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Summary. Italy is the leading producer and the main exporting country of table grapes 
in the European Union. However, table grape production is affected by Grapevine 
Trunk Diseases (GTDs) which cause serious economic losses to grape growers. Aetiol-
ogy of GTDs is crucial for application of effective management strategies, particularly 
regarding the quality of the grapevine propagation material. During 2022˗23, four nurs-
eries in Eastern Sicily, Southern Italy, were surveyed, and high incidence of propagation 
material with GTDs symptoms was found. Over 100 fungal isolates were collected from 
80 symptomatic cuttings of ‘Italia’ and ‘Victoria’ cultivars grafted on rootstock 140RU. 
Of these isolates, 82 were molecularly analysed, and were found to belong to 22 gen-
era. Isolation results highlighted the presence of well-known GTDs-related pathogens, 
including species within the Botryosphaeriaceae, and Phaeomoniella chlamydospora, 
Phaeoacremonium minimum, and Cylindrocarpon-like species. Less common fungi, 
including Neoscytalydium dimidiatum and Quambalaria cyanescens, were also isolated 
and characterized by molecular, morphological and phylogenetic analyses, and Koch’s 
postulates were fulfilled for these two species. This is the first study to associate N. 
dimidiatum and Q. cyanescens with table grape propagation material in Europe.

Keywords.	 Grapevine Trunk Diseases, nursery material, isolate characterization, 
pathogenicity.

INTRODUCTION

Table grape (Vitis vinifera L.) is an important and widely cultivated 
crop plant, showing positive production trends in the last 20 years. Italy is 
the leading producer and the main exporting country of table grapes in the 
European Union, with annual production of 925.472 t produced from 40.705 
ha. Most (94.4%) of this production is from southern Apulia (610.555 t from 
25.285 ha) and Sicily (262.846 t from 12.075 ha) (Istat 2025). Italy occupies a 
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prominent commercial position with a long production 
season from late May to December (> 7 months). ‘Italia’ 
and ‘Victoria’ are the main cultivars produced, (respec-
tive proportions of production of approx. 40% and 15%), 
followed by ‘Red Globe’, ‘Black Magic’, and an increas-
ing number of seedless cultivars, including ‘Sugraone’, 
‘Crimson Seedless’, and ‘Regal Seedless’ (Pisciotta et 
al., 2022). The major rootstocks for these cultivars are 
140RU, 1103 Paulsen, and 775 P.

As a highly profitable crop, it is important to incor-
porate effective vine health practices throughout grape 
production to prolong longevity and productive lifes-
pans of vineyards. Grapevine trunk diseases (GTDs) are 
a disease aggregate of fungal diseases that are the most 
destructive biotic factor of grapevines (Guerin-Dubrana 
et al., 2019; Azevedo-Nogueira et al., 2022). Multifaceted 
adverse effects due to GTDs include reduced plant lon-
gevity, cumulative yield losses, increased costs due to 
required disease management practices, and premature 
replanting of severely affected vineyards (Gramaje et al., 
2018). According to their aetiology and symptomatol-
ogy, GTDs can be grouped in different syndromes: Black 
Foot (BF), Eutypa, Botryosphaeria and Phomopsis die-
back, and the Esca and Petri disease (PD) complexes.

The first report of BF of grapevines in Italy was by 
Grasso and di San Lio (1975), and Grasso (1984) asso-
ciated this disease with death of young grapevines in 
Sicily. Carlucci et al., (2017) studied BF occurrence on 
young grapevines and nursery material, reporting Dac-
tylonectria torresensis to be the most prevalent patho-
genic fungus associated with GTDs in Italy. Therefore, 
these diseases have caused problems in Italian grapevine 
production for many years, especially in young plants, 
originating from nurseries. However, since those publi-
cations, no further studies on GTDs in young grapevine 
plants in Italy have been reported.

Eutypa dieback was first reported on grapevines 
in Italy in 1983 (Bisiach and Minervini, 1985). Sexual 
structures of Eutypa lata, the most common pathogen 
associated with this disease, were reported by Cortesi 
and Milgroom (2001). This pathogen is widespread in 
all regions of Italy except Sicily, probably due to the low 
amount of rainfall on the island, which plays a key role 
in the dispersal of E. lata inoculum. Damage caused by 
this pathogen is limited (Guerin-Dubrana et al., 2019). 

Phomopsis dieback, also known as cane blight and 
leaf spot, was first reported in Italy with the description 
of the teleomorph Diaporthe silvestris on grapevines by 
Saccardo and Berlese (1885). Phomopsis viticola, the D. 
silvestris anamorph (originally described as P. cordifo-
lia), was first reported by Uecker and Johnson (1991). 
Diaporthe eres is one of the most detected species in 

Italy, isolated for the first time from 1-year-old canes of 
grapevines in Tuscany by Cinelli et al., (2016). Phomop-
sis cane and leaf spot have been reported from all Italian 
regions, but is widespread in Apulia, Veneto, and Pied-
mont (Guerin-Dubrana et al., 2019).

Botryosphaeria dieback has been a significant prob-
lem in Italian viticulture since the end of the 1970s, with 
the first tentative association of bark cankers, dieback, 
and leaf chlorosis on grapevines with Botryosphaeriaceae 
fungi by Cristinzio (1978). Many studies have since been 
reported, and to date 16 species in Botryosphaeriaceae 
have been reported in association with grapevines in 
Italy (Rovesti and Montermini, 1987; Burruano et al., 
2008; Carlucci et al., 2009; Mondello et al., 2013; Car-
lucci et al., 2015b). Nowadays, the most common and 
abundantly isolated species is Diplodia seriata, although 
it appears that this fungus is among the least virulent of 
the dieback pathogens (Carlucci et al., 2015b; Aiello et 
al., 2023).

