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Summary. Colletotrichum falcatum is the major fungal pathogen causing sugarcane red rot. Four antagonistic bacte-
rial strains exhibiting biocontrol activity against this pathogen in greenhouse conditions were characterized for 
production of different antifungal metabolites and biocontrol determinants to elucidate the mechanism of action 
involved in their antagonistic activity. The strains were also evaluated under field conditions to assess their bio-
control potential. All the strains produced hydrogen cyanide (HCN), and volatile and diffusible antibiotics. In 
addition, the Ochrobactrum intermedium strain NH-5 produced siderophores and the broad spectrum antibiotic 
2, 4-diacetylphloroglucinol (2,4-DAPG); Pseudomonas sp. NH-203 produced siderophores, and Pseudomonas sp. 
NH-276 produced protease. Two strains, Ochrobactrum intermedium NH-5 and Stenotrophomonas maltophilia NH-
300, exhibited good biocontrol activity, suppressing red rot by 44–52% on two sugarcane varieties, SPF-234 and 
Co-1148, in field experiments. The strains gave consistent results in three consecutive years and showed potential 
to be used as biopesticides.
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Introduction
Sugarcane (Saccharum officinarum L.) is a major 

world industrial crop, which is used in manufactur-
ing of important chemicals and industrial products, 
including alcohol, sugar, paper and paper board. 
Many other plants, including potato (Solanum tubero-
sum), tomato (Lycopersicom esculantum), maize (Zea 
mays), onion (Allium cepa), sunflower (Helianthus 
annuus) and bean (Phaseolus vulgaris) can be inter-
cropped with sugarcane in Asia, Brazil and Africa 
(Sharma et al., 1997). Diseases are one of the major 
constraints responsible for low sugarcane yields. 
Red rot (caused by Colletotrichum falcatum Went) is 

the most serious disease and causes severe losses in 
sucrose yield of sugarcane world-wide. Epidemics 
of red rot caused 29% loss in cane weight and 31% 
loss in sugar recovery (Alvi et al., 2008). Management 
practices for red rot include cultural practices, crop 
rotation, fungicide applications, and the use of resist-
ant varieties. At present, there is no single method 
providing suitable control of red rot under field con-
ditions.

The use of fungicides in plant protection has posed 
serious consequences in recent years. Their excessive 
use has resulted in several problems, including per-
sistence of chemical residues in food products and 
polluted environment. In addition, incorporation of 
their by-products into soil has reduced soil quality 
and productivity (Minh et al., 2004). Hence, there is a 
pressing need to utilize fungicide-free disease man-
agement strategies, either based on biological agents 
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or alternate means to control soil-borne pathogens. 
With increasing emphasis on organic farming, ef-
forts have been made to screen and identify benefi-
cial microbes. Plant growth promoting rhizobacteria 
(PGPRs) are being explored extensively for improv-
ing plant nutrient acquisition and disease resistance. 
They are gaining importance due to their increased 
use as biofertilizers, bioprotectants and soil reclama-
tion agents (Vessey, 2003; Tank, 2009). PGPRs are di-
verse bacteria belonging to the genera Bacillus, Pseu-
domonas, Azotobacter, Azospirilum, Serratia, Ochrobac-
trum and Stenotrophomonas. They protect plants by 
producing certain secondary metabolites. Most of 
these include antibiotic compounds such as 2, 4-di-
acetylphloroglucinol (DAPG), pyoluteorin (PLT), 
pyrrolnitrin (PRN), surfactin (SRF), iturin (ITR) and 
phenazine (PHZ) compounds (Haas and Defago, 
2005; Kim et al., 2010). The metabolite 2, 4-DAPG is 
a phenolic polyketide with broad spectrum antifun-
gal, antiviral, and nematicidal activity (Bangera and 
Thomashow, 1999). This compound is mostly pro-
duced by the plant–associated pseudomonads and 
has potential for utilization in agriculture due to its 
role in situ against soil-borne pathogens (Mavrodi 
et al., 2007). In addition to pseudomonads, produc-
tion of 2, 4-DAPG by Lysobacter gummosus has also 
been reported (Brucker et al., 2008). Here, we report 
the production of this broad spectrum compound by 
Ochrobactrum intermedium.

