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Summary. A pot experiment was conducted to determine the effects of three inoculum levels (2,500, 5,000 and 
10,000 eggs/plant) on the reproduction of Meloidogyne hispanica and M. javanica isolates and growth of the sus-
ceptible tomato genotypes Easypeel and Moneymaker, and genotypes Motelle and VFNT-Cherr, which possess 
the Mi-gene, at 25±2°C. Sixty days after inoculation, roots were assessed for gall index (GI), reproduction factor 
(Rf=final/initial population density) and reproduction index (RI=Rf in the Mi-gene tomato plants/Rf in tomato 
Easypeel × 100). Shoot and root lengths and fresh and dry root and shoot weights were also recorded. Both species 
of Meloidogyne reproduced at all inoculum levels on all four tomato genotypes (4≤GI≤5 and 3.44≤Rf≤317.30). The 
M. javanica isolate, obtained from an infected potato field, was identified as natural and partially virulent to the 
Mi-gene (3.71≤RI≤20.19). This emphasizes the need for new sources of resistance to root-knot nematodes and for 
testing Mi-tomato plants for their susceptibility to local populations. Reproduction of M. javanica and M. hispanica 
on the resistant Motelle and VFNT-Cherr was significantly less than on the susceptible Easypeel and Moneymaker. 
VFNT-Cherr was more resistant than Motelle, which suggest an influence of the genetic background of the plants 
on the nematode response. For Easypeel and Moneymaker, there was a trend of decreased plant growth param-
eters with increasing inoculum level, irrespective of the nematode species, due to damage caused by the increasing 
number of nematodes that invaded plant roots. However, these values on Motelle and VFNT-Cherr remained rela-
tively stable regarding shoot and total shoot plus root dry weight. The reproductive rate of M. javanica was greater 
than that of M. hispanica on all four genotypes tested, and tomato plants inoculated with M. hispanica had greater 
growth parameters. The resistance response of the Mi-tomato plants was independent of the Meloidogyne species, 
however, because both species gave similar RIs.

Key words: Mi-gene, root-knot nematodes, Solanum lycopersicum L., virulence.

Introduction
Nematodes of the genus Meloidogyne, commonly 

known as root-knot nematodes (RKNs), belong to 
a group of plant-parasitic nematodes that is widely 
dispersed around the world. Root-knot nematodes 
can parasitize most crops, affecting production and 
quality. These nematodes constitute a major threat 
to agriculture in temperate and tropical regions and 

an obstacle to agricultural production in developing 
countries (Sasser, 1977; Hussey and Janssen, 2002; 
Abad et al., 2003). During their development inside 
host roots these nematodes release secretions, and 
some cells of the vascular parenchyma tissues be-
come hypertrophied, with intense cellular multipli-
cation and hyperplasia, leading to formation of giant 
cells and galls. Meloidogyne species, as obligate seden-
tary endoparasites, require healthy plants to support 
their development and reproduction. Differentiation 
of females is favoured when food is available, since 
the reproductive function requires a greater expendi-
ture of energy. Alternatively, nematodes differentiate 
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into a larger number of males when food availabil-
ity is insufficient (Triantaphyllou and Hirschmann, 
1959; Eisenback and Triantaphyllou, 1991).

