Research Papers

Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany

Christiane ROSE¹, Ulrike DAMM²,*

¹ Hochschule Geisenheim University, Von-Lade-Straße 1, D-65366 Geisenheim, Germany
² Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany

*Corresponding author. E-mail: ulrike.damm@senckenberg.de

Summary. Anthracnose caused by Colletotrichum species is an important disease of strawberries (Fragaria × ananassa), but the species causing this disease in Germany have not been investigated based on modern systematics. By using multi-locus phylogenetic analyses (ITS, act, gapdh, chs-1, his3, tub2), 58 Colletotrichum isolates from previous and recent collections, obtained mainly from fruit anthracnose of cultivated strawberries in Germany, were identified or re-identified as *C. fioriniae*, *C. godetiae* and *C. nymphaeae* (*C. acutatum* species complex) as well as *C. anthrisci* and *C. lineola* (*C. dematium* complex). Colletotrichum nymphaeae was dominant; most of the isolates belonged to one clonal lineage that occurs on strawberries throughout Europe, the United States of America, and some African and Asian countries. One of the other two haplotypes was distantly related and only represented by recently collected material. All other species, each of one haplotype, had only been isolated once or twice from German strawberries. This is the first report of *C. anthrisci* in Germany and for the genus *Fragaria* worldwide; all the other isolated fungi are newly reported for this genus in Germany. Comparisons of morphological characteristics of the species identified demonstrate that these features are of limited use for identification, even to species complex level. In pathogenicity tests, all five species caused anthracnose symptoms on ripe fruit of Fragaria × ananassa ‘Asia’.

Keywords. Anthracnose, Colletotrichum acutatum, C. dematium, multi-locus phylogeny, pathogenicity.

INTRODUCTION

Strawberries (Fragaria × ananassa, Rosaceae) are the most common fruit crops after apples in Germany, with a harvested volume of 133,135 t in 2022 (Lehari, 2002; Statistisches Bundesamt, 2023). Intensive strawberry breeding, which has been primarily aimed at high yields, influenced the gene structure and thus immunity to pathogens in strawberries (Hardigan et al., 2018), so strawberry cultivation is associated with high production risks. In the presence of warm temperatures and high humidity, rapid outbreaks of anthracnose caused by Colletotrichum species can be expected (Howard et al., 1992). Trading of young plantlets with latent infections can rapidly spread the disease over long distances (Howard et al., 1992). Anthracnose of strawberry...
fruit is characterised as brown, sunken spots, in which orange conidial mucilage develops. Main symptoms of green tissues (runners, leaves and stalks) include dark, sunken, necrotic areas (Howard et al., 1992).

Brooks (1931) reported a new strawberry disease in Florida, United States of America (USA), called anthracnose, and described the causative pathogen as *C. fragariae*. In the 1980s, *C. acutatum sensu lato* was first reported from strawberries in the USA (Smith and Black, 1986). Anthracnose symptoms in strawberry fields in Germany (Baden, Palatinate) and other European countries including France, Bulgaria, Sweden, Denmark, Spain and Belgium have been reported at least since the 1990s and attributed to *C. acutatum* while *C. fragariae* was only found within material from the USA (Denoyes and Baudry, 1995; Laun and Fried, 1996; Bobev et al., 2002; Nilsson et al., 2005; Sundelin et al., 2005; Garrido et al., 2008; Debode et al., 2009). The first molecular study of *Colletotrichum* in Germany by Nirenberg et al. (2002) focusing on *C. lupini*, included a strain from strawberry in Germany that had also been identified as *C. acutatum* based on ITS sequence data. Within this investigation, several *Colletotrichum* strains from different hosts and countries, including from strawberries in Germany, had been collected and are maintained at the culture collection of the Biologische Bundesanstalt für Land- und Forstwirtschaft (BBA) Berlin, now Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen (Federal Research Centre for Cultivated Plants), Institut für Epidemiologie und Pathogenagnostik, Braunschweig, Germany.