Stenotrophomonas and Ochrobactrum strains 
have been isolated from various sources, mainly 
plant rhizospheres, clinical material and aquatic 
habitats (Dunne et al., 1997; Ryan et al., 2009; Imran 
et al., 2010; Hassan et al., 2010a). Our previous work 
demonstrated that certain sugarcane associated 
rhizobacteria inhibited the growth of the pathogen 
Colletotrichum falcatum on PDA plates in vitro and 
reduced red rot infection in vivo (Hassan et al., 2010a; 
2011). These antagonistic bacteria include Gram 
positive and Gram negative isolates of Pseudomonas, 
Bacillus and Ochrobactrum. In the present study, 
we selected four strains, including O. intermedium 
strain NH-5, Pseudomonas sp. strains NH-203 and 
NH-276 and S. maltophilia strain NH-300, capable of 
suppressing the red rot pathogen in vitro and in vivo, 
to investigate the different metabolites produced 
by these antagonistic strains, and evaluate their 
suppressive effects on red rot of sugarcane under 
field conditions.

Materials and methods
PGPR strains and fungal pathogen isolate

The PGPR strains O. intermedium NH-5, S. malto-
philia NH-300, two Pseudomonas sp. strains NH-203, 
NH-276, and the virulent fungus C. falcatum previ-
ously isolated from diseased stalks and rhizospheres 
of sugarcane (Hassan et al., 2010a) were obtained 
from the Pakistan Collection of Microbial Cells 
and Cultures (PCMC), Department of Biosciences, 
COMSATS Institute of Information Technology, Is-
lamabad, Pakistan. A well-characterized biocontrol 
agent P. fluorescens CHA0 (Voisard et al., 1989) was 
used as positive control in the study.

Activity of cell free supernatants of bioantagonists

Activity of cell free supernatants of bioantagonists 
was determined using the methods of Naureen et al., 
(2009). One hundred µL volumes of freshly grown 
bacteria were inoculated into 500 mL capacity flasks 
containing 100 mL of LB broth (Bertani, 1951). The 
flasks were incubated for 72 h at 28±2°C with shaking 
of 190 rpm. Cells were separated by centrifuging 
in 50 mL falcon tubes at 13,000 rpm for 9 min. The 
supernatant was passed through a syringe filter (0.22 
μm) and added, at variable concentrations of 5–25% 
v/v, to PDA (Oxoid) in Petri plates. A 5 mm mycelial 
disk of freshly grown C. falcatum was placed at the 
center of each Petri plate containing PDA amended 
with supernatant. LB broth was added instead of 
cultural filtrate in the negative controls. All the 
plates were placed in an incubator at 28±2°C for 
5‒6 d and diameter of the fungus colony in each 
plate was measured and compared with controls. 
The proportional inhibition was calculated using 
the following formula; % Inhibition = [1 – (Fungal 
growth/control growth)] × 100 (Kazempour, 2004). 
The experiment was conducted in three replicates 
and repeated three times.

Production of HCN, protease and siderophores

HCN production was determined by plate assay, 
as reported by Miller and Higgins (1970) and Hassan 
et al. (2011), with some modifications. Bacterial cells 
were inoculated onto King’s medium B (KMB) agar 
plates containing 4.4 g L-1 glycine. A piece of Whatman 
filter paper was soaked in a solution consisting of 1% 
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sodium carbonate and 0.5% picric acid and placed in 
the upper lids of inoculated plates which were then 
incubated for 72 h at 28 ± 2°C. HCN production was 
detected by observing the change in colour of these 
filter papers from yellow to brown, and by scoring 
the colour change using a 0‒2 scale (0, none; 1, little; 
2, strong) as described by Ahmadzadeh et al., (2006).

Protease production by bacterial strains was 
tested as described by Denizci et al., (2004), (Hassan 
et al., 2011). The bacteria were inoculated onto skim 
milk agar (SMA) plates which were incubated at 28 
± 2°C for 48‒72 h. The protease producing strains 
made halo zones around the bacterial colonies. Pro-
duction of protease was semi quantified by measur-
ing the diameter of solublization zones (Ahmadza-
deh et al., 2006).

Ability of the PGPR strains to produce sidero-
phores was evaluated by inoculating them into Petri 
dishes containing Chrome azurol S (CAS) medium 
as described by Schwyn and Neilands (1987). One 
drop of the bacterial culture grown in LB broth for 24 
h at 28 ± 2°C was inoculated into each plate, which 
were then incubated for 8 d. Bacteria that were ca-
pable to produce siderophores grew and formed a 
purple halos in the dark bluish medium. The sidero-
phore production was semi quantified by measuring 
the diameter of purple zones. 