Meloidogyne infection affects host water and nu-
trient absorption and their translocation by root sys-
tem, decreases the rate of leaf photosynthesis, which 
is negatively correlated with inoculum levels, and 
mobilizes photosynthates from shoots to roots, more 
specifically to giant cells, in order to support nema-
tode development and reproduction (Hussey, 1985; 
Carneiro et al., 1999). Symptoms exhibited by RKN-
infected plants lead to suppression of plant yields 
and are caused by an altered plant metabolism, usu-
ally involving debilitation of the root systems and 
leaf nutritional deficiencies, such as chlorosis with 
temporary wilting in periods of water stress and 
high temperatures. Some of these symptoms differ 
greatly, however, according to plant species and cul-
tivars, and can be confused with the damage associ-
ated with poor nutrition or injury caused by bacte-
ria, pathogenic fungi and/or viruses (Hussey, 1985; 
Whitehead, 1997). Some examples of the effects of 
these economically important RKNs include: stunt-
ing, yellowing, internal potato tissue necrosis and 
browning and severe galling in potato tubers caused 
by M. chitwoodi and M. fallax; forking and hairiness 
of carrots due to M. hapla; yellow patch disease on 
grass in golf courses caused by M. minor; and stunt-
ing, wilting and severe galling of hosts of M. ethiopica 
(EPPO/OEPP, 2004, 2011; Moens et al., 2009; Wese-
mael et al., 2011). The extent of the damage caused by 
nematodes is directly proportional to the number of 
second-stage juveniles (J2) penetrating and becom-
ing established in the host root tissue, and their re-
production rate in plants (Barker and Olthof, 1976; 
Karssen and Moens, 2006). Increasing the initial pop-
ulation density of M. javanica correlated negatively 
with growth of tomato and pepper, and similarly for 
sugarbeet infected with Heterodera shachtii (Griffin, 
1981; Mekete et al., 2003). According to Wong and 
Mai (1973) and Vrain (1982), the greatest reductions 
in foliage weights of lettuce and root weights of car-
rots were in plants inoculated with the highest inoc-
ulum levels of M. hapla, in growth chamber and field 
experiments. Fortnum et al., (1991) recorded declines 
in leaf area and root, shoot, leaf and total plant dry 
weights with increasing inoculum levels of M. in-
cognita on tomato. Di Vito et al., (1983) reported that 
high population densities of M. incognita resulted in 
severe growth reduction or death, of tomato Roma 

VF plants, while resistant tomato plants showed 
negligible growth reduction even at high population 
densities.

Research into the relationship between initial 
population densities and plant damage has been 
performed for the RKN species which are more 
widely distributed in agricultural areas, but no 
studies have been reported with M. hispanica. This 
RKN species was isolated for the first time in Se-
ville, Spain, from a peach rootstock (Prunus persica 
silvestris) (Hirschmann, 1986), and there are records 
of occurrence in Africa, Asia, Europe, North, Central 
and South America and Australia (Landa et al., 2008). 
This species has the ability to infect and reproduce in 
a wide range of plant species and cultivars (Maleita 
et al., 2011a). The nematode is of great concern to 
tomato producers due to its ability to reproduce on 
resistant cultivars containing the Mi-1.2 gene (Ma-
leita et al., 2011b). The purpose of the present study 
was to determine the effects of increasing inoculum 
levels of M. hispanica and M. javanica on nematode 
reproduction and growth of the tomato genotypes 
Easypeel and Moneymaker, which are susceptible 
to Meloidogyne spp., and Motelle and VFNT-Cherr, 
which possess the Mi-1.2 gene (referred to hereafter 
as Mi-gene).

Materials and methods
Nematode isolates

One isolate each of M. hispanica (obtained from 
infected fig-tree roots collected in Odeceixe, Faro, 
Portugal) and of M. javanica [from a potato field 
in Celorico da Beira (Espinheiro), Portugal] were 
maintained on tomato, Solanum lycopersicum L., cv. 
Easypeel, in pots containing sterilized sandy loam 
soil and sand (v:v;1:1) in the Nematology Laboratory 
at the University of Coimbra, Portugal. The isolates 
were characterized according to perineal pattern 
morphology and isoesterase phenotype (Hi4 and J3, 
respectively) (Abrantes et al., 2008). The isolate of M. 
javanica was included in this experiment for compar-
ison with M. hispanica.

Plant material

The susceptible (mimi) tomato genotypes, 
Easypeel and Moneymaker, and the resistant (MiMi) 
genotypes Motelle and VFNT-Cherr (obtained from 
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C. Rick, Tomato Genetics Stock Center, University 
of California, Davis, USA) were used in this study. 
Tomato seedlings were grown from seeds in a Petri 
dish with filter paper soaked in distilled water and 
placed in a growth chamber at 26‒27ºC. They were 
transplanted to 5-cm diameter plastic pots filled 
with sterilized sandy loam soil and sand (v:v;1:1) 
and maintained in a growth chamber at 25±2ºC, 
with a photoperiod 12 h and at 60% relative humid-
ity. Plants were watered daily and fertilized week-
ly with Hiponex® (The Hiponex Co., Inc., Copley 
Ohio, USA), a water soluble fertilizer (7% N, 6% P 
and 19% K).

