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Introduction

Fusarium wilt, caused by Fusarium oxysporum
f. sp. ciceris (Foc), is the most destructive fungal
disease of chickpea (Cicer arietinum L.). The fun-
gus invades the vascular tissues and causes severe
wilting by blocking xylem transport and impeding
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water flow (Trapero-Casas and Jiménez-Diaz, 1985;
Beckman, 1987; Halila and Strange, 1996). Bio-
logical control of this disease is ecologically prefer-
able to the use of synthetic fungicides.

Recently several studies have reported the im-
portance of strains of non-pathogenic plant growth-
promoting rhizobacteria (PGPR) in enhancing
plant resistance (Kloepper, 1993; Martin and Lop-
er, 1998; Silva et al., 2004). Among the most exten-
sively studied PGPR are some Pseudomonas spp.
that cause resistance to disease in plants (Alström,
1995; Saikia et al., 2003; Singh et al., 2003). Other
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examples of PGPR are some Rhizobium spp. which
have recently been shown to induce a defence re-
sponse in chickpea infected with Fusarium oxyspo-
rum f. sp. ciceris. A previous study by our team
found that treatment of germinated seeds with
Rhizobium induced the expression of compounds
involved in plant defence such as peroxidases and
polyphenoloxidases and increased levels of phenolic
compounds (Arfaoui et al., 2005).

Many defence mechanisms are induced by
PGPR in plants challenged by pathogens. Such
mechanisms cause biochemical changes in the
plant, including the synthesis of pathogenesis-re-
lated proteins (Carr and Klessig, 1989; Stein et
al., 1993; Cachinero et al., 2002) and the biosyn-
thesis of antimicrobial low-molecular-weight sec-
ondary metabolites such as the phytoalexins
(Métraux and Raskin, 1993; Bennet and
Wallsgrove, 1994; Kuc, 1995; Saunders et al.,
2004). The pterocarpan phytoalexins, medicarpin,
and maackiain are synthesized by chickpea plants
(Köster et al., 1983; Jaques et al., 1987; Armero et
al., 2001). The role of these phytoalexins, and of
the related isoflavonoids biochanin A and for-
mononetin, in the defence response of chickpea
was extensively investigated by Barz and his
group in Germany, who studied the induction of
such defence responses in cell-suspension cultures
treated with elicitors (Kessman and Barz, 1987;
Barz and Mackenbrock, 1994). These workers
found that the constitutive isoflavones biochanin
A and formononetin were implicated in increas-
ing the resistance of chickpea to various patho-
gens. Formononetin is also reported to be the cen-
tral intermediate in the biosynthesis of the phy-
toalexins, medicarpin and maackiain (Dewick,
1975).

The objectives of the present study were to de-
termine the extent to which these two isoflavonoids
following the activity of the two Rhizobium isolates
Pch43 and PchDMS, are involved in the biocontrol
of Fusarium wilt, and to examine the effect of crude
phenolic extracts on fungal mycelial growth (Curir
et al., 2003; Olivia et al., 2003).

Materials and methods
Plant material

Seeds of the two chickpea (Cicer arietinum L.)
cultivars ILC482 and INRAT87/1, respectively sus-

ceptible and moderately resistant to Fusarium oxy-
sporum f. sp. ciceris race 0, were used in the exper-
iment.

Fungal isolate

Fusarium oxysporum f. sp. ciceris (Foc) race 0
was originally isolated from the roots of infected
chickpea grown in a naturally infected field at Oued
Béja in northern Tunisia (Halila and Strange,
1996). Monoconidial Foc cultures were stored in
sterile sand tubes at 4°C. Active cultures were ob-
tained from small aliquots of a sand culture plated
on potato dextrose agar (PDA). Cultures were in-
cubated at 25°C for 8 days with a 12 h photoperiod
of fluorescent and near-ultraviolet light.

Bacterial isolates

The Rhizobium isolates were obtained from the
nodules of chickpea as described in Beck et al.
(1993). Bacterial cells were stored on yeast extract
mannitol agar at 4°C (Vincent, 1970). The Rhizo-
bium isolates PchDMS and Pch43 were selected
by a nodulation test (Beck et al., 1993).

Bacterization and inoculation of seedlings

Chickpea seeds were surface-disinfected in 2%
NaOCl for 3 min, washed three times in sterile dis-
tilled water, and germinated on autoclaved layers
of paper towels in a wet chamber at 25°C for 7 days.
Germinated seeds, selected for uniformity (length
of radicle), were placed in a Rhizobium suspension
(cfu=108 ml-1) or in sterile distilled water (control)
and incubated at 25°C for 24 h. Both preinoculat-
ed and control seedlings were challenged with Foc
race 0 isolate by dipping the roots in a conidial
suspension (105 conidia ml-1) in sterile water for
24 h. Unchallenged control seedlings were dipped
in sterile water. The following treatments were
tested:
(i) water + water; (ii) water + Foc; (iii) Rhizobium
isolate PchDMS + water; (iv) Rhizobium isolate
Pch43 + water; (v) PchDMS + Foc and (vi) Pch43 +
Foc.