Production of diffusible and volatile antibiotics

Antibiotic production was examined as described 
by Montealegre et al. (2003). To detect production of 
volatile antibiotics, bacteria were grown on LB agar 
and C. falcatum was grown on PDA (oxoid) in sepa-
rate Petri plates. Plates containing the fungus or 
test bacteria were then placed face to face, avoiding 
physical contact between bacteria and fungus, and 
then sealing the pairs of plates with Parafilm. For 
diffusible antibiotics, bacteria were grown on PDA 
plates covered with cellophane membranes for 72 h. 
The membranes were then removed and fungus was 
inoculated on the plates. Proportional fungal inhibi-
tion was calculated as described above.

The experiment was conducted in three replicates 
and repeated three times.

HPLC analysis of antibiotics

The broad spectrum antibiotics 2, 4 diacetylphlo-
roglucinol (2, 4-DAPG), pyoluteorin and pyrrolnitrin 

were extracted and analyzed by high performance 
liquid chromatography assay (HPLC) as described 
by Bonsall et al. (1997).  The bacteria were grown 
in 50 mL capacity flasks each containing 10 mL LB 
broth, separately for extraction of each antibiotic. 
2,4-DAPG was extracted by acidifying the bacterial 
broth cells with 10% trifluoroacetic acid (TFA) to pH 
2.0 followed by vigorous shaking for 3 h and separat-
ing the cells by centrifugation at 10,000 rpm at 4°C. 
The cell-free acidified supernatant was extracted 
with two fold volumes of ethyl acetate.

Pyrrolnitrin and pyoluteorin were also extracted 
in the same way, except that the cells were separated 
before acidification with 1M HCL. The crude extracts 
were dried, dissolved in methanol and analyzed on 
an HPLC Varian (Prostar; 1100 Series), consisting of 
pressure module 6000 psi, UV detector and a C18 
reverse-phase column.

The solvent conditions, flow rate  and monitor-
ing peak maxima included 10% acetonitrile -0.1% 
trifluoroacetic acid, 1.0 mL min-1 and 270 nm for 2,4-
DAPG; 45% H2O, 30% acetonitrile and 25%-metha-
nol, 1 mL min-1 and 225 nm for pyrrolnitrin; and ace-
tonitrile-methanol-water (7:5:8), 1.5 mL min-1, and 
310 nm for pyoluteorin. Linear gradient was used for 
detection of 2, 4-DAPG while isocratic gradient was 
used for detection of pyrrolnitrin and pyoluteorin.  
Purified antibiotics extracted from the reference 
strain P. fluorescens CHA0 were used as standards. 
Synthetic 2, 4- DAPG (Toronto Research Chemicals) 
and pyrrolnitrin (Sigma) were also used as stand-
ards.

Detection of Phl D gene involved in 2, 4-DAPG 
synthesis

The PhlD gene conserved in all 2, 4-DAPG pro-
ducing bacteria was targeted for amplification with 
the two set of primers Phl2a 5’–GAG GAC GTC GAA 
GAC CAC CA–3’, Phl2b 5’–ACC GCA GCA TCG TGT 
ATG AG–3’ and BPF2, 5’–ACC CAC CGC AGC ATC 
GTT TAT GAG C –3’, BPR4, CCG CCG GTA TGG 
AAG ATG AAA AAG TC from the genomic DNA of 
O. intermedium NH-5 and the reference strain P. fluo-
rescens CHA0. A 25 µL reaction mixture consisting of 
1 × Taq DNA polymerase buffer (Ferments), 8‒10 ng 
of the DNA, 15‒25 ng of each primer, 1.5 mM MgCl2, 
200 µM of each, dATP, dCTP, dGTP, and dTTP (Fer-
mentas), and 1.0 U of Taq polymerase (Fermentas) 
was amplified in a thermocycler (Eppendorf) with 
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the following conditions; Initial denaturation at 95°C 
for 5 min followed by 30 cycles [94°C for 1 min, 60 
or 67°C (Phl2a, 2b or BPF2, BPR4) for 1 min, 72°C for 
1 min] and final extension 72°C for 5 min. The PCR 
product was analyzed on a 1.2% agarose gel, visual-
ized with a UV transilluminator and compared with 
1kb ladder (Fermentas).

