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Summary. Italian production of peanuts has recently increased. Aflatoxin B1 (AFB1) 
contamination of peanuts is currently not in Italy, but changing climatic conditions of 
the Mediterranean region may increase risks posed by this mycotoxin. A mechanistic 
weather-driven prototype model to predict AFB1 contamination in peanuts was devel-
oped by adapting the mechanistic AFLA-maize model for the Aspergillus flavus-peanut 
pathosystem. The peanut growth stages were examined to develop a phenology model 
based on growing degree days (GDD), which was linked to an A. flavus infection cycle 
model, and exploited to develop the “AFLA-peanut” prototype model. Starting from 
sowing, 686 GDD were required to reach flowering (as the critical growth stage for A. 
flavus infection), and 1925 GDD were required to reach harvesting, in a short season 
peanut variety. Variability of the AFB1 index, across years and locations, highlighted 
the capacity of AFLA-peanuts to account for weather data inputs in predicting AFB1 
contamination risks. Although model validation will be mandatory to assess AFLA-
peanut performance, this study has provided the first evidence that the prototype mod-
el could become an important tool for aflatoxin risk management.

Keywords. Aspergillus flavus, model transfer, weather, phenology, mycotoxin, climate 
change.

INTRODUCTION

Peanut (Arachis hypogaea L., Fabaceae), also known as groundnut, is 
an annual herbaceous plant, which is native to Central and South America, 
and is characterized by fruit development beneath soil surfaces. Peanut crop 
production now occurs in many countries thanks to its beneficial nutrition-
al properties (Mingrou et al., 2022). Annual world peanut production has 
grown by over 54 million tons per year, with China as the main producer, 
followed by India, Nigeria, and the  United States of America (FAOSTAT, 
2024). In the Mediterranean region, peanut production is widespread, espe-
cially in Turkey and Egypt, and limited production occurs in Spain and 
Greece (Sannino et al., 2020; Özkaya et al., 2024). Italian peanut produc-
tion is increasing, from 22 tons per year in 2017 to 712 tons per year in 2024 
(Istat, 2024).
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Aspergillus f lavus infects and colonizes several 
crops, and among these, peanut is one of the most sus-
ceptible (Horn, 2005; Amaike and Keller, 2011; Payne, 
2014). Aflatoxins (AFs) are toxic and cancerogenic sub-
stances. Consumption of food and feed contaminated 
by these compounds can cause several harmful effects, 
including genotoxicity, hepatotoxicity, carcinogenic-
ity, and nephrotoxicity, and have mutagenic, teratogenic, 
cytotoxic, and immunosuppressive effects (Shephard, 
2008; Aristil et al., 2020, Singh et al., 2021). Contamina-
tion can occur or increase throughout the peanut supply 
chain, from the field, during crop growth, natural dry-
ing after digging, harvesting, storage and product deliv-
ery, and to eventual processing (Torres et al., 2014; Cer-
vini et al., 2022).

Italy is considered at low risk for AFs contamina-
tion in peanuts, and this is an added value for the crop 
in this country. However, the spread of A. flavus in 
Mediterranean countries, including Italy, due to climate 
changes, may increase the risk of AF contamination in 
Italian peanuts, as has occurred in maize from 2003 
(Piva et al., 2006; Giorni et al., 2007; Kos et al., 2013; 
Battilani et al., 2016; Moretti et al., 2019). Applying suit-
able management practices along the peanut value chain 
is likely to reduce the risk of AF contamination (Chulze 
et al., 2024).

Mechanistic models that consider interactions 
between A. flavus, host plants, and the environment to 
predict the risk of AF contamination are important tools 
in Integrated Pest Management (IPM) for sustainable 
agriculture. In particular, exploiting these models for sus-
tainable agriculture promotes enhancement of agricultur-
al practices, refinement of harvest strategies, and imple-
mentation of post-harvest measures, that aim to reduce 
potential risks for consumer exposure to AFs.