Esca and the PD complex are probably as old as 
grapevine cultivation, but studies on their aetiology have 
intensified since the 1990s (Mugnai et al., 1999). Lionel 
Petri was the first to fulfil Koch’s postulates in 1912, 
demonstrating that Cephalosporium and Acremonium 
spp. were responsible for the vascular necroses in young 
vineyards and nurseries, in the Sicilian provinces of 
Palermo, Messina and Trapani (Petri, 1912). Since then, 
many studies have been carried out and the main asso-
ciated species are Phaeomoniella chlamydospora, Phaeo-
acremonium spp., and Fomitiporia mediterranea (Bertelli 
et al.,1998; Mugnai et al., 1999; Cortesi et al., 2000; Tegli 
et al., 2000; Ciccarone et al., 2004; Essakhi et al., 2008; 
Raimondo et al., 2014; Carlucci et al., 2015a; Carlucci et 
al., 2017).

Although GTDs have been extensively studied on 
wine grape plants, the causal agents associated with 
GTDs on table grape plants remain less studied in Italy. 
Graniti (1960) already knew about Esca in Apulia, and 
reported a diseased young vineyard of cultivar ‘Regina’ 
at two years after grafting. During 1995, young plants of 
cultivar ‘Italia’ in the areas of Canicattì and Mazzarrone 
(eastern Sicily) exhibited Esca symptoms with incidences 
of 9% in Canicatti and 17% in Mazzarrone, while 42% 
of the affected plants died (Schiliro et al., 1996). Also in 
Sicily, Sidoti et al. (2000) reported symptoms of decline 
on young vines of cultivar ‘Victoria’, with high mortality 
in the first year after planting. During the same year in 
Apulia, Pollastro et al. (2000) reported severe infections 
of 18-year-old cultivar ‘Italia’ vines, with 84% incidence 
of diseased wood, and 17% incidence of esca symp-
toms on the leaves or bunches. Sparapano et al. (2000a; 
2000b; 2001) reported Fomitiporia punctata as the pri-
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mary pathogen causing white rot of wood, and ‘Italia’ 
as the most susceptible cultivar. Since then, increased 
GTD incidence and severity have been seen in different 
vineyards (Pichierri et al., 2009; Guerin-Dubrana et al., 
2019). This is commonly attributed to factors including 
the expanded planted area, increased vineyard produc-
tivity, changes in cultural practices, following of market 
requirements, and the poor quality of table grape prop-
agation material produced in nurseries (Surico et al., 
2004; Pichierri et al., 2009).

Knowledge of disease aetiology and epidemiology is 
important for developing effective control strategies that 
aim to minimize the economic impact of fungal patho-
gens in young vines, especially originating from nursery 
material. Effective control of the diseases is important 
for the future of vineyards.

To date, the quality of propagation material destined 
for table grape production has been little studied in Italy. 
To document GTDs in Sicilian cuttings of table grapes, 
nurseries in Comiso and Mazzarrone were surveyed 
from May 2022 to September 2023. The objectives in the 
present study were to: (a) identify the causal agents asso-
ciated with GTDs on propagation material coming from 
Sicilian nurseries, using molecular analyses; (b) calculate 
isolation frequencies of these pathogens, depending on 
isolation points; and (c) characterize the species associ-
ated for the first time with GTDs on table grape plants 
in Italy, using morphology and multi-locus phylogenetic 
analyses, and determine their pathogenicity.

MATERIALS AND METHODS

Field surveys, sampling, and fungus isolations

Surveys were conducted in 2022 and 2023 in four 
nurseries in Comiso (36°57′N, 14°36′E) and Maz-
zarrone (37°05′N, 14°34′E), located in the Ragusa and 
Catania provinces of eastern Sicily, Italy, respectively. 
A total of 80 5- to 7-month-old cuttings of ‘Italia’ and 
‘Victoria’ cultivars grafted onto 140RU rootstock (ten 
samples for each cultivar from each nursery) were col-
lected and brought to the Plant Pathology laboratory 
at the Department of Agriculture, Food and Environ-
ment, University of Catania, for isolation and further 
analyses. Fungal strains were isolated from symptomatic 
wood tissue from different parts of the cuttings, includ-
ing: (a) the graft union, (b) 15 cm from the base, and 
(c) the base of the rootstock. From each part, a wood 
segment was excised, and then fragmented in five to 
six pieces (each 5 mm thick). These pieces were then 
surface-sterilized in a 1.5% sodium hypochlorite (NaC-
lO) solution for 1 min, rinsed in sterile water, dried on 

sterilized absorbent paper, and then placed onto potato 
dextrose agar (PDA; Lickson) in Petri plates, that was 
amended with 100 mg L-1 of streptomycin sulphate 
(Sigma-Aldrich) to prevent bacterial growth. The plates 
were then incubated in the dark at 25 ± 1°C for 7 to 14 
d until fungal colonies grew sufficiently to be examined. 
Representative colonies were then transferred onto fresh 
PDA plates, and subsequently, single hypha isolates were 
obtained from pure cultures. These isolates were then 
stored as mycelial plugs in sterile water in the collection 
of the Plant Pathology laboratory.

Isolation frequencies (%) were estimated for the 
main fungal morphotypes recovered from each isolation 
point on the symptomatic cuttings. Each value was cal-
culated as the average obtained from the four nurseries 
investigated, and a single value from each nursery was 
calculated as the number of isolation positive tissue piec-
es (from which each morphotype was isolated) divided 
by the total number of analyzed tissue pieces (Šišić et al., 
2018; Dastogeer et al., 2020).