After challenge-inoculation, seedlings were
transplanted to a growth chamber and incubated
for 6 weeks at 25°C, 60–90% relative humidity and
a 14 h photoperiod.

Extraction of phenolics

Phenolics from the different treatments were
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extracted three times from frozen roots with 80%
aq. MeOH at 4°C under continuous stirring. The
homogenate was centrifuged at 7000� g for 3 min
and the supernatants were stored at -20°C until they
were analysed by spectrophotometry and HPLC.

Total phenol concentration

The concentration of total phenolics (mg eq cat-
echin g-1 f wt),was estimated with the Folin Cio-
calteu reagent and the optical density was deter-
mined at 760 nm.

HPLC analysis

Phenolic extracts were also analysed by HPLC
using a Waters 600E HPLC apparatus (Paris,
France) equipped with a Waters 990 photodiode
array detector and Millipore software for data anal-
ysis. An effective gradient of acetonitrile-o-phos-
phoric acidified bidistilled water (pH 2.6) was used
with an Interchrom C18, 5 �m reversed phase an-
alytical column (4.6�150, 5 µm, Machery-Nagel,
Düren, Germany). Three wavelengths (280, 320
and 350 nm) were used during elution. Phenolics
were identified on the basis of their retention times
and their spectra as compared with standards. For
quantitative measurements, the amounts of isofla-
vonoids found in the root samples were expressed
as areas of integrated UV-signals measured at 280
nm per gram initial plant fresh weight (IA g-1 f wt).

Acid hydrolysis

Phenolic extracts were treated with HCl (12 N),
at 100°C for 1 h. Hydrolysis products were extract-
ed with diethyl ether, evaporated to dryness and
dissolved in methanol for HPLC analysis.

Microbial bioassay

Crude phenolics extracted from the roots of
chickpea cultivars ILC482 and INRAT78/1 infect-
ed with Foc were tested for their effect on Foc
growth by culturing the pathogen on PDA amend-
ed or not amended (control) with different concen-
trations of phenolic extract (0, 100 and 500 µg eq
catechin ml-1). Radial growth was measured after
5 days of incubation at 25°C and the mycelium in-
spected under the light microscope.

Statistical analysis

Each treatment was carried out in triplicate and
each experiment was repeated twice. The total

phenolic content was measured and the HPLC
analysis carried out twice for each sample. All the
data were submitted to Anova using Sigma Stat.
Statistical Software (SPSS, version 10), followed
by Duncan’s multiple range test (P=0.05).

Results
Phenolic analysis

In the control roots of the susceptible cultivar
ILC482, the level of total soluble phenolic com-
pounds increased very slowly, reaching 2 mg g-1 f
wt after 20 days (Fig. 1a-b). These levels did not
change when the roots were bacterized. In response
to Foc infection, the total phenolic compounds start-
ed to increase 5 days after infection. By the 10th
day they reached 2 mg g-1 f wt and thereafter in-
creased steadily to 3 mg g-1 f wt 20 days after in-
fection (Fig. 1a-b).

Treatment of the roots with both bacterial iso-
lates, Pch43 and PchDMS, before inoculation with
Foc increased total phenolic levels (Fig. 1a-b). The
highest phenol levels were recorded 20 days after
inoculation, when they reached 4 mg g-1 f wt (Fig.
1a) and 5 mg g-1 f wt (Fig. 1b) in roots pre-treated
with isolates Pch43 and PchDMS respectively.

With the moderately resistant cultivar IN-
RAT87/1, the highest level of soluble phenolic com-
pounds was found with treatment PchDMS + Foc
(Fig. 1d) 20 days after inoculation when the phe-
nolic level reached 3.97 mg g-1 f wt, about 30% high-
er than the concentration recorded at the same time
in the roots infected with Foc alone.

The more accurate HPLC measurements re-
vealed a marked increase in the levels of several
isoflavones (Fig. 2). The most important of these
compounds were those corresponding to peaks 7
and 9, which were identified as formononetin and
biochanin A. Chromatography and spectral analy-
ses of the hydrolysis products showed that peaks 1
and 3 were the glycoside conjugate forms of for-
mononetin, and peaks 4 and 5 were the glycoside
conjugate forms of biochanin A.