Pot experiment

One four-week-old seedling of each tomato geno-
type was transplanted to each 10 cm-diameter pot 
(capacity 500 cm3) filled with sterilized sandy loam 
soil and sand (v:v; 1:1). The nematode inocula (eggs) 
were obtained from infected Easypeel tomato roots, 
using a 0.52% sodium hypochlorite (NaOCl) solution 
(Hussey and Barker, 1973). Four plants of each geno-
type were inoculated with 0, 2,500, 5,000 or 10,000 
eggs (initial population density, Pi) of M. hispanica or 
M. javanica corresponding to 28 treatments with four 
replicates/treatment (four tomato genotypes × two 
species of Meloidogyne × three inoculum levels, plus 
four non-inoculated plants of each genotype). Pots 
were arranged in a completely randomized experi-
mental design in the growth chamber. Some plants 
of the tomato genotype Motelle died before the end 
of the experiment, and the number of replicates was 
reduced to two for the non-inoculated plants and 
three for those inoculated with M. javanica.

Sixty days after inoculation, the plants were 
removed from pots and the roots were carefully 
washed free of soil. The number of galls/root sys-
tem was assessed and assigned a severity scale from 
0 to 5 (0=no galls, 1=1‒2, 2=3‒10, 3=11‒30, 4=31‒100, 
5=>100 galls per root system) (Taylor and Sasser, 
1978). Final population densities (Pf) were expressed 
as the total number of eggs + second-stage juveniles 
(J2). Eggs were extracted from the entire root system 
of each plant with a 0.52% NaOCl solution (Hussey 
and Barker, 1973). Juveniles were extracted from 
soil by the Whitehead and Hemming tray method 
(Hooper, 1986), and J2 that migrated to the water 
were collected 1 week later, concentrated on a 20 µm 
pore sieve and counted. Suitability of the plant to the 

nematode was assessed on the basis of root gall index 
(GI), an indicator of plant damage, and the reproduc-
tion factor (Rf=number of eggs and J2 in roots and 
J2 in soil/Pi), an indicator of nematode reproduction 
or host efficiency, according to the modified quan-
titative scheme of Canto-Sáenz (Sasser et al., 1984). 
Because all tomato genotypes were suitable hosts for 
M. hispanica and M. javanica, the reproduction index 
(RI=Rf in tomato genotypes with Mi-gene/Rf in to-
mato Easypeel × 100) was calculated. Plants in which 
RI was more than 50% were designated as suscepti-
ble, 25≤RI≤50%, slightly resistant; 10≤RI≤25%, mod-
erately resistant; 1≤RI≤10%, very resistant; RI≤1%, 
highly resistant; or immune when nematodes pen-
etrated the roots but did not develop or reproduce 
(Triantaphyllou, 1975; Hadisoeganda and Sasser, 
1982). Plant shoot and root lengths (stems and root 
systems were carefully stretched and measured with 
a rule) and fresh and dry root and shoot weights 
were also recorded.

Statistical analyses

Analysis of variance (ANOVA), with no block-
ing, as appropriate for the completely randomised 
design, was applied to the data in order to assess the 
statistical significance of the main effects and inter-
actions between the three experimental factors. For 
all analyses, a logarithmic (to base e) transformation 
of the data was used to ensure a Normal distribu-
tion and constant variance for the data, as checked 
by plotting the residuals against the fitted values 
from the ANOVA. Following the extraction of the 
significant interaction terms from the ANOVA (us-
ing the F-test), means of interest in these terms were 
compared using the appropriate least significant dif-
ference (LSD) values, at the 5% level of probability. 
Statistical analyses were performed using GenStat® 
(2009, 12th edition, © VSN International Ltd, Hemel 
Hempstead, UK).