DNA extractions and PCR

Eighty-two of the collected isolates were grown 
on Malt Extract Agar (MEA) plates incubated at room 
temperature (20°C) for 7–15 d. Mycelium from each 
isolate was then collected in a 1.5 mL sterile Eppen-
dorf tube using a sterile scalpel blade. Genomic DNA 
was extracted from these samples using the Wizard® 
Genomic DNA Purification Kit (Promega Corporation), 
following the manufacturer’s protocol. DNA amplifica-
tion and sequencing of partial regions of various genetic 
loci were carried out for identification purposes. Spe-
cifically, the universal oligonucleotide primers ITS4 and 
ITS5 (White et al., 1990) were used to amplify the ITS1-
5.8S-ITS2 region of the rDNA for each isolate (Supple-
mentary Tables S1), while a partial region of the trans-
lation elongation factor 1-alpha (tef1-a) gene was also 
amplified for representative isolates of the collection 
(Supplementary Table S1). Furthermore, for ten Quam-
balaria isolates, fragments of the large subunit (LSU) 
of the rDNA were amplified using the primer sets NL1 
and NL4 (Boekhout et al., 1995), and the second larg-
est subunit of RNA polymerase II (rpb2) was ampli-
fied using the primer sets bRPB2-6F and bRPB2-7R 
(Matheny, 2005). Similarly, for five Neoscytalidium iso-
lates, the tef1-α gene was amplified using the primer sets 
EF1-728F and EF1-986R (Carbone and Kohn, 1999), and 
the beta-tubulin (β-tub) gene was amplified using T1 
and Bt-2b (Glass and Donaldson, 1995). All PCR reac-
tions were each carried out in a final volume of 20 μL, 
containing: 1 μL of each primer (10 μM), 4 μL of the 
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appropriate buffer, 2 μL MgCl2, 0.4 μL dNTPs, 0.2 μL 
Taq polymerase (5 U μL-1; KAPA Taq 500 U), 10.4 μL 
sterile water, and 1 μL DNA template (5 μg μL). The 
amplifications were performed using the following pro-
gramme: an initial denaturation at 94°C for 5 min; fol-
lowed by 35 cycles each of denaturation at 94°C for 30 
sec, primer annealing for 1 min at 52°C for ITS, 51°C 
for rpb2, 56°C for LSU, or 30 sec at 60°C for tef1-a and 
β-tub; extension at 72°C for 1 min; and a final extension 
at 72°C for 8 min. PCR products were resolved on 1.5% 
agarose gels in Tris-acetate-EDTA buffer, stained with 
SYBRTM Safe DNA gel stain (Invitrogen), and were vis-
ualized under UV light. After confirmation by agarose 
gel electrophoresis, the PCR products were sequenced 
in both directions using the same primer pairs used for 
amplification, by Macrogen Inc. (Seoul, South Korea). 
The retrieved nucleotide sequences were assembled and 
edited with MEGA X (Kumar et al., 2018).

Morphological descriptions of Quambalaria cyanescens 
and Neoscylalidium dimidiatum isolates

Two representative isolates of Q. cyanescens (GP9 
and GP15) and of Neos. dimidiatum (GP33 and GP40), 
were selected for morphological characterization. Myce-
lium plugs (4 mm in diam.) were placed into 85 mm-
diam. Petri dishes containing PDA, and were incubat-
ed at 25°C in the dark for 1–3 weeks. Actively growing 
colonies of Neos. dimidiatum were transferred to plates 
containing water agar (WA) supplemented with sterile 
pine needles to allow pycnidium formation (Smith et al., 
1996). The inoculated Petri dishes were then incubated 
at room temperature (24 ± 2°C) under a 12 h/12 h fluo-
rescent light/dark regime for 3–4 weeks. For microscopic 
characterization, pycnidia, pycnidiospores and arthro-
conidia produced by the hyphomycetous and coelomy-
cetous morphs of Neos. dimidiatum, and conidiophores 
and conidia of Q. cyanescens, were mounted in sterile 
lactic acid. Morphology of all reproductive structures 
was determined at appropriate magnifications using an 
Olympus BZX16 dissecting microscope and Olympus 
ColorView I camera, or a Zeiss AX10 compound micro-
scope and Zeiss AxionCam MRc 5 camera. Mean, maxi-
mum, and minimum dimensions ( ± standard devia-
tions) of Neos. dimidiatum and Q. cyanescens reproduc-
tive structures were calculated, as well as the conidium 
length-to-width ratios (L/W). Colony morphologies 
of the respective isolates were described on PDA, malt 
extract agar (MEA; Sigma-Aldrich), oatmeal agar (OA; 
Sigma-Aldrich), and corn meal agar (CMA; Sigma-
Aldrich), while colony colours were also determined for 
each medium, based on Rayner’s (1970) charts.

Effects of temperature on mycelium growth

Optimum temperatures for mycelium growth of Q. 
cyanescens (isolates GP9 and GP15) and Neos. dimidi-
atum (isolates GP33 and GP40) were determined. Myceli-
um plugs (each 4 mm diam.) from the margins of actively 
growing cultures were transferred into the centre of Petri 
dishes containing PDA, and were incubated in the dark-
ness at constant temperatures from 5 to 35°C (5°C inter-
vals). Two perpendicular diameters of resulting colonies 
were recorded daily for Neos. dimidiatum over 2 d, and 
for Q. cyanescens over 14 d. Three replicates were pre-
pared per isolate and the experiment was repeated once.

Regression curves were fitted for each isolate at the 
different temperatures and the data were analyzed using 
the Kruskal-Wallis test (non-parametric). The optimum 
growth temperature and the mycelium growth rate (mm 
d-1) were calculated for each isolate, and means per fun-
gus species were compared using Dunn’s test for multi-
ple comparisons (P ≤ 0.05). Statistical analyses of data 
were carried out using SPSS (v. 25, IBM Corporation,) 
and graphically presented with GraphPad Prism (v. 
10.1.0, GraphPad Software).