HPLC profiles for control and inoculated roots
revealed the isoflavones biochanin A and formonon-
etin, both in their free forms (peaks 9 and 7) and in
their glycosidically bound forms (peaks 4 and 5 for
biochanin A and peaks 1 and 3 for formononetin).

The level of biochanin A in its two forms was
more than four times as high as that of formonon-
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Fig. 1. Time-course diagram of soluble phenolic levels in the roots of the susceptible chickpea cv. ILC482 (a and b)
and the moderately resistant cv. INRAT87/1 (c and d) subjected to various treatments (- �- water + water; - � -
Rhizobium isolate PchDMS + water; -�- Rhizobium isolate Pch43 + water; -�- Water + Foc; - � - PchDMS + Foc; -
� - Pch43 + Foc).
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Fig. 2. HPLC profiles of phenolic extracts at 280 nm from the roots of chickpea cv. ILC482 subjected to various
treatments. A, control; B, roots bacterized with Rhizobium isolate PchDMS; C, roots inoculated with Foc; D, roots
bacterized with Rhizobium isolate PchDMS and inoculated with Foc. Peaks: 7, formononetin; 1 and 3, formononetin
glycoside conjugates; 9, biochanin A; 4 and 5, biochanin glycoside conjugates; 2, 6 and 8, non-identified compounds.
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Fig. 3. Time-course diagram of formononetin levels in the roots of the susceptible chickpea cv. ILC482 (a and b) and the
moderately resistant cv. INRAT87/1 (c and d) subjected to various treatments (- �- water + water; - � - Rhizobium
isolate PchDMS + water; -�- Rhizobium isolate Pch43 + water; -�- Water + Foc; - � - PchDMS + Foc; - � - Pch43 + Foc).

etin (Fig. 3 and 4). In addition, the free forms of
these isoflavones exhibited much higher levels than
the glycosidically bound forms (Fig. 3 and 4). Tak-
ing both forms together, biochanin A and formonon-
etin levels varied with the treatments as compared
with the control.

Formononetin (Fig. 3) was detected in the root
extracts of both cultivars and its concentration in-
creased to reach a maximum after 10 days of inoc-
ulation with Foc, after which it declined. Bacteri-
zation of the roots with either PchDMS or Pch43
before inoculation with Foc increased total for-
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Fig. 4. Time-course diagram of biochanin A levels in the roots of the susceptible chickpea cv. ILC482 (a and b) and the
moderately resistant cv. INRAT87/1 (c and d) subjected to various treatments - �- water + water; - � - Rhizobium
isolate PchDMS + water; -�- Rhizobium isolate Pch43 + water; -�- Water + Foc; - � - PchDMS + Foc; - � - Pch43 + Foc).

mononetin levels. This increase was more than 50%
and 35% in the susceptible cv. ILC482 treated with
PchDMS/Foc and Pch43/Foc respectively, as com-
pared with the unbacterized control (water + Foc)
(Fig. 3a-b).

Biochanin A levels peaked 20 days after inocu-

lation (Fig. 4). The bacterial isolates brought about
a considerable increase in the total content of bio-
chanin A in the susceptible cultivar ILC482 (Fig.
4a-b). Biochanin A levels in cv. ILC482 increased
by more than 140% after inoculation with PchDMS/
Foc and by more than 115% after inoculation with
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Pch43/Foc as compared with the inoculated con-
trol (Fig. 4).

By contrast, in the moderately resistant IN-
RAT87/1 cultivar, neither bacterial isolate caused
considerable changes in formononetin or biochanin
A levels compared with the inoculated control (Fig.
4C-D).

Effect of phenolic crude extracts on the growth and
the morphology of Foc

Crude phenolics extracted from the infected
roots strongly inhibited radial growth of Foc. The
degree of inhibition depended on the concentration
of the extracts. At the greatest extract concentra-
tion (500 µg ml-1), growth inhibition exceeded 60%
after five days of incubation.

Inspection under the light microscope revealed
that at a concentration of 500 µg ml-1, crude phenol-

ic extracts caused marked changes in Foc morphol-
ogy as compared to healthy mycelium (Fig. 5A-B),
including morphological alterations, the formation
of abundant vesicles in the densely stained remain-
ing portions of the cytoplasm (Fig. 5C), and large
vacuoles within the hyphal cells (Fig. 5D). At more
advanced stages the phenolic extracts seemed to
deplete the fungal cells of their contents (Fig. 5E).