Field evaluations

Location, varieties and experimental designs
The antagonistic strains were evaluated in the 

field at the Shakarganj Sugar Research Institute 
(SSRI), Jhang (Pakistan) for three consecutive years. 
Two sugarcane varieties SPF-234 and Co-1148, both 
susceptible to sugarcane red rot, were used. Field 
experiments were designed on the basis of different 
fungal inoculation methods, using “stalk inocula-
tion” or “soil inoculation”. In “stalk inoculation” 
experiments, C. falcatum was inoculated into above 
ground stalks of sugarcane plants to separate the 
pathogen from bacterial strains and test the ability 
of the strains to suppress disease through the mech-
anism of induced systemic resistance. In “soil inocu-
lation” experiments, the fungus was inoculated into 
the soil.

The experiments were laid out in randomized 
complete block designs with the individual plot size 
of 10 m2 (2m × 5m), and were established each year, by 
sowing new sugarcane plants in a different area of the 
same field, applying the same treatments each year.

Sowing of plants, cultural practices and treatments
The plants were established into a clay to clay 

loam soil of pH = 7.9, electrical conductivity = 1.2 dS 
m-1, total soluble salts = 744.3 mg L-1, organic mat-
ter = 0.39%, nitrogen = 0.013 ppm, phosphorus = 7.4 
ppm and potassium = 144.7 ppm.

The plants were established by putting sugar-
cane setts in wide furrows with row-to-row distance 
of 0.75 m. The N: P: K fertilizer was applied at the 
equivalent of 150:100:100 kg ha-1 (Maqsood et al., 
2000; Hassan et al. 2011). Plants were irrigated fort-
nightly during February-April, and irrigation inter-
val was variable in May-August depending on the 
rainfall/climatic conditions and moisture content of 
the soil. The treatments in each trial included; (i) O. 
intermedium strain NH-5, (ii) Pseudomonas sp. NH-
203, (iii) Pseudomonas sp NH-276, (iv) S. maltophilia 
NH-300 (v) 0.85% saline (negative control) (vi) P. 

fluorescens CHA0; a well characterized biocontrol 
agent (Voisard et al., 1989; Viswanathan and Sami-
yappan, 2008, Hassan et al. 2011). 

Pathogen inoculation
In “soil inoculation” experiments, C. falcatum was 

inoculated by mixing infected stalks with soil before 
sowing the crop as described by Viswanathan and 
Samiyappan (2008) and Hassan et al. (2012). In “stalk 
inoculation” experiments, C. falcatum was inoculated 
to plants 6 months after planting and 1 month after 
the last bacterial application, by making a hole at the 
3rd above-ground node of each cane, placing a 1 mL 
suspension of the fungal conidia (106 conidia mL-1) 
using a syringe, followed by sealing the inoculation 
hole with cellophane membrane and cotton (Srini-
vasan and Bhat, 1961; Hassan et al., 2010a).

Bacterial inoculation 
Bacteria were inoculated into LB broth and incu-

bated in a shaking incubator for 24‒48 h. The cells 
were separated by centrifuging at 12,000 rpm for 3 
min, then suspended in in 0.87% saline to give a cell 
density of 109 CFU mL-1 (Hassan et al., 2011). Five mL 
of this saline suspension was drenched twice (4 and 
5 months after planting) in the rhizosphere of each 
sugarcane plant. There were 90‒92 plants in each ex-
periment and a total volume of 450 mL of the bacte-
rial inoculumn was used for each plot. 

Disease assessment 
In “stalk inoculation” experiments, disease was 

assessed twice i.e. at 30 and 60 d after pathogen in-
oculation. The plant stems were split longitudinally 
and the disease severity was scored on 0‒9 scale 
based on the different parameters as described in 
Table 1 (Srinivasan and Bhat 1961; Hussnain et al., 
2007). In “soil inoculation” experiments, disease was 
assessed by sorting the diseased plants and counting 
the number of infected tillers in each treatment. A to-
tal of 50‒60 plants containing 1‒2 tillers per plant in 
each replicate were randomly selected and assessed 
for the development of red rot. Disease symptoms 
were observed twice at 8 and 10 months (harvesting 
time) of the (crop harvest stage). The disease inci-
dence and proportion of disease suppression were 
calculated using the following formulas.