The systematics of *Colletotrichum* has changed within the last 20 years, due to application of molecular data, especially in multi-locus DNA sequence analyses. *Colletotrichum acutatum* and *C. gloeosporioides* that had been previously regarded as causal agents of strawberry anthracnose were shown to be large species complexes (Damm et al., 2012a; Weir et al., 2012). The number of accepted *Colletotrichum* species, those that have been revised or newly described based on multi-locus DNA sequences, is constantly increasing; more than 30 *Colletotrichum* species in at least 15 species complexes and more than ten further species are currently accepted (Liu et al., 2022; Talhinhas and Baroncelli, 2023). To date, at least 22 species are known from strawberry, belonging to the *C. acutatum*, *C. boninense*, *C. coccodes*, *C. dematiuim*, *C. gloeosporioides* and *C. truncatum* species complexes (Farr and Rossman, 2024). *Colletotrichum acutatum sensu stricto* is only confirmed from strawberry in Australia (Damm et al., 2012a), while most reports of *C. acutatum* on strawberry in the USDA Fungal Databases (Farr and Rossman, 2024), including that from Germany (Nirenberg et al., 2002), date back to the pre-molecular era, or were from before *C. acutatum* was shown to be a species complex (Damm et al., 2012a). Therefore, these fungi should be considered as *C. acutatum sensu lato* and could include other species within this complex.

To date, only *Colletotrichum* strains infecting a few random, often exotic host plants collected in Germany have been identified or described based on modern systematics (e.g. Damm et al., 2012a, b, 2014, 2019; Weir et al., 2012); while there are no records of *Colletotrichum* species from *Fragaria* hosts in Germany identified on the same basis.

The aims of the present study were to investigate the diversity of *Colletotrichum* on strawberries from all over Germany based on multi-locus sequence data, to characterise the species morphologically and to test their pathogenicity to fruit of cultivated strawberry (*Fragaria × ananassa* ‘Asia’).

MATERIALS AND METHODS

Isolates

Symptomatic material of cultivated strawberry plants (*Fragaria × ananassa*) was collected in different regions of Germany, including Saxony (Dresden, Görlitz, Ore Mountains), Brandenburg (Spreewald), North Rhine-Westphalia (Münsterland), Lower Saxony (Lüdersfeld) and Mecklenburg-Western Pomerania (Mecklenburg Lake District). The collected material also included fruit bought at markets in Germany (some of Polish origin) and one sample from wild strawberry (*Fragaria vesca*).

Most of the newly collected material consisted of infected fruit of *F. × ananassa*, which had symptoms of brown, sunken spots of necrotic tissue that spread radially. Orange conidial masses sometimes developed in the centres of these spots. Flat, pale to dark mouse-grey mycelium often formed at the edges and sometimes over the entire infection sites. Elongated dark brown necroses initially formed on host stems and petioles, which spread and developed into stem-encompassing necroses and constrictions, on which conidia were sometimes observed. On affected leaves of *F. × ananassa*, roundish to oval necrotic areas were observed, each with dark brown irregular edges and a light brown centre, which partially merged. Symptoms of the *F. vesca* leaf sample were similar; grey-brown spots of various sizes and shapes with paler centres and darker irregular margins formed especially at the edges of affected leaves.

To obtain single-conidium isolates, conidia formed on the necrotic host tissues were spread on the surface
of petri dishes with synthetic nutrient-poor agar (SNA; Nirenberg, 1976) using a drop of sterile water. On the following day, single germinating conidia were transferred to oatmeal agar (OA; Crous et al., 2019). Plant parts, on which no conidia were present, were surface sterilised (1 min in 3.5% NaClO, 30 s in 70% ethanol), washed in sterile water and placed in petri dishes on sterile filter paper with sterile water until conidia were formed, from which single-conidium isolates were produced.

A further 22 isolates from the culture collection of the former BBA had been collected more than 20 years ago in the federal states of Mecklenburg-Western Pomerania, Saxony, Baden-Württemberg, Hesse, Rhineland-Palatinate and Brandenburg and included one strain bought in a supermarket that originated from the Netherlands.

Although it was not possible to complete and confirm all collection data, it is assumed that all the BBA isolates originated from anthracnose symptoms, especially from fruit rot, because the material had been deposited by plant protection offices in different German federal states in the years when strawberry anthracnose spread across Europe. For one of the isolates from Saxony there was information provided that a 2-year-old stock of ‘Selva’ (imported plants) was very heavily infected. Most of the strawberry runners from which isolates had been obtained were characterised as necrotic, while one isolate had a noticeable reddish discoloration at the infection site. Two isolates originated from brown roots of F. vesca var. semperflorens. There was no information on the leaf symptom and no further information on fruit symptoms than fruit rot.