Results
Both species of Meloidogyne reproduced on all 

the tomato genotypes, with high numbers of eggs 
and J2 recovered from roots and soil, so that all four 
genotypes were suitable hosts for the nematode 
and would be considered as susceptible (GI>2 and 
Rf>1) according Sasser et al. (1984) (Table 1). How-
ever, tomato genotypes Easypeel and Moneymaker 
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were better nematode hosts than Motelle and VFNT-
Cherr, wherefore the reproduction index was calcu-
lated. The RI values for genotype Motelle ranged 
from 12.72% (M. javanica inoculated with 2,500 eggs) 
to 25.97% (M. hispanica inoculated with 10,000 eggs) 
(Table 1). Genotype Motelle was considered mod-
erately resistant (12.72≤RI≤20.23%) to M. javanica 
and M. hispanica, irrespective of the initial inoculum 
level; except when inoculated with 10,000 M. hispan-
ica eggs where it was considered slightly resistant 
(RI=25.97%). Genotype VFNT-Cherr responded as 
very resistant to both species at all three initial in-
oculum levels (3.71≤RI≤8.11%) (Table 1).

Although the interaction between the tomato 
genotypes and the Meloidogyne species was not sta-
tistically significant for Pf (P>0.05, F-test), there was 
a trend for all genotypes to show greater Pf levels 
when inoculated with M. javanica than M. hispanica. 
However, the egg population recovered from roots 
of all genotypes (Pfr) was significantly greater for M. 
javanica than M. hispanica [P<0.05, LSD test; means 
on log scale from significant (P=0.024, F-test) geno-
type by isolate interaction: Easypeel - M. hispanica 
12.770, M. javanica 13.553; Moneymaker - M. hispan-
ica 12.819, M. javanica 13.357; Motelle - M. hispanica 
11.263, M. javanica 11.697; VFNT-Cherr - M. hispanica 
10.029, M. javanica 10.344; SED=0.1090 with 69 df; 
LSD (5%)=0.2175]. Genotype VFNT-Cherr showed 
the lowest Pfr values ranging from 15,825 to 37,067 
eggs/plant, and this genotype was significantly dif-
ferent (P<0.05, LSD test) from Motelle, as the next 
most suitable genotype for egg production. The final 
population recovered from soil (Pfs) was greater for 
M. javanica than M. hispanica for all genotypes except 
Moneymaker, with significant differences between 
Motelle and VFNT-Cherr [P<0.05, LSD test; means 
on log scale from significant (P<0.001, F-test) geno-
type by isolate interaction: Easypeel - M. hispanica 
10.421, M. javanica 10.531; Moneymaker - M. hispan-
ica 10.610, M. javanica 10.401; Motelle - M. hispanica 
7.832, M. javanica 9.375; VFNT-Cherr - M. hispanica 
7.266, M. javanica 8.395; SED=0.2604 with 69 df; LSD 
(5%)=0.5194]. 

Greater Pf and Pfr values were recorded for M. 
javanica than M. hispanica at all inoculum levels 
[P<0.05, LSD test; Pf means on log scale from signifi-
cant (P=0.013, F-test) inoculum by isolate interaction: 
2,500 eggs - M. hispanica 11.616, M. javanica 12.298; 
5,000 eggs - M. hispanica 11.754, M. javanica 12.338; 
10,000 eggs - M. hispanica 12.036, M. javanica 12.357; 

SED=0.0869 with 69 df; LSD (5%)=0.1733. Pfr means 
on log scale from significant (P=0.033, F-test) inocu-
lum by isolate interaction: 2,500 eggs - M. hispanica 
11.550, M. javanica 12.204; 5,000 eggs - M. hispanica 
11.662, M. javanica 12.246; 10,000 eggs - M. hispanica 
11.949, M. javanica 12.264; SED=0.0944 with 69 df; 
LSD (5%)=0.1884]. The tomato genotypes were af-
fected differently by the increase in inoculum levels 
as shown by a significant (P<0.001, F-test) genotype 
by inoculum interaction for both Pf and Pfr. The 
greatest effect was observed on tomato Motelle, Pf 
increasing on average by 78% and Pfr by 76%, com-
pared with Pi 10,000 to Pi 2,500. Tomato VFNT-Cherr 
showed the lowest  Pf values of the four genotypes, 
and GI≥4, for all inoculum levels, and Easypeel and 
Moneymaker the greatest (GI=5). Genotype Money-
maker was relatively only slightly affected by the in-
crease in the initial inoculum levels (Table 1).