Disease incidence = Infected tillers ×100
                                      Total tillers
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% Disease suppression = 1- Disease in treatment ×100
                                                  Disease in control

Statistical analyses

All the data were subjected to analysis of variance 
analysis (ANOVA) using standard procedures for 
randomized complete block designs and MSTAT-C 
computer software. The data for varieties and time 
periods was combined over each year. Mean values 
were separated and compared using LSD tests.

Results
The four native bacterial strains exhibiting in vit-

ro and in vivo biocontrol activity against C. falcatum 
causing sugarcane red rot (Hassan et al., 2010a) pro-
duced various types of secondary metabolites, and 
suppressed red rot on both sugarcane varieties SPF-
234 and Co-1148 under field conditions.

Inhibition of fungus by cell-free supernatants, volatile 
and diffusible antibiotics

Mycelial growth of C. falcatum was inhibited by 
14‒52% by the cell free supernatants and inhibitory 

factors of the antagonistic bacteria O. intermedium 
strain NH-5, and by 22–46% by metabolites of S. 
maltophilia strain NH-300. Cell-free supernatants of 
O. intermedium strain NH-5 caused 52% inhibition 
of the fungus and volatile antibiotics gave 33% inhi-
bition. The S. maltophilia strain NH-300 inhibited C. 
falcatum by up to 46% by producing diffusible anti-
biotics. The effects of metabolites of all the strains on 
inhibition of C. falcatum were statistically significant 
(Table 2).

Production of HCN, protease and siderophores

All the tested bacterial strains and the reference 
strain P. fluorescens CHA0 produced HCN. The hy-
drolytic enzyme protease was only produced by 
the strain NH-276 while two strains, O. intermedium 
NH-5 and Pseudomonas sp. NH-203, produced si-
derophores (Table 3).

Biochemical identification of 2, 4-DAPG

The native strain O. intermedium NH-5 and ref-
erence strain P. fluorescens CHA0 produced variable 
quantities of DAPG 0.4 and 0.1 µg mL-1 of 108 CFU 
respectively as (Table 3).  None of the native strains 
produced pyoluteorin and pyrrolnitrin.

Absence of the PhlD gene in Ochrobactrum 
intermedium 

No band corresponding to the PhlD gene  was ob-
served in the test strain (Figure 1). This indicates the 
presence of a different biosynthetic pathway for 2, 
4-DAPG in O. intermedium.

Field performance of the antagonistic strains

Year 1
In the “soil inoculation”, the antagonistic bacteria 

S. maltophilia strain NH-300 suppressed red rot by 
35%, and O. intermedium strain NH-5 gave 32% sup-
pression of the disease. The reference strain P. fluore-
scens CHA0 suppressed disease by 40%.

In the “stalk inoculation” experiment, disease 
suppression was greatest from O. intermedium strain 
NH-5, with 53% disease suppression of red rot, fol-
lowed by the reference strain P. fluorescens strain 
CHA0 which gave 50% disease suppression. The S. 
maltophilia strain NH-300 caused 43% disease sup-

Table 1. Parameters used for determining red rot severity 
scores on sugarcane, caused by Colletotrichum falcatum.

Parameter Observation Score

Condition of 
the shoot

Green 0

Yellow/ dry 1

Lesion extent Very rare lesion 1

Lesion spreading, but not 
covering the entire cane area

2

Lesion covering entire inner 
cane area

3

White spots Restricted 1

Progressive 2

Nodal 
transgression

If 1 node crossed by fungal 
pathogen

1

If 2 nodes crossed by fungal 
pathogen

2

If 3 nodes crossed by fungal 
pathogen

3
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pression in this experiment. The effect of the other 
bacterial strains on red rot suppression was statisti-
cally significant (Tables 5 and 7).

Year 2
In the second year of field experiments, plants 

treated with strain O. intermedium NH-5 had the 
least red rot with a disease severity score of 3.7 and 
disease suppression 56% in the “stalk inoculation”  
which was statistically equivalent to disease reduc-
tion of the positive control strain CHAO. In the “soil 

inoculation” experiment, activity of S. maltophilia 
strain NH-300 was the greatest, and equivalent to 
the positive control with 60% disease suppression. 
The O. intermedium strain NH-5 suppressed the dis-
ease by 43%. Ability of all the strains to suppress red 
rot was significantly different (Tables 5 and 7).