The isolates were stored in the culture collection of the Senckenberg Museum of Natural History Görlitz, Germany (GLMC; Table 1). Selected isolates were deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany.

Morphological analyses

The Colletotrichum strains were cultivated on SNA with autoclaved filter paper and double-autoclaved stems of Anthriscus sylvestris and on OA. Cultures were incubated at 20°C under near UV light (12 h daily photoperiod) for 10 d. Microscopic preparations were made in clear lactic acid. Measurements of microscopic structures of the fungi were carried out according to Damm et al. (2007), with 30 measurements per structure and strain, using a Nikon SMZ1000 dissecting microscope (DM) and a Nikon Eclipse 80i compound microscope with differential interference contrast (DIC). Appressoria were observed on the reverse sides of the SNA cultures. Colony features on SNA and OA were observed after the incubation period. To calculate colony growth rates, the diameters of the colonies were determined after 7 and 10 d. Colony colour was characterised according to Rayner (1970).

Phylogenetic analyses

Genomic DNA was extracted from cultures according to Damm et al. (2008). The 5.8S nuclear ribosomal RNA gene with the two flanking internal transcribed spacers (ITS), a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase (gapdh) and partial sequences of the chitin synthase 1 (chs-1), histone H3 (his3), actin (act) and beta-tubulin (tub2) genes were amplified and sequenced using the respective primer pairs ITS-1F (Gardes and Bruns, 1993) + ITS-4 (White et al., 1990), GDF1 + GDR1 (Guerber et al., 2003), CHS-354R + CHS-79F (Carbone and Kohn, 1999), CYLH3F + CYLH3R (Crous et al., 2004), ACT-512F + ACT-783R (Carbone and Kohn, 1999) and T1 (O’Donnell and Cigelnik, 1997) + Bt-2b (Glass and Donaldson, 1995) or T1 + BT4R (Woudenberg et al., 2009). DNA amplifications were carried out in a Mastercycler® pro S (Eppendorf), each in a total volume of 20 μL. The PCR reaction mixture contained 1 μL of 1:10 diluted genomic DNA, 2.5 μL of 10× buffer (Peqlab), 1 μL of each primer (10 mM), 2.5 μL of MgCl2 (25 mM), 2.5 μL of dNTPs (2 mM), 0.7 μL of DMSO and 0.1 μL of Taq DNA polymerase (0.5 U; Peqlab). Conditions for PCR of gapdh, chs-1, his3, act, and tub2 included an initial denaturation step of 5 min at 94°C, followed by 40 cycles each of 30 s at 94°C, 30 s at 52°C and 30 s at 72°C, and a final denaturation step of 7 min at 72°C. ITS PCR was carried out as described by Woudenberg et al. (2009). PCR products were visualised on a 1% agarose gel and sequenced by the Senckenberg Biodiversity and Climate Research Centre (BiK-F) laboratory (Frankfurt, Germany). The DNA sequences generated with forward and reverse primers were used to obtain consensus sequences, using BioNumerics v. 7.6.3 (Applied Maths, St-Martens-Latem, Belgium), and the alignments were assembled and adjusted manually using Sequence Alignment Editor v. 2.0a11 (Rambaut, 2002). Sequences derived in this study were lodged at NCBI GenBank (www.ncbi.nlm.nih.gov).

For preliminary identification and selection of reference strains, blastn searches were carried out with ITS sequences in NCBI GenBank. Maximum parsimony (MP) analyses were carried out on the multi-locus alignments (ITS, gapdh, chs-1, his3, act, tub2) with Phy-
Pathogenicity tests