Discussion

Rhizobium isolates are already in use as bio-
logical agents to control a variety of soil-borne plant
pathogens (Ehteshamul-Haque and Ghaffar, 1993;
Peoples et al., 1995). These bacteria promote plant
growth (Siddiqui-Zaki and Singh, 2004) and also
induce plant defence reactions. Nevertheless, the
mechanism whereby plant disease resistance is

Fig. 5. Microscope photographs of Fusarium oxysporum f. sp. ciceris hyphae cultured on PDA amended with crude
phenolic extract (500 µg eq catechin ml-1). A and B, control (respectively young and old healthy mycelium); C, pres-
ence of vesicles; D, vacuolation; E, emptied mycelium. Bar=60µm.
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induced remains poorly understood. The present
study was an attempt to shed some light on this
question.

Isoflavonoids are synthesized as part of the
phenylpropanoid pathway (Dixon et al., 2002).
Their role in boosting plant resistance is well es-
tablished for the leguminosae family (Dixon et al.,
1983; Dakora and Philips, 1996). Phenolic com-
pounds well documented in chickpea include the
isoflavones formononetin and biochanin A, the iso-
flavanones homoferreirin and cicerin, and the pte-
rocarpans medicarpin and maackiain (Barz and
Well, 1992). The isoflavones formononetin and bi-
ochanin A were constitutively synthesized in
chickpea cells and stored as glycoside conjugates
in the vacuole (Mackenbrock et al., 1992). When
chickpea roots were infected with Foc, the levels
of these compounds rose substantially through the
conversion of glycoside conjugates to aglycons,
which themselves were later converted to ptero-
carpans. Protection by these biocontrol agents was
generally associated with an increase in the
mRNA of the defence gene, the phenylpropanoid
pathway gene encoding phenylalanine ammonia
lyase (PAL) and by higher levels of secondary
metabolites of a phenolic nature (Yedidia et al.,
2003). The findings of the present study were con-
sistent with those other studies. Pretreatment of
chickpea seedlings with the Rhizobium isolates
before challenge with Foc significantly increased
levels of total phenolics and of the constitutive
isoflavonoids formononetin and biochanin A.
These increases were particularly evident after
pretreatment with Rhizobium isolate PchDMS,
which was also found to be the most effective
against Fusarium wilt in an earlier study (Arfaoui
et al., 2005).

Various studies reported the importance of the
phytoalexins medicarpin and maackiain in the
overall defence response of chickpea (Stevenson et
al., 1997). Peroxidases and hydrolases, particular-
ly chitinases and glucanases, also play a major role
in the defence mechanisms of this plant, and re-
cently Cachinero et al. (2003) provided evidence
that pretreatment of chickpea seedlings with a non-
pathogenic Fusarium isolate increased the activi-
ty of those enzymes.

Similarly, Singh et al. (2003) reported that treat-
ment of chickpea seeds with Pseudomonas spp.
increased the synthesis of cinnamic, ferulic and

chlorogenic acid, all of which have antifungal ef-
fects against Sclerotium rolfsii. In our experiments,
the addition of crude phenolic extracts to the cul-
ture medium inhibited mycelial growth of Foc. This
antimicrobial activity of the phenolic extracts may
be due to compounds such as medicarpin and maac-
kiain, which were found to be fungitoxic to Foc,
and which inhibited spore germination and germ-
tube growth (Stevenson et al., 1997). The toxicity
of chickpea isoflavonoids has been reported in many
studies. For instance, Monique et al. (2001) found
that maackiain and judaicin played a role in low-
ering the susceptibility of chickpea to Heliocover-
pa amigera larvae. Wang et al. (1998), reported that
the isoflavones formononetin, genistein, biochanin
A and their corresponding glycosides were a deter-
rent to the red-legged earth mites (Halotydeus de-
structor). In other pathosystems, treatment of date
palm roots with antagonists of Fusarium oxyspo-
rum f. sp. albedinis or with chitosan resulted in
higher levels of several non-constitutive hydroxy-
cinnamic acid derivatives (El Hassni et al., 2004).
These hydroxycinnamic acid derivatives were
known to be toxic to this form of F. oxysporum, in-
hibiting the germination of its conidia and the
growth of its germ tubes (El Hadrami et al., 1997;
Ramos et al., 1997).

Light microscope inspection of fungal hyphae
exposed to crude phenolic extracts at 500 �g ml-1

revealed considerable morphological changes, with
marked cellular disruption. Similar results have
been reported with pathogens treated with antag-
onists (Benhamou et al., 1999; Ait Barka et al.,
2002), fungicides, or chitosan (Roberston and Full-
er, 1990; El Hassni et al. 2004).

The results provide evidence that Rhizobium
isolates raise levels of soluble phenolics and of the
constitutive isoflavonoids formononetin and bio-
chanin A in chickpea plants. These induced com-
pounds showed significant antifungal activity and
toxicity towards Foc, indicating that they had a
role in the resistance of chickpea to Fusarium wilt.
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