Year 3
During this year, the antagonistic bacterium O. 

intermedium strain NH-5 caused 47% red rot sup-
pression in the “stalk inoculation” experiment. This 

Table 2.  In vitro inhibition of Colletotrichum falcatum by the extracellular metabolites and antibiotics produced by antago-
nistic bacteria. 

Strain

% Inhibition of  C. falcatum

Extracellular metabolites Antibiotics

5% 15% 25% Diffusible Volatile

Ochrobactrum intermedium NH-5 14.7 ba 35 b 52 b 45 a 32.5 a

Pseudomonas sp. NH-203 12.3 b 26.7 c 36 d 6.7 b 10.8 c

Pseudomonas sp. NH-276 6 c 38 a 55 a 5.2 b 11.7 bc

Stenotrophomonas maltophilia NH-300 22 a 37 ab 46 c 46 a 16.7 b

Pseudomonas fluorescens CHA0 ND ND ND ND ND

Control (d.H20/ LB) 0 d 0 d 0 e 0 b 0 d
a The mean values of three replications bearing different letters in the same column are significantly different from each other at P<0.05. 

Table 3. Production of different antifungal metabolites by antagonistic bacteria. 

Strain

Production of inhibitory factors

HCNa
Protease

zone diameter 
(mm)

Siderophores
zone diameter 

(mm)
PLTb PRNb 2, 4-DAPGb

(µg mL-1)

Ochrobactrum  intermedium NH-5 2 0 8.2 -- --  0.4 

Pseudomonas sp. NH-203 1 0 3.6 -- -- --

Pseudomonas sp. NH-276 2 7.2 0 -- -- --

Stenotrophomonas maltophilia NH-300 2 -- 0 -- -- --

Pseudomonas fluorescens CHA0 2 10.6 9.7 + + 0.1

Control (d.H20/ LB) 0 0 0 -- -- --
a HCN production by plate assay:  1, brown pigmentation on half portion of filter paper; 2, complete brown pigmentation on filter paper 

indicates HCN production. 
b Pyoluteorin (PLT), Pyrrolnitrin (PRN) and 2, 4- DAPG production by HPLC: +, positive production; --, no production.
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efficacy was second to that of positive control strain 
CHA0, which suppressed the disease by 60%. The 
strain S. maltophilia NH-300 suppressed the disease 

by up to 42%. A similar pattern of performance was 
observed in the “soil inoculation” experiment, but 
there was a high level of disease suppression (Table 
7). The effects of all strains on red rot  was were sta-
tistically significant (Tables 5 and 7).

The biocontrol efficacy of the bacterial strains was 
similar on both sugarcane varieties, but differed with 
respect to the time period throughout the three years 
of field experiments (Tables 4 and 6).

Discussion
Biological control of red rot of sugarcane using 

plant growth promoting rhizobacteria (PGPR) is an 
appealing alternative management strategy to other 
control measures. The biocontrol agents belonging to 
Bacillus and Pseudomonas are well characterized and 
documented (Ongena and Jacques, 2008; Ahmadza-
deh and Tehrani, 2009). However, use of antagonistic 
strains belonging to Ochrobactrum and Stenotropho-
monas has been rarely reported.

This paper is first to report on the potential of O. in-
termedium and S. maltophilia strains for control the red 
rot of sugarcane under field conditions. However, the 
occurrence of these two antagonistic bacteria has been 
shown to be rare (0.3% of the antagonistic bacteria) in 
the rhizosphere of sugarcane (Hassan et al., 2010a).

Cell-free supernatants, volatile and diffusible an-
tibiotics of the antagonistic strains inhibited the C. 

   
 

1      2      3      4        5 

745 bp  

Figure 1. Amplification of PhlD gene involved in synthesis 
of 2,4-diacetylphloroglucinol (DAPG). Lane 1, 2, Ochrobac-
trum intermedium strain NH-5; lane 3, 4, Pseudomonas fluo-
rescence CHA0; lane 5, 1kb Ladder (Fermentas).

Table 4. Analysis of variance table for the bacterial strain biocontrol activity against Colletotrichum falcatum on plants of two 
sugarcane varieties in “stalk inoculation” experiments.