Selected *Colletotrichum* isolates were incubated on OA at 20°C under near UV light for 10 d. To harvest the conidia, 10 mL of sterile distilled water was added to an OA culture of each isolate and swirled thoroughly. The resulting conidium suspensions were adjusted to a final concentration of 2×10^4 conidia mL$^{-1}$. Ripe fruit of *F. × ananassa* 'Asia' (Obsthof Rüdiger, Dresden, Germany) of the quality standard EU No. 543/2011 class Extra (Anonymous, 2011) were surface sterilised with 1% NaClO for 6 min, washed three times with sterile distilled water and placed under sterile conditions on moist filter paper in covered glasses (Gourmet glass, round edge, 300 mL, Weck). Each fruit was inoculated with a 5 μL droplet of conidium suspension (without wounding) or treated with 5 μL of sterile distilled water (experimental control). Five repetitions (fruit) were made for each *Colletotrichum* strain and the control. The covered glasses with inoculated strawberries were placed randomly in a climate cabinet (20°C, 14 h fluorescent light/10 h dark daily cycle, humidity up to 100%). The experiment was carried out twice. Seven d post inoculation (dpi), resulting lesion sizes were determined by counting infected unit squares on a grid placed over scaled photographs. Symptoms were evaluated visually and photographed 7 dpi or, in the case of delayed infection development, 10 dpi. Re-isolations were made from lesion edges and resulting fungi were identified.
Figure 1. The first of 590 most parsimonious trees obtained from a heuristic search of the combined ITS, act, gapdh, chs-1, his3, tub2 sequence alignment of *Colletotrichum* isolates from *Fragaria* and representative strains of the *C. acutatum* species complex. Bootstrap support values of the MP analysis >70% and of the ML analysis >95% are shown at the nodes. *Colletotrichum ochraceum* CBS 632.80 and IMI 309357 were used as outgroup. Numbers of ex-type strains are indicated by an asterisk. Isolates obtained or sequenced in this study are shown in bold font. Strain numbers are followed by substrate (host genus) and country of origin (NL = Netherlands, NZ = New Zealand, ZA = South Africa). (Continued)
from strawberry and other hosts from other European countries, including an isolate from *Mahonia* in Germany.