Root length was only affected by the Meloidogye 
species (P=0.002, F-test). Longer roots were observed 
in plants infected by M. javanica than M. hispanica 
[P<0.05, LSD test; means on log scale: M. hispanica 
3.068, M. javanica 3.174; SED=0.0332 with 79 df; LSD 
(5%)=0.0661]. Statistically significant differences in 
shoot and total shoot plus root lengths were detected 
between the genotypes and Meloidogyne species, and 
genotypes and inoculum levels (significant interac-
tions, P<0.001, F-tests). Shoot and total shoot plus 
root lengths were more reduced in Moneymaker 
and Motelle when inoculated with M. javanica than 
for M. hispanica, whereas genotype VFNT-Cherr had 
longer shoot and total shoot plus root lengths when 
inoculated with M. javanica than with M. hispanica. 
Shoot and total shoot plus root lengths decreased 
with increasing inoculum levels in all genotypes, but 
most dramatically in Moneymaker, with an average 
reduction of 42% and 44%, respectively for the two 
nematodes, compared with non-inoculated plants 
(Figure 2a).

Smaller root fresh weight (RFW) and root dry 
weight (RDW) were recorded for all tomato geno-
types infected by M. javanica compared to M. hispan-
ica, with significant genotype by isolate interactions 
(P<0.001, F-tests) for both variables (Figure 2b and 
c). Differences were significant (P<0.05) for all geno-
types except Easypeel [means on log scale of RFW: 
Easypeel M. hispanica 1.9037, M. javanica 1.8334; 
Moneymaker M. hispanica 1.7167, M. javanica 1.5405; 
Motelle M. hispanica 1.6791, M. javanica 1.5859; 
VFNT-Cherr M. hispanica 1.7722, M. javanica 1.3861; 
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SED=0.04087 with 79 df; LSD (5%)=0.08136; means 
on log scale of RDW: Easypeel M. hispanica -0.441, M. 
javanica -0.627; Moneymaker M. hispanica -0.739, M. 
javanica -0.943; Motelle M. hispanica -0.742, M. javani-
ca -1.003; VFNT-Cherr M. hispanica -0.596, M. javanica 
-1.241; SED=0.0593 with 79 df; LSD (5%)=0.1181]. 
Easypeel had the greatest RFW in both inoculated 
and non-inoculated conditions. There were also sig-
nificant genotype by inoculum interactions for RFW 
(P=0.026, F-test) and RDW (P=0.036, F-test). When 
the nematode inoculum increased, RFW and RDW 
values decreased for all genotypes, except Easypeel 
[means on log scale of RFW by inoculum levels: 2,500 
eggs - Easypeel 1.8412, Moneymaker 1.6284, Motelle 
1.7320, VFNT-Cherr 1.5991; 5,000 eggs - Easypeel 
1.8702, Moneymaker 1.6693, Motelle 1.6377, VFNT-
Cherr 1.5728; 10,000 eggs - Easypeel 1.8943, Money-
maker 1.5881, Motelle 1.5279, VFNT-Cherr 1.5657; 
SED=0.05006 with 79 df; LSD (5%)=0.09964; means 
on log scale of RDW by inoculum levels: 2,500 
eggs - Easypeel -0.556, Moneymaker -0.778, Motelle 
-0.781, VFNT-Cherr -0.769; 5,000 eggs - Easypeel 
-0.501, Moneymaker -0.797, Motelle -0.909, VFNT-
Cherr -1.040; 10,000 eggs - Easypeel -0.546, Money-
maker -0.947, Motelle -0.927, VFNT-Cherr -0.946; 
SED=0.0727 with 79 df; LSD (5%)=0.14460. Geno-
type Motelle had the greatest decrease (9%)] in RFW 
comparing non-inoculated plants to those with the 
greatest amount of inoculum, although both geno-
types Motelle and VFNT-Cherr appeared to show a 
slight increase compared to non-inoculated plants 
for the lowest amount of inoculum [means on log 
scale of RFW by inoculum levels: non-inoculated - 
Motelle: 1.6195, VFNT-Cherr 1.5707; 2,500 eggs - Mo-
telle 1.7320, VFNT-Cherr 1.5991; 5,000 eggs - Motelle 
1.6377, VFNT-Cherr 1.5728; 10,000 eggs - Motelle 
1.5279, VFNT-Cherr 1.5657; SED=0.06131 with 79 df; 
LSD (5%)=0.12204] (Figure 2b).