Source Year 1-3 
(combined) Year-1 Year-2 Year-3

Year × Strain ** --- --- ---

Varieties (A) †NS †NS †NS †NS

Strain (B) ** ** ** **

Time period (C) ** †NS ** **

Variety × Strain (AB) †NS †NS †NS †NS

Variety × Time period (AC) †NS †NS †NS *

Strain × Time period (BC) †NS †NS †NS †NS

Variety × Strain × Time period (ABC) †NS †NS †NS †NS

* Significant at P=0.05.
* Significant P=0.01.
† NS= Non significant.
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falcatum on test plates. The efficacy of such second-
ary metabolites has been reported previously (Nau-
reen et al., 2009, Hassan et al., 2010b). Metabolites of 
the antagonistic bacteria O. intermedium strain NH-5 
and S. maltophilia strain NH-300 caused the maxi-
mum inhibition of the C. falcatum in vitro, and these 
strains also showed good potential to suppress the 
disease in vivo. Hence, an association was found be-
tween the inhibition of pathogen in vitro and disease 
control under field conditions. The strain O. interme-
dium NH-5 also produced HCN, siderophores and 

2, 4-diacetylphloroglucinol, which are compounds 
produced by a number of potent biocontrol agents 
(Bloemberg and Lugtenberg, 2001). All the other 
strains produced one or more of these metabolites, 
but not 2, 4-DAPG. Moreover, these strains were 
unable to significantly reduce red rot under field 
conditions. These findings support previous reports 
that 2, 4-DAPG producing strains are capable of pro-
tecting the plants from a broad range of pathogens, 
including fungi, viruses and nematodes (De Souza 
et al., 2003). 

Table 5. Effects of the antagonistic bacteria on the incidence of red rot (caused by Colletotrichum falcatum) on sugarcane in 
“stalk inoculation” experiments.

Strain

Year-1 Year-2 Year-3

Disease 
score

% Disease 
suppression

Disease 
score

% Disease 
suppression

Disease 
score

% Disease 
suppression

Ochrobactrum  intermedium NH-5 4 e 53 3.7 d 56 4.4 c 47

Pseudomonas sp NH-203 7.8 b 8 7.5 b 19 7.8 b 6

Pseudomonas sp NH-276 7 c 17 7.6 b 10 8.1 ab 3

Stenotrophomonas maltophilia NH-300 4.8 d 43 4.3 c 49 4.8 c 42

Pseudomonas fluorescens CHA0 4.2 e 50 3.3 d 61 3.3 d 60

Control 8.5 a 0 8.4 a 0 8.3 a 0

The mean values of three replications bearing different letters in the same column are significantly different from each other. 

Table 6. Analysis of variance table for biocontrol activity of bacterial the strains against Colletotrichum falcatum on two va-
rieties of sugarcane plants in “soil inoculation” experiments.

Source Year 1-3 
(combined) Year-1 Year-2 Year-3

Year × Strain ** --- --- ----

Varieties (A) †NS †NS †NS †NS

Strain (B) ** ** ** **

Time period (C) ** ** ** **

Variety × Strain (AB) †NS ** ** †NS

Variety × Time period (AC) †NS †NS †NS †NS

Strain × Time period (BC) †NS * †NS †NS

Variety × Strain × Time period (ABC) †NS †NS †NS †NS

* Significant at P=0.05.
** Significant at P=0.01.
† NS= Non significant.
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The 2, 4-DAPG-producing biocontrol agent O. in-
termedium strain NH-5 significantly suppressed dis-
ease in the “stalk inoculation” experiments, while the 
strain S. maltophilia NH-300 exhibited best biocontrol 
activity in the “soil inoculation” experiments. Bio-
logical suppression of sugarcane red rot by the Pseu-
domonas spp. has already been reported by Viswana-
than and Samiyappan (2008) and Hassan et al. 2011. 
However, the present study is the first report to dem-
onstrate the potential of strains belonging to the bac-
terial genera Ochrobactrum and Stenotrophomonas for 
suppression of this disease under field conditions.

