic distance among multilo-
cus genotypes, the low clonal fraction and the low
linkage disequilibrium of the studied populations.
Haplotype variability was considered greater than in
France, where some regions did not show signs of re-
combination (Borie ef al., 2002). In Spain, Gramaje et
al. (2013) also found greater genetic variability than
in France, although it was considered that this could
be the result of the UP-PCR method used which pref-
erentially amplifies the more variable intergenic ar-
eas of fungal genomes.

In the present study, samples of T. minima from
Italy and Spain showed more genotypic variability
than samples from two African countries, Uruguay
and Canada. In the Italian, South African, Uruguay-
an and Algerian populations the haplotype 11111 ap-
peared most frequently, being prevalent in three host
species. Also, Martin and Martin (2013) and Martin
et al. (2014) described a Spanish isolate whose geno-
type was classified as type SI, and whose actin and
partial B-tubulin gene sequences, included in the
present analysis, exhibited the most frequent haplo-
type 11111. These authors suggested that the group
SI showed less genetic variability than other groups
and that it was associated mostly with young plants
showing Petri disease. Since young nursery plants
are internationally commercialized it is possible that
their international trade could have favoured the
long distance dispersal of members of this group, ex-
plaining its cosmopolitan occurrence.

Haplotype 11111 and its Canadian variant haplo-
type 10111 were individualized by the presence of
a C (1) in the fifth SNP in the p-tubulin gene. SNPs
observed in introns of the -tubulin gene have been
useful for the genotyping of pathotypes of E. necator
(Amrani and Corio-Costet, 2006) and Cryptosporidium
parvum (Tanriverdi et al.,, 2002) with allele-specific
PCR primers. It should be possible, therefore, to tar-

Togninia minima diversity based on SNPs from two genes

get this characteristic sequence polymorphism with
allele-specific PCR primers to distinguish haplotypes
11111 and 10111 (cluster “A” in the haplotype distance
analysis) from the others (clusters “B”, “C”, “D").

In conclusion, five SNPs from the non-coding re-
gions of two protein-coding nuclear genes could be
used to analyze the genotypic diversity of samples
of T. minima from countries in Europe, Africa, North
and South America. Haplotype distribution indi-
cates that haplotype 11111 is the most frequent and
cosmopolitan genotype, and is the genotype requir-
ing further ecological, biological and phytopatho-
logical characterization.
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