For shoot fresh weight (SFW), there were signifi-
cant genotype by isolate and genotype by inoculum 
interactions (P<0.001, F-tests). SFW was greater for 
tomato genotypes Easypeel, Moneymaker and Mo-
telle inoculated with M. hispanica than M. javanica, 
the difference being significant (P<0.05, LSD test) for 
Motelle [means on log scale by genotype: Easypeel 
- M. hispanica 1.722, M. javanica 1.713; Moneymaker 
- M. hispanica 2.223, M. javanica 2.091; Motelle - M. 
hispanica 2.555, M. javanica 2.155; VFNT-Cherr - M. 
hispanica 2.152, M. javanica 2.241; SED=0.0832 with 79 
df; LSD (5%)=0.1656]. SFW decreased with increas-

ing inoculum levels for all genotypes, except Motelle 
[means on log scale of SFW by inoculum levels: 2,500 
eggs - Easypeel 1.961, Moneymaker 2.411, Motelle 
2.133, VFNT-Cherr 2.227; 5,000 eggs - Easypeel 1.685, 
Moneymaker 2.234, Motelle 2.445, VFNT-Cherr 
2.226; 10,000 eggs - Easypeel 1.506, Moneymaker 
1.825, Motelle 2.488, VFNT-Cherr 2.136; SED=0.1019 
with 79 df; LSD (5%)=0.2028]. For shoot dry weight 
(SDW), there was a genotype by inoculum interac-
tion (P<0.001, F-test) and a species by inoculum 
interaction (P<0.001, F-test). SDW decreased more 
with increasing amounts of inoculum of M. hispanica 
than M. javanica, but SDW was greater for tomato 
plants inoculated with M. hispanica [means on log 
scale of SDW by inoculum levels: 2,500 eggs - M. his-
panica 0.505, M. javanica 0.358; 5,000 eggs - M. his-
panica 0.337, M. javanica 0.142; 10,000 eggs - M. his-
panica -0.033, M. javanica 0.044; SED=0.0496 with 79 
df; LSD (5%)=0.0986]. SDW decreased markedly for 
genotypes Easypeel and Moneymaker with increas-
ing amounts of inoculum, but were similar for Mo-
telle and VFNT-Cherr [means on log scale of SDW 
by inoculum levels: 2,500 eggs - Easypeel 0.170, 
Moneymaker 0.410, Motelle 0.646, VFNT-Cherr 
0.501; 5,000 eggs - Easypeel -0.195, Moneymaker 
0.090, Motelle 0.593, VFNT-Cherr 0.471; 10,000 eggs 
- Easypeel -0.595, Moneymaker -0.461, Motelle 0.654, 
VFNT-Cherr 0.425; SED=0.0701 with 79 df; LSD 
(5%)=0.1395] (Figure 2b and c).