In the multi-locus phylogenetic analyses of the *C. dematium* species complex (gene boundaries of ITS: 1–530, *gapdh*: 541–821, *chs-l*: 832–1082, *his3*: 1093–1489, *act*: 1500–1768, *tub2*: 1779–2298), 36 isolates, including the two newly sequenced isolates from strawberry, 33 reference strains and the outgroup *C. chlorophyti* IMI 103806 (Table 1, Supplementary table 1), along with 2298 characters including the alignment gaps were processed. Of these, 415 characters were parsimony-informative, 205 parsimony-uninformative and 1678 constant. After a heuristic search using PAUP, the maximum of 440 equal-
Table 1. Strains of *Colletotrichum* spp. used in this study, with collection details and GenBank accession numbers.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. anthrisci</td>
<td>GLMC 2616, DSM 115225</td>
<td>Fragaria vesca, leaf spots</td>
<td>Germany, Saxony</td>
<td>PP069452</td>
<td>PP115767</td>
<td>PP115825</td>
<td>PP115819</td>
<td>PP115767</td>
<td>PP115819</td>
</tr>
<tr>
<td>C. fioriniae</td>
<td>GLMC 2660, DSM 115228</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069446</td>
<td>PP115704</td>
<td>PP115870</td>
<td>—</td>
<td>PP115761</td>
<td>PP115819</td>
</tr>
<tr>
<td>C. fioriniae</td>
<td>GLMC 2661, DSM 115229</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069447</td>
<td>PP115705</td>
<td>PP115871</td>
<td>PP115911</td>
<td>PP115762</td>
<td>PP115820</td>
</tr>
<tr>
<td>C. godetiae</td>
<td>GLMC 2589, BBA 70063, DSM 115222</td>
<td>Fragaria × ananassa, runner with necroses</td>
<td>Germany, Baden-Württemberg</td>
<td>PP069449</td>
<td>PP115707</td>
<td>PP115873</td>
<td>PP115913</td>
<td>PP115764</td>
<td>PP115822</td>
</tr>
<tr>
<td>C. godetiae</td>
<td>GLMC 2590, BBA 71234, DSM 115223</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Mecklenburg-Western Pomerania</td>
<td>PP069450</td>
<td>PP115708</td>
<td>PP115874</td>
<td>PP115914</td>
<td>PP115765</td>
<td>PP115823</td>
</tr>
<tr>
<td>C. godetiae</td>
<td>GLMC 2583, BBA 68320</td>
<td>Fragaria × ananassa, fruit</td>
<td>Netherlands, bought at Plus Markt Berlin, Germany</td>
<td>PP069448</td>
<td>PP115706</td>
<td>PP115872</td>
<td>PP115912</td>
<td>PP115763</td>
<td>PP115821</td>
</tr>
<tr>
<td>C. linea</td>
<td>GLMC 2587, BBA 71830, DSM 115221</td>
<td>Fragaria × ananassa</td>
<td>Germany, Brandenburg</td>
<td>PP069451</td>
<td>PP115709</td>
<td>PP115875</td>
<td>PP115915</td>
<td>PP115766</td>
<td>PP115824</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2597, BBA 70822</td>
<td>Fragaria × ananassa, fruit</td>
<td>Germany, Hesse</td>
<td>PP069424</td>
<td>PP115682</td>
<td>PP115848</td>
<td>—</td>
<td>PP115739</td>
<td>PP115797</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2587, BBA 71830, DSM 115221</td>
<td>Fragaria × ananassa, fruit</td>
<td>Germany, Saxony</td>
<td>PP069425</td>
<td>PP115683</td>
<td>PP115850</td>
<td>PP115851</td>
<td>PP115738</td>
<td>PP115797</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2587, BBA 71830, DSM 115221</td>
<td>Fragaria × ananassa, fruit</td>
<td>Germany, Brandenburg</td>
<td>PP069426</td>
<td>PP115684</td>
<td>PP115856</td>
<td>PP115857</td>
<td>PP115744</td>
<td>PP115802</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2597, BBA 70822</td>
<td>Fragaria × ananassa, fruit</td>
<td>Germany, Hesse</td>
<td>PP069427</td>
<td>PP115685</td>
<td>PP115854</td>
<td>—</td>
<td>PP115774</td>
<td>PP115798</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2600, BBA 72543, DSM 115224</td>
<td>Fragaria vesca var. semperflorens, brown roots</td>
<td>Germany, Hesse</td>
<td>PP069428</td>
<td>PP115686</td>
<td>PP115852</td>
<td>PP115743</td>
<td>PP115801</td>
<td>—</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2604, BBA 72341</td>
<td>Fragaria × ananassa, runner with reddish discoloration</td>
<td>Germany, Hesse</td>
<td>PP069429</td>
<td>PP115687</td>
<td>PP115853</td>
<td>PP115747</td>
<td>PP115802</td>
<td>—</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2652</td>
<td>Fragaria × ananassa, 'Jive', fruit</td>
<td>Germany, Lower Saxony</td>
<td>PP069430</td>
<td>PP115688</td>
<td>PP115854</td>
<td>PP115748</td>
<td>PP115803</td>
<td>—</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2653</td>
<td>Fragaria × ananassa, 'Jive', fruit</td>
<td>Germany, Lower Saxony</td>
<td>PP069431</td>
<td>PP115689</td>
<td>PP115855</td>
<td>PP115749</td>
<td>PP115804</td>
<td>—</td>
</tr>
</tbody>
</table>