Phylogenetic analyses of Quambalaria and Neoscytalidi-
um isolates

Raw sequence chromatograms of each locus (for-
ward and reverse) generated for Quambalaria and 
Neoscytalidium isolates were retrieved, and their qual-
ity was evaluated using the FinchTV software (version 
1.4.0) (Geospiza Inc.). Consensus sequences were assem-
bled using MEGA software (version 7.0.26) (Kumar et 
al., 2018) with ClustalW (Thompson et al., 1994). All 
the sequences generated in this study, along with ref-
erence sequences from NCBI (Tables 3 and 4) were 
aligned with MAFFT v. 7.110 (Katoh et al., 2019), using 
the default parameters. Manual adjustments were made, 
when necessary, using MEGA software (version 7.0.26) 
(Kumar et al., 2018). The alignments of each locus were 
concatenated in Sequence Matrix v.1.8 software (Vaid-
ya et al. 2011). The concatenated sequence alignments 
were analyzed using Maximum Likelihood (ML) in IQ-
TREE software (version 2.3.4) (Minh et al., 2020), with 
the best evolutionary model selected using ModelFinder 
(Kalyaanamoorthy et al., 2017). Branch support was esti-
mated using 1000 replicates of the ultrafast approxima-
tion (UFBoot2) (Hoang et al., 2018). Bayesian inference 
(BI) was carried out using MrBayes v3.2.7 (Ronquist et 
al., 2012). Two independent Markov Chain Monte Car-
lo (MCMC) runs (each with one cold and three heated 
chains) were conducted for 1,000,000 generations, and 
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trees and parameters were sampled every 100 genera-
tions. Convergence was monitored using the average 
standard deviations of split frequencies, with a target 
value of <0.01, assessed every 1,000 generations. The first 
25% of samples were discarded as burn-in, and a 50% 
majority-rule consensus tree was generated from the 
remaining trees, with posterior probabilities (PP) used as 
nodal support values. For Quambalaria species, no rpb2 
sequence was available for their type strains.

Pathogenicity tests

To determine abilities to infect and induce symp-
toms on host plants, pathogenicity tests were carried out 
using isolate GP9 of Q. cyanescens and isolate GP40 of 
Neos. dimidiatum. Inoculations were carried out in vivo 
on asymptomatic cuttings of ‘Italia’ grafted onto 140RU 
rootstock. Each isolate was inoculated onto 12 green 
and 12 woody shoots of scion and onto six rootstocks, 
using a mycelial plug in each case. Before inoculations, 
the shoots and rootstocks were surface-disinfected with 
a 70% aqueous solution of ethanol. For each inocula-
tion, the bark was gently scraped using a sterile blade, 
and an agar plug (5 mm diam.) from a 20-d-old fungal 
culture grown on PDA supplemented with lactic acid 
(2.5 mL of 25% [v:v] per L; APDA) at 25 ± 1 °C was 
inserted into each wound. The wounds were then sealed 
with Parafilm® (Pechney Plastic Packaging Inc.) to pre-
vent contamination and dehydration. Controls consisted 
of 12 plants each inoculated with a sterile APDA plug. 

All the plants were then moved to a growth chamber set 
with a 12 h light 12 h dark daily cycle, and maintained 
at 25°C. The plants were regularly watered and moni-
tored weekly for development of symptoms. Symptom 
evaluation on the scions was carried out after 1 month 
for half of the inoculated shoots, and at 3 months for 
the remaining shoots. For the rootstock, symptom eval-
uation was performed at 3 months post-inoculation. 
Mean lengths of necrotic lesions (external or inter-
nal) extending both upward and downward from each 
inoculation site were determined. The experiment was 
carried out twice. Isolations of fungal species from dis-
eased plant tissues were carried out to assess fulfilment 
of Koch’s postulates.

RESULTS

Field surveys, sampling and fungus isolations

In the four surveyed nurseries, 95% of the sampled 
rooted and grafted table grape cuttings were symp-
tomatic (76 of 80 cuttings examined). The symptoms 
included necroses and discolourations at the graft 
points extending upward the scions, wood necroses and 
black streaking at the rootstock bases, as well as pith 
necroses and black streaking on vascular tissues (Figure 
1). More than 100 isolates were collected from symp-
tomatic cuttings, and 82 representative strains from 
different nurseries and plant parts were characterized 
using molecular analyses.

Figure 1. Symptoms observed on table grape propagation material in nurseries. A and B, views of two of the table grape nurseries investi-
gated. C and D, vertical sections of symptomatic cuttings. E, F and G, necroses and discolouration at graft unions. H, vascular discoloura-
tion. I, pith necrosis. J, black streaking and wood necrosis at bases of rootstock plants.
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Fungus identifications

Initial molecular identification of the 82 repre-
sentative isolates was based on their ITS sequences. 
These identifications were then supported by the tef1-a 
sequences for 28 representative isolates of the main spe-
cies recovered from the propagation material. BLASTn 
analysis identified 22 genera: Acremonium, Alternaria, 
Arthrinium, Aspergillus, Botryosphaeria, Cadophora, Cla-
dosporium, Clonostachys, Dactylonectria, Diaporthe, Dip-
lodia, Entoleuca, Fusarium, Idriella, Ilyonectria, Neofu-
sicoccum, Neoscytalidium, Phaeoacremonium, Phaeomo-
niella, Paraphoma, Quambalaria and Trichoderma (Sup-
plementary Table S1). Fungi recovered at low frequency 
in the present survey and/or generally considered as 
saprophytes or antagonists (Acremonium sp., Alternaria 
sp., Aspergillus spp., Cladosporium spp., Entoleuca spp., 
Idriella sp., Paraphoma sp., Clonostachys sp. and Tricho-
derma spp.) were not examined further. Sequences of 
tef1-α confirmed the identity of 16 species. Some of these 
are well-known GTDs pathogens, including Botryospha-
eriaceae (N. parvum, D. seriata, N. australe, N. luteum, B. 
dothidea), Ph. chlamydospora, P. minimum, Cadophora 
luteo-olivacea, and Cylindrocarpon-like species (I. liri-
odendri, I. destructans, D. macrodidyma, D. torresensis). 
Other usually less common fungi (F. proliferatum, F. 
oxysporum, Neos. dimidiatum, Q. cyanescens) were also 
identified. The ITS and tef1-a sequences generated in 
this study were deposited in GenBank (Supplementary 
Table S1).