Some studies have aimed to predict AF contami-
nation using crop growth simulation models. In Mali, 
Boken et al. (2008), through the CSM-CROPGRO-Pea-
nut model, which is based on crop genetics, agricultural 
practices, soil data, and meteorological data, estimated 
peanut reproductive stages and crop yields. With this 
information Boken et al. (2008) performed regression 
analysis to correlate AF contamination measured post-
harvest with weather conditions during the reproductive 
stages. Craufurd et al. (2006) carried out a similar study 
in Niger, using the CROPGRO-Peanut model to simulate 
crop growth and yield. Aflatoxin contamination at har-
vest was correlated with the fraction of extractable soil 
water (FESW) in the crop rhizosphere during the repro-
ductive phase. Chauhan et al. (2010) in Australia also 
developed a predictive model based on the crop simula-
tion model APSIM (Agricultural Production Systems 

Simulator). This model uses the APSIM’s peanut mod-
ule to simulate crop growth. It calculates an aflatoxin 
temperature factor (ATF) during the last 40% of growth 
when soil water availability is below 0.20 (range 0-1), and 
the accumulated ATF generates an AF risk index (ARI). 
All of these models are empirical, and require recalibra-
tion for use outside their original geographic contexts, for 
example for use in the Mediterranean basin.

The present study aimed to develop a mechanis-
tic model, as a flexible tool usable across different geo-
graphic regions without requirement for adjustments 
(Battilani and Camardo Leggieri, 2015). The mechanistic 
model AFLA-maize was adapted for the A. flavus-pea-
nut pathosystem, following the successful application to 
AFLA-pistachio nuts (Battilani et al., 2013; Kaminiaris 
et al., 2020). The first step was to study peanut growth 
stages, and then build a phenological model based on 
growing degree days (GDD). The model was then inte-
grated with the model for the A. flavus infection cycle 
model, and was exploited to produce the prototype 
AFLA-peanut predictive model.

MATERIALS AND METHODS

Location of field studied

Between 2021 and 2023, meteorological data were 
collected from a total of 14 locations across Northern 
Italy provinces (Figure 1), including Ferrara (one loca-
tion in 2021, six in 2022, two in 2023), Modena (one 
location in 2022), Cuneo (one in 2022), Verona (two in 
2023), and Pordenone (one in 2023). The meteorologi-
cal data from the 2022 and 2023 in the respective loca-

Figure 1. Geographical distribution of selected fields in Northern 
Italy across years (2021, 2022 and 2023).
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tions were used as input to run the AFLA-peanut model. 
Among these production areas, four fields in the prov-
ince of Ferrara (2021 and 2022), and one field in Porde-
none (2023), were specifically selected to observe peanut 
growth stages for the peanut variety Lotos.

Lotos is commonly cultivated in Italy, and is charac-
terised by early maturity and a crop cycle length of 120 
to 130 d. Peanut season length is classified as “early” to 
130 days, “medium” 133 to 139 d, “medium-late” 140 to 
145 d, and “late-maturing” 146 to 155 d (Carter et al., 
2016; GRDC, 2018).

Meteorological data

Hourly data of air temperature (T, °C), relative 
humidity (RH, %), and rainfall (R, mm) were collected 
from the agro-meteorological network in Emilia Romag-
na region, from 1 January to 31 October during 2021, 
2022 and 2023 (Table 1s, supplementary material). The 
Emilia Romagna region is virtually shared by a grid of 
squares, each of 5 km², with meteorological data deliv-
ered for each square (Arpae, 2024). These data come 
from all available sources, including meteorological sta-
tions and radar (Bottarelli and Zinoni, 2002). The proper 
squares were selected based on the locations of the mon-
itored peanut fields. For the sampling points in other 
regions, meteorological data were provided by “Agrome-
teo Service” Image Line® and AgroNotizie®.

The meteorological data were used: i) to develop the 
peanut phenological sub-model included in the AFLA-
peanut model, and ii) as input to run AFLA-peanut.

Growth stages

Crop phenology descriptions were based on field 
observations carried out every 2 weeks, from crop emer-
gence to harvesting, during the complete peanut growth 
period (May to October). The growth stages were defined 
according to the BBCH scale (Meier, 2001), and after 
analysis of existing literature, the crucial peanut growth 
stages most susceptible for A. flavus infection were then 
indicated (Cole et al., 1986; Pitt et al., 1991; Horn, 2005).

The GDDs were calculated, starting from sowing 
date, for each observed peanut growth stage (Mcmaster 
and Wilhelm, 1997), using the following equation:

GDDi = [(Tmax,i-Tmin,i)/2] - Tbase,

where Tmax is the hourly maximum temperature, Tmin is 
the hourly minimum temperature, and Tbase is the base 
temperature of 10°C.

Tbase was set as the low threshold for peanut growth 
(Ketring and Wheless, 1989; Canavar and Kaynak, 2010; 
Kingra and Kaur, 2012). Collected data were assessed 
with literature sources (Banterng et al., 2003; Canavar 
and Kaynak, 2010), leading to development of a crop 
phenology model for peanuts based on GDD (Canavar 
and Kaynak, 2010).