(Continued)
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession No.</th>
<th>Host/Substrate</th>
<th>Country and Federal State of Germany</th>
<th>GenBank No.</th>
<th>ITS</th>
<th>gapdh</th>
<th>chs-1</th>
<th>his3</th>
<th>act</th>
<th>tub2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2555</td>
<td>Fragaria ×ananassa, 'Jive', fruit rot</td>
<td>Germany, Lower Saxony</td>
<td>PP069410</td>
<td>PP115668</td>
<td>PP115834</td>
<td>PP115883</td>
<td>PP115726</td>
<td>PP115783</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2556</td>
<td>Fragaria ×ananassa, 'Jive', fruit rot</td>
<td>Germany, Lower Saxony</td>
<td>PP069411</td>
<td>PP115669</td>
<td>PP115835</td>
<td>PP115884</td>
<td>PP115727</td>
<td>PP115784</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2557</td>
<td>Fragaria ×ananassa, 'Jive', fruit rot</td>
<td>Germany, Lower Saxony</td>
<td>PP069412</td>
<td>PP115670</td>
<td>PP115836</td>
<td>PP115885</td>
<td>PP115728</td>
<td>PP115785</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2558</td>
<td>Fragaria ×ananassa, 'Jive', fruit rot</td>
<td>Germany, Lower Saxony</td>
<td>PP069413</td>
<td>PP115671</td>
<td>PP115837</td>
<td>PP115886</td>
<td>PP115729</td>
<td>PP115786</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2559</td>
<td>Fragaria ×ananassa, 'Jive', fruit rot</td>
<td>Germany, Lower Saxony</td>
<td>PP069414</td>
<td>PP115672</td>
<td>PP115838</td>
<td>PP115887</td>
<td>PP115730</td>
<td>PP115787</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2610</td>
<td>Fragaria ×ananassa, fruit rot</td>
<td>Germany, Mecklenburg-Western Pomerania</td>
<td>PP069434</td>
<td>PP115692</td>
<td>PP115858</td>
<td>PP115901</td>
<td>PP115749</td>
<td>PP115807</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2611</td>
<td>Fragaria ×ananassa, fruit rot</td>
<td>Germany, Mecklenburg-Western Pomerania</td>
<td>PP069435</td>
<td>PP115693</td>
<td>PP115839</td>
<td>—</td>
<td>PP115750</td>
<td>PP115808</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2612</td>
<td>Fragaria ×ananassa, fruit rot</td>
<td>Germany, Mecklenburg-Western Pomerania</td>
<td>PP069436</td>
<td>PP115694</td>
<td>PP115860</td>
<td>PP115902</td>
<td>PP115751</td>
<td>PP115809</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2656, DSM 115227</td>
<td>Fragaria ×ananassa, 'Asia ', petiole with brown spots</td>
<td>Germany, North Rhine-Westphalia</td>
<td>PP069442</td>
<td>PP115700</td>
<td>PP115866</td>
<td>PP115907</td>
<td>PP115757</td>
<td>PP115815</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2657</td>
<td>Fragaria ×ananassa, 'Asia', petiole with brown spots</td>
<td>Germany, North Rhine-Westphalia</td>
<td>PP069443</td>
<td>PP115701</td>
<td>PP115867</td>
<td>PP115908</td>
<td>PP115758</td>
<td>PP115816</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2658</td>
<td>Fragaria ×ananassa, 'Asia', leaf spots</td>
<td>Germany, North Rhine-Westphalia</td>
<td>PP069444</td>
<td>PP115702</td>
<td>PP115868</td>
<td>PP115909</td>
<td>PP115759</td>
<td>PP115817</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2659</td>
<td>Fragaria ×ananassa, 'Asia', leaf spots</td>
<td>Germany, North Rhine-Westphalia</td>
<td>PP069445</td>
<td>PP115703</td>
<td>PP115869</td>
<td>PP115910</td>
<td>PP115760</td>
<td>PP115818</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2588, BBA 68332</td>
<td>Fragaria ×ananassa, fruit</td>
<td>Germany, Rhineland-Palatinate?</td>
<td>PP069420</td>
<td>PP115678</td>
<td>PP115844</td>
<td>PP115890</td>
<td>PP115736</td>
<td>PP115793</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2594, BBA 68333</td>
<td>Fragaria ×ananassa, fruit</td>
<td>Germany, Rhineland-Palatinate?</td>
<td>PP069421</td>
<td>PP115679</td>
<td>PP115845</td>
<td>—</td>
<td>PP115737</td>
<td>PP115794</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2445, DSM 115220</td>
<td>Fragaria ×ananassa, 'Asia', fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069396</td>
<td>PP115654</td>
<td>PP115827</td>
<td>PP115712</td>
<td>PP115769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2446</td>
<td>Fragaria ×ananassa, 'Asia', fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069397</td>
<td>PP115655</td>
<td>—</td>
<td>—</td>
<td>PP115713</td>
<td>PP115770</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2447</td>
<td>Fragaria ×ananassa, 'Faith', fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069398</td>
<td>PP115656</td>
<td>—</td>
<td>—</td>
<td>PP115714</td>
<td>PP115771</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2448</td>
<td>Fragaria ×ananassa, 'Faith', fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069399</td>
<td>PP115657</td>
<td>PP115828</td>
<td>PP115878</td>
<td>PP115715</td>
<td>PP115772</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2449</td>
<td>Fragaria ×ananassa, 'Diana', fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069400</td>
<td>PP115658</td>
<td>PP115829</td>
<td>PP115879</td>
<td>PP115716</td>
<td>PP115773</td>
<td></td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2450</td>
<td>Fragaria ×ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069401</td>
<td>PP115659</td>
<td>—</td>
<td>—</td>
<td>PP115717</td>
<td>PP115774</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2451</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069402 PP115660</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2452</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069403 PP115661</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2453</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Germany, Saxony</td>
<td>PP069404 PP115662</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2454</td>
<td>Fragaria × ananassa, stem with brown spots</td>
<td>Germany, Saxony</td>
<td>PP069405 PP115663</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2455</td>
<td>Fragaria × ananassa, stem with brown spots</td>
<td>Germany, Saxony</td>
<td>PP069406 PP115664</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2577, BBA 70090</td>
<td>Fragaria × ananassa</td>
<td>Germany, Saxony</td>
<td>PP069415 PP115673</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2584, BBA 70095</td>
<td>Fragaria × ananassa</td>
<td>Germany, Saxony</td>
<td>PP069417 PP115675</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2586, BBA 70092</td>
<td>Fragaria × ananassa</td>
<td>Germany, Saxony</td>
<td>PP069419 PP115677</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2606, BBA 70093</td>
<td>Fragaria × ananassa</td>
<td>Germany, Saxony</td>
<td>PP069432 PP115690</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2578, BBA 70091</td>
<td>Fragaria × ananassa, 'Selva', fruit rot</td>
<td>Germany, Saxony, young plants imported from France via Netherlands</td>
<td>PP069416 PP115674</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 1819, 494-99</td>
<td>Fragaria × ananassa</td>
<td>Germany?, Brandenburg?</td>
<td>PP069395 PP115653</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2609</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Poland, bought at the market in Görlitz, Germany</td>
<td>PP069433 PP115659</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2633</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Poland, bought at the market in Görlitz, Germany</td>
<td>PP069437 PP115695</td>
</tr>
<tr>
<td>C. nymphaeae</td>
<td>GLMC 2634</td>
<td>Fragaria × ananassa, fruit rot</td>
<td>Poland, bought at the market in Görlitz, Germany</td>
<td>PP069438 PP115696</td>
</tr>
</tbody>
</table>