For isolation frequencies, fungal colonies obtained 
were classified into seven morphotypes, based on colony 
morphology, Botryosphaeriaceae, Fusarium spp., Cylin-
drocarpon-like spp., Q. cyanescens, Neos. dimidiatum, Ph. 
chlamydospora and P. minimum. Morphological iden-
tifications of fungal morphotypes were confirmed from 
molecular analyses (Table 1).

Isolation results indicated that fungus incidence var-
ied between the different parts of the plant cuttings. Iso-
lation frequency (%) at the graft unions showed a preva-
lence of Q. cyanescens, followed by Neos. dimidiatum, 
other Botryosphaeriaceae and Fusarium spp. Isolations at 
15 cm from rootstock base showed prevalence of Ph. chla-
mydospora followed by Q. cyanescens and Neos. dimidia-
tum, while from the rootstock base, the dominant species 
were similar to those from the graft unions (Table 1).

Morphological analyses of Neoscytalidium and Quamba-
laria isolates

Colonies of Q. cyanescens (isolates GP9 and GP15) 
were white, flat, with smooth margins and slow growth 

on PDA, MEA, CMA, and OA media, after 7 d incuba-
tion at 25°C in darkness. On OA, pale vinaceous grey-
purple haloes developed around the colonies (Figure 
2). Conidiogenous cells for both isolates developed at 
the ends along the sides of conidiophores, which were 
indistinguishable from the vegetative hyphae. Primary 
conidia of the Q. cyanescens isolates were ellipsoidal to 
subcylindrical, hyaline, often guttulate, and aseptate; 
secondary conidia were obovoid to guttiform, hyaline, 
often guttulate, and aseptate (Figure 3). Characteristics 
of conidium and conidiogenous cells are reported in the 
Supplementary Table S2. Overall, their morphologies 
were in line with the original description of Q. cyanes-
cens by de Hoog and de Vries (1973) and earlier descrip-
tions of the species. No sexual morphs were observed.

Both isolates of Neos. dimidiatum (GP33 and GP40) 
had characteristics consistent with the description of 
the type-strain of this species described by Campbell 
and Mulder (1977) (Supplementary Table S3). The two 
isolates grew rapidly at 25°C, with mycelium cover-
ing the surfaces of 85 mm diam. plates of PDA, MEA, 
and OA in less than 72 h, and after 4 d on CMA. The 
colonies were initially hyaline to white with smooth 
margins on the four media, and with aerial mycelium 
on OA and MEA. With time, colonies on PDA turned 
smoke grey and grey olivaceous to black, beginning 
from their centres, while on MEA they developed oliva-
ceous grey to pale greyish colours, both with powdery 
texture. On OA, the colonies turned grey olivaceous to 
olivaceous black and cottony, whereas on CMA, they 

Table 1. Isolation frequencies (%) of the main fungi recovered from 
different parts of symptomatic table grape propagation material.

Fungal species/taxon

Isolation frequency (%) per plant 
part a

Graft  
point

15 cm from 
the base

Rootstock 
base

Quambalaria cyanescens 20.5 11.1 18.3
Neoscytalidium dimidiatum 13.1 11 15.1
Other Botryosphaeriaceae 10.1 3.5 12.1
Fusarium spp. 6.4 5.1 1.3
Phaeomoniella chlamydospora 0.6 16.8 8.2
Phaeoacremonium minimum 1.7 2.1 0.6
Cylindrocarpon-like species - - 2.0
other 1.1 2.9 1.7

Total 53.5 52.5 59.3

a Each isolation frequency is the average of frequencies obtained 
from four table grape nurseries. The frequency from each nursery 
was calculated as the number of positive tissue pieces from which 
each morphotype was isolated, divided by the total number of ana-
lyzed tissue pieces.
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were flat and progressed from hyaline to white to grey 
olivaceous (Figure 2). Pycnidia were irregular dark 
brown to black, and pycnidiospores were also irregular 
in shape, and dark brown to black. Arthroconidia were 

produced by hyphal disarticulation, and were hyaline to 
pale brown, 0 to 1 (rarely 2) septate and cylindrical, and 
were produced singly or in arthric chains (Figure 3). No 
sexual morphs were observed.

Figure 2. A to D, colonies of Quambalaria cyanescens (isolate GP9). E to H, colonies of Neoscytalidium dimidiadum (isolate GP40). Both 
isolates were grown for 7 d at 25°C in darkness on PDA (A and E), MEA (B and F), CMA (C and G), and OA (D and H).

Figure 3. Morphological characteristics of Quambalaria cyanescens and Neoscytalidium dimidiatum. A, colony of Q. cyanescens (isolate 
GP9; 2 weeks old). B, conidiophore with primary and secondary conidia. C, general view of conidia. D, colony of Neos. dimidiatum (isolate 
GP40; 3 weeks old). E and I, chains of arthroconidia. F and G, pycnidiospores without (F) and with one or two septa (G). H, pycnidia.
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Effects of temperature on mycelium growth

Analysis of variance showed no differences (P < 
0.05) in mycelium growth among experiments, allowing 
data to be pooled. Relationships between temperature 
and growth were modelled using a cubic response model 
(y = aT³ + bT² + cT + d), with R² values ranging from 
0.95 to 0.98, indicating excellent fit (Table 2).