Predictive model

Commencing from the existing relational diagrams 
of AFLA-maize and AFLA-pistachio (Battilani et al., 
2013; Kaminiaris et al., 2020), a new diagram was devel-
oped following the principle of “system analysis” (Lef-
felaar, 1993). The diagram was composed of different 
state variables linked in a coherent mathematical frame-
work, which operates in a predictive model to generate a 
cumulative index for aflatoxin B1 (AFB1) contamination 
(AFB1-I). The predictive model, named “AFLA-peanut”, 
is a weather-driven model that predicts crop phenology 
and A. flavus behaviour based, on meteorological data 
(T, RH, and R).

RESULTS

Meteorological data

Data from selected locations are shown in Table 1s 
(supplementary materials). Temperatures in 2023 were 
characterised by high variability between locations. 
Nevertheless, during the first part of the year (January 
to April), and in September, temperatures were high 
(location daily thermal sum mean = 1012.9 °C, and 
648.8 °C, respectively), compared to the same peri-
ods of 2021 (904.9 and 615.5 °C) and 2022 (888.5 and 
595.8 °C). Nevertheless, Cavallermaggiore, in 2022, was 
the warmest location, compared to the other locations 
and years, from January to April (daily thermal sum = 
949.7 °C). The opposite was recorded from May to July 
2022, as daily thermal sum means were higher than in 
2023 and 2021. For precipitation, high variability was 
observed between locations over the 3 years. However, 
drier periods occurred in 2022 and 2021 than in 2023, 
from May to July and during October. The exception 
was in Ostellato, in July of 2021 and in June of 2022. 
Similarly, in September of 2023, Bondeno and Cordo-
vado had similar rainfall and were comparable to some 
of the other locations of 2022. In particular, during 
this month, the greatest amounts of precipitation were 
recorded in 2021. In 2023, Bondeno and Cordovado 
were the rainiest locations.
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Peanut growth stages

GDD were computed for the main growth stages of 
peanuts, based on field observations conducted in 2021, 
2022, and 2023 (Figure 2). The data collected were com-
parable to data reported previously for the early variety 
Florispan, with the same season length as Lotos, consid-
ered in the present study (Table 2s). For available data 
for late maturing varieties, required GDD increase from 
the beginning of flowering until harvest is approx. +20%.

Results of the relationships between GDD and 
BBCH are shown in Figure 2. Crop phenology can be 
split between vegetative and reproductive growth stag-
es. The vegetative stages, from sowing (BBCH 0) to the 
beginning of flowering (BBCH 61), lasted for about 5 
weeks, requiring approx. 425 GDD. The reproductive 
stage, which extends from flowering (BBCH 65) to har-
vest (BBCH 99), requires an additional 1239 GDD to be 
completed. Flowering was identified as the critical stage 
for A. flavus infection.

Predictive model

The infection cycle of A. flavus on peanuts is illus-
trated in the relational diagram in Figure 3. Inoculum 
source, which is not quantified in the model, represents 
the starting point of the cycle, considering that suitable 
environmental conditions influence the sporulation rate 
of the A. flavus (SpoR), promoting the production of 
spores. Subsequently, the spores produced on inoculum 
sources (SoI) are then dispersed according to a dispersal 
rate (DispR) and reach the peanut plants (DSoP). When 
the peanut crop is at a critical growth stage (GS) for A. 
flavus infection, from flowering, and the environmental 
conditions are suitable, the spores germinate, and the 
fungus grows on pegs and pods (GoPP), leading to infec-
tion of peanut seeds (IPS). These stages are regulated 
by the spore germination and growth rates, which are 
influenced by T, RH, and R. Once the seeds are infected, 

the fungus may produce AFB1 (AFB1-I) according to an 
AFB1 production rate (AFB1R).

AFB1-I was computed daily, using hourly data col-
lected in all the available meteorological data sources. 
Cumulative AFB1-I, from peanut flowering to harvesting, 
is the final output of the AFLA-peanut model. The AFB1-
I index showed high variability across the 3 years and the 
locations considered in the present study (Table 1).