Variation in the activity of these antagonistic 
strains may be related to the production of vari-
able secondary metabolites and hence, adoption of 
variable mechanism to suppress the disease. In the 
“stalk inoculation” experiments, the pathogen was 
inoculated in a way that avoided direct contact with 
the antagonistic bacterial strains. In the “soil inocu-
lation” experiments, both the pathogen and the an-
tagonistic bacteria were inoculated in soil to facilitate 
direct physical contact. The mechanism of disease 
suppression in which a biocontrol agent acts with-
out contact with the pathogen is termed induced 
systemic resistance (ISR). ISR is long-lasting resist-
ance and protects host plants against a broad range 
of pests (Heil and Bostok, 2002). Low performance 
of O. intermedium NH-5 in the “soil inoculation” ex-
periments compared to the “stalk inoculation” ex-
periments indicates the bacteria which suppress dis-
ease by the ISR mechanism are likely to be the most 

efficacious. Involvement of ISR in management of 
soil-borne diseases by PGPR in many crops has been 
well documented (Fallahzadeh et al., 2009; Verhagen 
et al., 2010). Performance of the strains for control of 
red rot was similar for both of the sugarcane varie-
ties used in this study. However, the efficacy of the 
strains to control disease decreased with increasing 
time. This could have been due to the rapid progres-
sion of the pathogen over time. These findings sug-
gest that multiple applications of antagonists after a 
suitable time intervals may be necessary. There were 
no significant ‘variety’ effects and the disease levels 
in the second time period of assessment were greater 
in general than the first. The effects of all strains and 
their mutual interactions is shown in Tables 4 and 6.

This study reports the production of 2,4 DAPG by 
the O. intermedium strain NH-5 and has demonstrated 
the potential of O. intermedium NH-5 and S. maltophilia 
NH-300 for control of red rot in sugarcane crops.

The role of 2,4 DAPG-producing strains in sup-
pressing plant diseases has been widely reported 
(Meziane et al., 2005). This compound 2, 4 DAPG 
is mostly produced by the pseudomonads, and the 
phlD gene has been recognized as marker for the 2, 4 
DAPG-producing pseudomonads (McSpadden et al., 
2001). Absence of the phlD gene suggests presence of 
a biosynthetic pathway different from that in pseu-
domonads. It will be important to explore the genes 
involved in DAPG production in O. intermedium. 
and to identify antifungal metabolites involved in 
the antagonistic activity of the S. maltophilia NH-300. 

Table 7. Effect of the antagonistic bacteria on the incidence of red rot disease caused by Colletotrichum falcatum on sugarcane 
in “soil inoculation” experiments. 

Strain

Year-1 Year-2 Year-3

Disease 
incidence 

(%)

Disease 
suppression 

(%)

Disease
Incidence 

(%)

Disease 
suppression 

(%)

Disease 
incidence 

(%)

Disease 
suppression 

(%)

Ochrobactrum  intermedium NH-5 23.3 d 32 25.3 d 43 19.2 d 58

Pseudomonas sp. NH-203 28.9 c 13 31.1 c 29 34.4 b 24

Pseudomonas sp. NH-276 32.1 b 4 33 b 24 32.2 c 29

Stenotrophomonas maltophilia NH-300 21.7 e 35 17.2 e 60 20.5 d 55

Pseudomonas fluorescens CHA0 20.1 f 40 17.6 e 60 17.1 e 62

Control 34.5 a 0 43.8 a 0 45.2 a 0

The mean values of three replications bearing different letters in the same column are significantly different from each other.
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The detection of virulence genes, genomic analysis 
and comparison with the other strains of Stenotropho-
monas and Ochrobacterum spp., which are either hu-
man opportunistic or plant associated (Crossman et 
al., 2008; Teyssier et al., 2005), should be investigated 
before registration of these strains as biopesticides.

The strains belonging to genera Ochrobactrum 
and Stenotrophomonas are being utilized as PGPRs, 
but few strains also have bivalent interaction with 
plant or human hosts. They colonize human tissues 
and cause diseases in humans. Hence, there is need 
to carry out risk assessment before registering them 
as bioinoculants or biopesticides (Berg et al., 2005).

In conclusion, the potent antagonistic strains O. 
intermedium NH-5 produced HCN, siderophores and 
the antibiotic 2, 4-DAPG, while S. maltophilia NH-300 
produced only HCN. These strains suppressed the 
red rot of sugarcane under field conditions, irrespec-
tive of the fungal inoculation methods used in this 
study. Moreover, these strains showed consistency 
in performance in three consecutive years of field 
evaluations. These results suggest that these strains 
are good candidates for biopesticide development. 
However, additional investigations are required, in-
cluding toxicity assays, risk assessment, as well as 
development of suitable formulations and applica-
tion methods compatible with conventional sugar-
cane crop management.
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