Maximum mycelium growth was recorded after 2d 
for the two Neos. dimidiatum isolates and 14 d for the 
two Q. cyanescens isolates. The Neos. dimidiatum iso-
lates had optimum growth temperatures between 30 
and 35°C, with no growth observed at 5 and 10°C after 
14 d. Although no significant differences were found for 
optimum growth temperature between the two isolates 
(GP33, 31.93°C; GP40, 32.86°C), maximum growth rates 

(approx. 41 mm d-1) did not differ (P > 0.05). Colony 
diameters after 48 h ranged from 8.6 mm at 15°C to 64.6 
mm at 25°C.

The two Q. cyanescens isolates had optimum growth 
at 25.17°C and 27.06°C, with maximum daily growth 
rates of 2.56 to 3.42 mm, and no differences (P > 0.05) 
between the isolates. After 14 d, mean colony diameters 
were from 5.3 mm at 5°C to 41.5 mm at 30°C (Figure 4).

Phylogenetic analyses of Quambalaria and Neoscytalidium

Sequence alignment of the three genetic loci (ITS, 
LSU, and rpb2) prepared for Quambalaria isolates con-
sisted of a 2020 character dataset, of which 1389 were 
constant, 442 were parsimony-informative, and 189 

Table 2. Temperature-mycelium growth relationships for Neoscytalidium dimidiatum and Quambalaria cyanescens isolates obtained from 
table grape propagation material w.

Species Isolate
Adjusted modelx Optimum 

temperature 
(°C)y

Growth rate 
(mm/day)z

R2 a b c d

Neos. dimidiatum GP33 0.98 -0.0071 0.434 -59.99 21.10 31.93 a 40.89 a
Neos. dimidiatum GP40 0.98 -0.0066 0.415 -59.15 21.30 32.86 a 41.18 a
Q. cyanescens GP9 0.95 -0.0007 0.034 -0.361 15.29 25.17 b 2.56 b
Q. cyanescens GP15 0.96 -0.0007 0.035 -0.371 15.79 27.06 b 3.42 b

w Data are means of six replicates per isolate. Means in each column accompanied by the same letter, are not different (P = 0.05), according 
to Kruskal-Wallis and Dunn’s test for multiple comparisons.
x Mycelium growth of PDA at 5 to 35°C (5°C increments) was adjusted to a quadratic model of y = aT3 + bT2 + cT + d: where y = myce-
lium growth (mm d-1); a, b, c, d = regression coefficients; and R2 = coefficient of determination.
y Optimum temperatures for each isolate were estimated using the adjusted model.
z Maximum growth rate per isolate estimated using the adjusted model.
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Figure 4. Mean colony diameters (mm) at seven temperatures (5 to 35°C) for two isolates each of Neoscytalidium dimidiatum (after 2 d) 
and Quambalaria cyanescens (after 14 d). The isolates were obtained from table grape propagation material in Catania, Italy.
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were singleton sites, with 614 distinct patterns. For 
maximum likelihood (ML) analysis, the ModelFinder 
determined SYM + I + G4 as the best-fit model. ML and 
BI phylogenetic analyses with strong supports (respec-
tively 94% and 1) clustered all the Quambalaria isolates 
obtained in the present study in the same clade with 

other Q. cyanescens isolates and Q. fabacearum (URM 
7756) (Figure 5).

Sequence alignment prepared for the three loci (ITS, 
β-tub, and tef1-a) of Neoscytalidium isolates consisted of 
a dataset of 1321 characters, of which 832 were constant, 
447 were parsimony-informative, and 42 were singleton 
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Figure 5. Phylogenetic tree inferred from Maximum Likelihood (ML) and Bayesian Inference (BI) analyses, based on aligned and con-
catenated ITS, LSU, and rpb2 sequences of 35 isolates in Quambalariaceae. Strains CBS 10918T (Jaminaea angkorensis) and CBS 10858T 
(Jaminaea lanaiensis) were used as the outgroup taxa. Numbers at branches indicate support values: Ultrafast bootstrap (UFBoot2) ≥70% 
and Bayesian posterior probability (B-PP) ≥0.95, with asterisks (*) indicating values <70% and <0.95, respectively. Ex-type, and ex-epitype 
isolates are indicated in bold. The scale bar represents the expected number of changes per site.
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sites, with 577 distinct patterns. For maximum likelihood 
(ML) analysis, the ModelFinder determined TIM + F + I + 
G4 as the best-fit model. ML and BI phylogenetic analyses 

with strong support (respectively 100% and 1) clustered all 
the present study Neoscytalidium isolates in the same clade 
as Neos. dimidiatum reference isolates (Figure 6).
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All the sequences generated in the present study 
were deposited in GenBank (Tables 3 and 4). 

Pathogenicity tests

Quambalaria cyanescens and Neos. dimidiatum both 
caused symptoms on inoculated ‘Italia’ cuttings. One 
month after inoculations with the Q. cyanescens isolate, 
the mean external lesion length on green shoots was 2.83 
± 1.33 cm, and that with the Neos. dimidiatum isolate 
was 2.63 ± 0.47 cm. The two fungi were more virulent to 
woody shoots, causing lesions that extended under the 

bark as internal wood discolourations. The mean lesion 
length was 3.2 ± 1.26 for Q. cyanescens isolates, and 3.4 ± 
0.51 cm for Neos. dimidiatum (Figure 7). After 3 months, 
inoculated green and woody shoots were wilted, and the 
rootstocks also had internal necrotic lesions above and 
below the inoculation points and extending under the 
bark. The mean internal lesions lengths were 3.30 ± 1.43 
cm for Q. cyanescens and 3.37 ± 0.9 cm for Neos. dimidi-
atum (Figure 7). Colonies of the respective fungi were 
obtained from necrotic tissues of plants inoculated with 
one or other of the fungi, and identified based on mor-
phology. Control plants did not show any symptoms 
except those due to wound oxidation.