For total shoot plus root fresh weight (TFW) there 
were significant genotype by isolate (P=0.008, F-test) 
and genotype by inoculum (P<0.001, F-test) interac-
tions. TFW was less for plants infected by M. javan-
ica than M. hispanica [means on log scale of TFW by 
genotype: Easypeel - M. hispanica 2.522, M. javanica 
2.475; Moneymaker - M. hispanica 2.709, M. javanica 
2.551; Motelle - M. hispanica 2.907, M. javanica 2.655; 
VFNT-Cherr - M. hispanica 2.674, M. javanica 2.597; 
SED=0.0449 with 79 df; LSD (5%)=0.0894]. Also, TFW 
decreased with increasing amounts of inoculum for 
all genotypes except for Motelle [means on log scale 
of TFW by inoculum levels: 2,500 eggs - Easypeel 
2.601, Moneymaker 2.790, Motelle 2.712, VFNT-
Cherr 2.661; 5,000 eggs - Easypeel 2.477, Moneymak-
er 2.689, Motelle 2.817, VFNT-Cherr 2.656; 10,000 
eggs - Easypeel 2.417, Moneymaker 2.411, Motelle 
2.813, VFNT-Cherr 2.589; SED=0.0550 with 79 df; 
LSD (5%)=0.10940]. There were significant genotype 
by inoculum (P<0.001, F-test) and species by inocu-
lum (P=0.039, F-test) interactions for total shoot plus 
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Figure 1. Effects of different initial inoculum levels ( 0,  2,500,  5,000 or  10,000 eggs/plant) of Meloidogyne hispanica (Hi) and 
M. javanica (J) on mean plant length (a) and fresh (b) and dry (c) weights, of tomato genotypes Easypeel, Moneymaker, 
Motelle and VFNT-Cherr. Bars represent standard deviations. See Results section for data means on natural log (to base e) 
scale for statistical comparisons.
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root dry weight (TDW). Genotypes inoculated with 
M. hispanica showed greater TDW than those inocu-
lated with M. javanica at all inoculum levels (P<0.05, 
LSD test). However, with increasing inoculum levels, 
the greatest reduction was observed in plants inocu-
lated with M. hispanica [means on log scale for TDW 
by inoculum levels: 2,500 eggs - M. hispanica 0.8041, 
M. javanica 0.6317; 5,000 eggs - M. hispanica 0.6746, 
M. javanica 0.4654; 10,000 eggs - M. hispanica 0.4543, 
M. javanica 0.3777; SED=0.03728 with 79 df; LSD 
(5%)=0.07421]. TDW was significantly less in geno-
types Easypeel and Moneymaker with the greatest 
amount of inoculum, with reductions of up to 70% 
compared to non-inoculated plants. There was only 
a slight reduction in TDW for genotype VFNT-Cherr 
but no change for Motelle [means on log scale for 
TDW by inoculum levels: 2,500 eggs - Easypeel 
0.5676, Moneymaker 0.6798, Motelle 0.8652, VFNT-
Cherr 0.7590; 5,000 eggs - Easypeel 0.3590, Money-
maker 0.4419, Motelle 0.8006, VFNT-Cherr 0.6786; 
10,000 eggs - Easypeel 0.1329, Moneymaker 0.0260, 
Motelle 0.8437, VFNT-Cherr 0.6614; SED=0.05273 
with 79 df; LSD (5%)=0.10495] (Figure 2b and c).

Discussion
Meloidogye hispanica and M. javanica were able to 

reproduce (Rf>1) at all inoculum levels on Motelle 
and VFNT-Cherr, both of which are homozygous at 
the Mi locus. The Mi-gene in tomato confers resist-
ance to the three most common warm climate RKN, 
M. arenaria, M. incognita and M. javanica (Williamson, 
1999) but not immunity. However, some isolates of 
these species, and other Meloidogyne species such as 
M. enterolobii, M. exigua, M. floridensis, M. hapla and 
M. hispanica, can reproduce on tomato genotypes 
possessing the Mi-gene (Brown et al., 1997; Brito et 
al., 2007; Abd-Elgawad and Molinari, 2008; Silva et 
al., 2008, Maleita et al., 2011b).

Our results reveal that the Portuguese isolate of 
M. javanica can be considered as natural and partially 
virulent (Tzortzakakis and Gowen, 1996) as it repro-
duces (Rf>1) on Mi-tomato plants, but at lower levels 
than on susceptible control plants (3.71<RI<20.19%) 
This isolate was obtained in 1980, from an infested 
potato field with high yield losses, and has been 
maintained in the laboratory on susceptible tomato 
genotypes. The crop rotation scheme used in this 
field was potato and bean rotated with ryegrass (Loli-
um multiflorum Lam.) and rye (Secale cereale L.). Thus, 