DISCUSSION AND CONCLUSIONS

Peanut production in Italy has increased in recent 
years, although AFB1 contamination has been only very 
rarely detected, and then only as traces (Crosta et al., in 
preparation). However, increasing  climate variability, 
with extreme events such as heat waves and droughts, 
attributed to climate change in the Mediterranean basin, 
underscore the need for a robust, weather driven-mech-
anistic model to predict AFB1 contamination risks (Bat-
tilani and Camardo Leggieri, 2015; Battilani et al., 2016). 
Meteorological data collected in the present research has 
revealed distinct patterns across the years and locations 
studied, confirming the impacts of climate on weather 
dynamics at regional scale (Leggieri et al., 2020). While 
drought conditions were more marked in 2021 and 
2022, 2023 had more favourable precipitation for pea-
nut growth. The locations selected for this had consider-
able rainfall differences and distribution throughout the 
growing seasons. AFB1-I, provided as output by AFLA-
peanut, was characterized by high variability across 
years and locations, indicating the influence of mete-
orological data used as input, with temperature playing 
an important role, as has been previously observed for 
AFLA-maize and AFLA-pistachio (Battilani et al., 2013; 
Kaminiaris et al., 2020). In the present study, the model 
was transferred from the maize pathosystem to that for 
peanut, without modifying the fungal component, as 
was previously done for pistachio. Sensitivity analysis 
was therefore not applied because the results were con-

Figure 2. Crop phenology (described by the BBCH scale), mean GDD calculated for each growth stage, of the early peanut variety Lotos, 
observed in the fields of Ferrara and Pordenone from 2021 to 2023. Tbase= 10°C was considered to calculate GDD.
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sistent with those reported by Battilani et al. (2013) and 
Battilani et al. (2016).

Despite the differences in meteorological conditions 
between the three growing areas, GDDs from differ-
ent sources and related to peanut growth stages agreed. 
This indicated that the peanut phenology model devel-
oped in the present study is reasonably robust (Banterng 
et al., 2003; Canavar and Kaynak, 2010). For early sea-
son peanut varieties, 686 GDD were related to flowering 
(the critical stage for A. flavus infection), and 1925 GDD 
were related to peanut harvest.

The model presented here for AF contamination 
risk prediction is an improvement compared with exist-
ing empirical models, such as those by Craufurd et al. 
(2006), Boken et al. (2008), and Chauhan et al. (2010). 
The mechanistic approach of AFLA-peanut can adapt to 
diverse climatic profiles without the need for significant 
adjustments, positioning AFLA-peanut as a valuable tool 

for both regional and international contexts (Battilani 
and Camardo Leggieri, 2015). The model’s flexibility and 
adaptability to environmental conditions are especially 
relevant for the Mediterranean environment, where cli-
mate affects traditional agricultural practices, and can 
threaten crop quality and safety (Battilani and Camardo 
Leggieri, 2015; Chulze et al., 2024).

Results from the present study emphasize the need for 
thorough validation of the AFLA-peanut model. Georef-
erenced data on weather and AFB1 contamination from 
diverse peanut production regions, and additional data on 
peanut cropping systems, are important for achieving this 
aim. Such validation will provide important insights into 
the model’s prediction accuracy, and will strengthen its 
applicability in a broad range of environments.

The AFLA-peanut model’s ability to incorporate 
weather variability offers a strategic advantage for proac-
tively managing AFs risks, which are increasingly chal-

Figure 3. Relational diagram for the Aspergillus flavus infection cycle and aflatoxin production on peanuts.
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lenging under the Mediterranean region’s shifting cli-
mate conditions. As climate change accelerates, extreme 
weather events are expected to intensify, directly affect-
ing crop health and AF contamination (Battilani et al., 
2016; Chulze et al., 2024). These climate changes pose 
threats to food safety, and to the economic stability of 
agricultural sectors and to food security. Aspergillus 
flavus outbreaks reduce crop yields and restrict market 
access for affected produce (Moretti et al., 2019) in areas 
where peanuts contribute significantly to farmer income.

AFLA-peanut could be an important tool for safe-
guarding peanut supply chains and consumer health, by 
providing early risk alerts, once its robustness is con-
firmed through validation. This has already been dem-
onstrated for AFLA-maize and AFLA-pistachio (Batti-
lani et al., 2013; Kaminiaris et al., 2020). By anticipating 
contamination risks, these models help mitigate adverse 
health effects and economic losses associated with the 
disposal of unsafe product batches. Implementation of 
costly interventions could be justified in cases of high 
AF contamination risk.

Future research should focus on validating the 
AFLA-peanut model using diverse datasets with a broad 
range of AFB1 contamination to further assess the mod-
el’s predictive performance. In subsequent developments, 
the model output could be a foundation for a compre-
hensive Decision Support System (DSS). This would inte-
grate additional variables, such as peanut genetic, agri-
cultural, and soil factors, to enhance AF risk prediction 
and support improved peanut safety management within 
the framework of sustainable agriculture.
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