Figure 7. Results of pathogenicity tests with representative isolates of Quambalaria cyanescens and Neoscytalidium dimidiatum. A, external 
necrotic lesion caused by Q. cyanescens on a green shoot at 1 month after inoculation with Q. cyanescens. B, wilted green shoots caused by 
Q. cyanescens at 3 months post inoculation. C, internal necrotic lesion caused by Q. cyanescens on a woody shoot at 1 month post inocula-
tion. D, internal necrotic lesion caused by Q. cyanescens on a rootstock plant 3 months post inoculation. E, external necrotic lesion caused 
by Neos. dimidiatum on a green shoot at 1 month post inoculation. F, a wilted green shoot caused by Neos. dimidiatum at 3 months post 
inoculation. G, internal necrotic lesion caused by Neos. dimidiatum on woody shoot at 1 month post inoculation. H, internal necrotic lesion 
caused by Neos. dimidiatum on a rootstock plant 3 three months post inoculation.
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DISCUSSION

The impacts of fungal pathogens in grapevine 
propagation material, and within nursery manage-
ment processes, have been well documented (Gramaje 
and Armengol, 2011; Gramaje et al., 2018). The present 
study investigated fungi associated with symptomatic 
table grape cuttings from four Sicilian nurseries exhibit-
ing a high incidence of GTD symptoms. Some of these 
fungi have been previously associated with these symp-
toms on grapevines in Italy, and are known to be GTD 
causal agents in other countries. The isolation frequency 
from rootstock bases and cutting graft unions showed 
higher proportions of Botryosphaeriaceae species, than 
isolations from cane bases. It is probable that the large 
numbers of cuts made during the propagation process 
in nurseries expose the planting material to infections 
(Carlucci et al., 2015b; Aiello et al., 2020).

Sixteen species of Botryosphaeriaceae have been 
reported to be associated with grapevines in Italy (Car-
lucci et al., 2009: Linaldeddu et al., 2010; Carlucci et al., 
2015b; Aiello et al., 2023), some of these fungi match 
those found in the present study (i.e. N. parvum, D. 
seriata, N. australe, N. luteum and B. dothidea). These 
species are important in Italy, as they are increasingly 
isolated from diseased wood of different plant species, 
including ornamentals, as reported especially for N. par-
vum (Ismail et al., 2013; Guarnaccia et al., 2016; Aiello et 
al., 2020; Gusella et al., 2020; Bezerra et al., 2021; Gusel-
la et al., 2021; Aiello et al., 2022; Fiorenza et al., 2022; 
Gusella et al., 2022).

Phaeomoniella chlamydospora was present in all 
assessed parts of grapevine cuttings, and this was the 
predominant species obtained at 15 cm from the cutting 
bases, while P. minimum was isolated less frequently. 
Both fungi are commonly isolated from grapevine cut-
tings (Bertelli et al.,1998; Mugnai et al., 1999; Tegli et 
al., 2000).

Fusarium oxysporum and F. proliferatum were iso-
lated at relatively high frequencies, mainly from graft-
ing points of young plants, highlighting the role of these 
points for pathogen access to initiate plant infections 
(Úrbez-Torres et al., 2023). Fusarium spp. are common 
inhabitants in asymptomatic and symptomatic grape-
vines (Lorenzini and Zapparoli, 2015; Lorenzini et al., 
2016). These fungi have been reported producing vas-
cular discolourations in California in young grapevines 
and in association with vines exhibiting trunk disease 
symptoms California and Mexico (Bustamante et al., 
2022; Travadon et al., 2022; Argüelles-Moyao et al., 
2024). However, other reports from France and Spain 
have highlighted the potential role of Fusarium spp. as 

biocontrol agents, showing strain-dependent abilities of 
the genus (González and Tello, 2011; Bruez et al., 2014).

For Cylindrocarpon-like species causing black foot 
of grapevine, I. lirioendri, I. destructans, D. torresensis, 
and D. macrodidyma were only isolated from rootstock 
bases, and then only at low frequency (2%). These fun-
gi have been mainly reported on mature grapevines, 
but in recent years they have become more commonly 
identified in young nursery plants in Italy (Carlucci et 
al., 2017).

Well-recognised antagonistic fungi were infrequently 
isolated, including Clonostachys rosea, Trichoderma spp., 
as well as saprophytic and endophytic species of Entoleu-
ca, Aspergillus, Alternaria, Acremonium and Cladospori-
um, previously found in association with grapevine (Lo 
Piccolo et al., 2015; Silva-Valderrama et al., 2021; Úrbez-
Torres et al., 2020; Zhu et al., 2021). Some of these fungi 
have been reported to infect grapevine under favourable 
conditions (Latorre et al., 2011; Somma et al., 2012; Kizis 
et al., 2014; Bustamante et al., 2024; Yurchenko et al., 
2024). Other fungi recovered at low frequency included 
Cadophora spp., which have been previously reported as 
grapevine pathogens (Mondello et al., 2020; Travadon et 
al., 2022), while A. xenocordella has been reported as a 
causal agent of fruit blight of Pistacia vera in Italy (Aiel-
lo et al., 2018).