this M. javanica population seems to have an inher-
ent ability to reproduce on Mi-tomato plants as there 
was no prior exposure of the nematode to the Mi-
gene, at least in recent cropping history of the field, 
although the possibility of previous exposure in evo-
lutionary time cannot be discarded (Roberts, 1995; 
Ornat et al., 2001). According to Castagnone-Sereno 
et al. (1993), the acquired nematode virulence to 
plants with the Mi-gene is stable and inherited, even 
after extended growth of the virulent nematode on 
susceptible plants. Natural and selected resistance-
breaking populations of M. javanica have already 
been reported in Cyprus, Egypt, Greece, Jordan, Mo-
rocco, Spain, Tunisia and Turkey (Philis and Vakis, 
1977; Eddaoudi et al., 1997; Tzortzakakis et al., 1999, 
2005; Ornat et al., 2001; Molinari and Caradonna, 
2003; Verdejo-Lucas et al., 2009; Devran and Söğüt, 
2010). Selection of virulent populations can occur 
due to pressure exerted on the nematodes by their 
frequent cultivation in the field or repeated inocula-
tion in laboratory conditions, on Mi-resistant tomato 
plants. The occurrence of nematode populations 
able to overcome the Mi-resistance gene in tomato 
genotypes emphasizes the need for developing new 
sources of resistance to RKN, and also for screening 
genotypes against local populations of Meloidogyne 
for their ability to overcome the Mi-resistance gene. 
Otherwise, the successful use of tomato plants with 
the Mi-gene in integrated control strategies such as 
crop rotation could be compromised.

The reproduction of both Meloidogyne species on 
tomato genotypes Motelle and VFNT-Cherr, with the 
Mi-gene, was less (3.44≤Rf≤43.78) than on Easypeel 
and Moneymaker (44.47≤Rf≤317.30) that lacked this 
gene. Genotype VFNT-Cherr, considered very resist-
ant to both nematode species irrespective the initial 
amount of inoculum (3.71≤RI≤8.11%), was more re-
sistant than Motelle (12.72≤RI≤25.97%). These results 
suggest that the Mi-gene provides partial protection 
against the development of M. hispanica and M. ja-
vanica, and nematode reproduction is influenced by 
the genetic background of the plants (Tzortzakakis 
et al., 1998; Jacquet et al., 2005; Maleita et al., 2011b).

For all tomato genotypes inoculated with either 
isolate, and increasing inoculum levels, there was a 
decrease in root length and shoot/total (shoot plus 
root) length. This was most likely due to damage 
caused by the increasing number of nematodes that 
invaded plant roots, probably causing reduced nu-
trient and water uptake (Karssen and Moens, 2006). 
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According to Carneiro et al. (1999), in nematode-in-
fected soybean plants, reduction in shoot length is 
strongly influenced by increased partitioning of car-
bohydrates to the roots and may vary with nematode 
species. Mobilization and accumulation of photo-
synthetic products from shoots to roots reaches max-
imum levels when adult females start laying eggs 
(Karssen and Moens, 2006). The growth responses 
of tomato genotypes can be related to the presence 
of the Mi-gene and consequently the inability of the 
nematodes to reproduce at the same levels as on the 
susceptible genotypes, which suggests incomplete or 
partial nematode virulence (Roberts, 1995). The re-
sults for root and shoot dry weights confirmed the 
differences between species and genotypes and are 
considered a more realistic measure of the effects of 
the nematode on plant growth than the other growth 
parameters evaluated (Fortmun et al., 1991). 

Both genotypes Motelle and VFNT-Cherr showed 
slight increases in root fresh weight at the lowest in-
oculum level compared to non-inoculated control 
plants. This increase has been attributed to gall for-
mation and secondary root proliferation (Carneiro et 
al., 1999; Abrão and Mazzafera, 2001).

The resistance response of the Mi-tomato plants 
Motelle and VFNT-Cherr was independent of the 
RKN species, because both species provided similar 
RI for each genotype. However, nematode reproduc-
tion and growth parameters differed between M. ja-
vanica and M. hispanica. Although the increase in the 
amount of inoculum led to reductions in growth pa-
rameters, tomato plants inoculated with M. hispanica 
showed greater growth parameters than those with 
M. javanica, and lower values of Rf. The M. javanica 
isolate used in this study presented greater repro-
ductive and destructive potential than the isolate of 
M. hispanica, and both nematode species seriously 
affected the growth of the tomato genotypes tested. 

This study has demonstrated that M. hispanica 
can be a threat to tomato production and suggests 
that it will be important to monitor the performance 
of tomato plants with the Mi-gene in fields infested 
with M. javanica.
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