Neoscytalidium dimidiatum and Q. cyanescens were 
the most isolated species in the present study, and were 
obtained from all three isolation points of the investigat-
ed cuttings. Neoscytalidium dimidiatum (Penz.) Crous & 
Slippers, 2006 is a polyphagous and cosmopolitan plant 
and human-associated pathogen. This species has a wide 
host range and has been reported in 37 countries, asso-
ciated with 126 plant species belonging to 46 families 
and 84 genera, including six asymptomatic hosts (Derviş 
and Özer, 2023). To date, Neos. dimidiatum has been 
reported in associations with grapevine in Africa, North 
and South America, and Asia (Al-Saadoon et al., 2012; 
Rolshausen et al., 2013; Correia et al., 2016; Kenfaoui et 
al., 2024). The only data for Italy was from Sicily in 1991, 
where this fungus was reported as Natrassia toruloidera 
(synonym of Neos. dimidiatum) on different wine grape 
cultivars grafted onto 140 RU rootstocks (Granata and 
Sidoti, 1991), where the pathogen identification was based 
only on morphological characters. The fungus was later 
isolated from symptomatic Citrus sinensis (sweet orange) 
plants showing blight, canker and gummosis symptoms, 
and from branch canker and dieback of Meryta denhamii 
plants, and was identified through molecular analysis 
(Polizzi et al., 2009; Gusella et al., 2023).

Quambalaria cyanescens (de Hoog & G.A. de Vries) 
Z.W. de Beer, Begerow & R. Bauer is a ubiquitous fun-
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gus, isolated from a broad range of ecological niches. In 
Italy, this fungus has only been reported amongst myco-
biota of withered grapes, but its role in the development 
of GTDs was not assessed (Lorenzini et al., 2016). This 
fungus has also been isolated from human skin and 
air samples (Sigler et al., 1990). Successively, Q. cyanes-
cens and other Quambalaria spp., have been reported as 
pathogens on Eucalyptus and Corymbia plants (de Beer 
et al., 2006; Paap et al., 2008). In 2012, Q. cyanescens 
was found in association with GTDs in north-western 
Iran (Narmani and Arzanlou, 2019), and was isolated 
from dormant and healthy grapevine cuttings in Turkey 
(Görür and Akgül, 2019). More recently, Travadon et al., 
(2022) and Argüelles-Moyao et al., (2024) reported Q. 
cyanescens from plants exhibiting GTDs in, respectively, 
California and Mexico. This fungus has been reported 
from Russia as pollen endophyte of silver birch (Betula 
pendula), as well as in woody hosts, including in flowers 
of healthy pomegranate and pistachio, in Iran (Antropo-
va et al., 2014; Vahedi-Darmiyan et al., 2017; Kari Dola-
tabad et al., 2019). However, Q. cyanescens has also been 
associated with diseased vascular tissues of declining 
almond trees in Iran (Baradaran Bagheri et al., 2015). 
This species was recently reported in association with 
larvae and pupae of the phyllophagous olive moth, the 
skins of healthy green frogs, and faeces and larval debris 
of codling moths on walnut kernels (Oliveira et al., 2012; 
Mahdizadeh et al., 2023; Stupar et al., 2023). In addition, 
Q. cyanescens has been reported for its broad-spectrum 
antimicrobial activity against Aspergillus fumigatus and 
Beauveria bassiana, pathogens of Pistacia vera, and 
Colletotrichum acutatum (Stodůlková et al., 2015; Dola-
tabad et al., 2017; Preto et al., 2017).

The phylogenetic analysis of the Neoscytalydium and 
Quambalaria isolates obtained in the present study con-
firmed that they belonged, respectively, to Neos. dimidi-
atum and Q. cyanescens. All the Q. cyanescens isolates 
were also found to be closely related to Q. fabacearum, 
as previously reported by Narmani and Arzanlou (2019). 
However, based on the type strains of the two species, 
Q. cyanescens has shorter conidiogenous cells than Q. 
fabacearum, and unlike Q. fabacearum, lacks chlamydo-
spores (Bezerra et al., 2018; de Hoog and de Vries 1973). 
Furthermore, the molecular analyses in the present 
study have shown that the LSU locus is identical in these 
two species, while six base differences were observed at 
the ITS region of the Q. fabacearum type strain com-
pared to the Q. cyanescens.

The growth temperature studies showed that Neos. 
dimidiatum and Q. cyanescens both had greatest growth 
at high temperature. These results explain the increas-
ing spread and incidence of these pathogens in the con-

text of climate change. Neoscytalydium dimidiatum was 
did not grow at 5 and 10°C, and had greatest mycelial 
approx. 33°C, and also grew very rapidly at that temper-
ature. In contrast, Q. cyanescens was able to grow at all 
the temperatures tested, although growth was slow. 

The pathogenicity assessments fulfilled Koch’s pos-
tulates for isolates of Neos. dimidiatum and Q. cyane-
scens, confirming abilities of these fungi to cause dis-
ease symptoms on green and woody tissues, both at the 
grapevine scions and the rootstocks.

GTDs are an aggregate of fungal diseases that are 
currently considered to be the most destructive biotic 
factor affecting grapevines (Kanetis et al., 2022). Besides 
their adverse effects on longevity and productivity of 
established vineyards, GTD pathogens affect the phy-
tosanitary status of grapevine propagation material, 
resulting in pathogen dissemination and costs associ-
ated with vine replanting. The present study results have 
shown high incidence of GTD pathogens in nursery 
plants and identified, for the first time, Neos. dimidiatum 
and Q. cyanescens as further causal agents within com-
plex of fungi that cause GTDs in Europe, particularly 
in Italian nurseries. These results highlight the impor-
tance of implementing sustainable management strate-
gies for emerging polyphagous plant pathogens that can 
infect an increasing number of plant species, especially 
in the context of climate warming. This could contribute 
to favourable conditions for development and spread of 
these pathogens in temperate regions.

Further investigations within the GTD complex 
are required to determine what triggers latent patho-
gens to transition from endophytic to a pathogenic 
state, and to cause symptoms on young plants. As the 
roles of endophytic fungi remain poorly understood, 
further studies are required elucidate the pathogenic-
ity of Fusarium spp. and to investigate the spread of 
fungi such as Q. cyanescens and Neos. dimidiatum in 
table grape plants. The present study results, along with 
relevant future research, will be valuable for the early 
detection of fungi involved in GTDs, and for develop-
ment of increasingly efficient and sustainable disease 
management strategies.
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