* GLMC: Culture collection of Senckenberg Museum of Natural History Görlitz, Görlitz, Germany; BBA: Culture collection of the Biologische Bundesanstalt für Land und Forstwirtschaft, Berlin, Germany; DSM: German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. b ITS, 5.8S nuclear ribosomal RNA gene with the two flanking internal transcribed spacers; gapdh, 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase gene; chs-1, partial sequences of the chitin synthase 1 gene; his3, partial sequences of the histone H3 gene; act, partial sequences of the actin gene; tub2, partial sequences of the β-tubulin gene.

Table 1. (Continued).
ly most parsimonious trees were retained (length = 1062 steps, CI = 0.760, RI = 0.862, RC = 0.655, HI = 0.240). One of them is shown in Figure 2. The topology of these trees was similar, which was verified for a large section of trees. They differed in the position of taxa within subclades. The consensus tree of the ML analysis confirmed the tree topology obtained with parsimony. The bootstrap values of the two analyses generally agreed with each other. Isolate GLMC 2587 clustered with C. lineola strains within a big clade (MP/ML: 92/100), which consisted of several closely related species. Isolate GLMC 2616 clustered within C. anthrisci (MP/ML: 88/-), forming a sister clade to C. sambucicola (MP/ML: 100/100).

Taxonomy

As a result of the multi-locus molecular analyses, the 58 isolates were assigned to five species, of which C. nym-
phaeae, C. godetiae and C. fioriniae belong to the C. acu-
tatum species complex; C. anthrisci and C. lineola are in the C. dematium species complex. Isolates of all these spe-
cies were studied in culture, and their characteristics are outlined below.

Colletotrichum anthrisci Damms, P.F. Cannon & Crous,
Fungal Diversity 39: 56 (2009). (Figure 3)

Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae 2–5.5 µm diam., hyaline, smooth-walled, septate, branched. Conidiomata acervular, conidiophores and setae formed on pale brown angular to roundish basal cells. Setae dark brown, 125–165 µm long, bases conical to slightly inflated, 11–15.5 µm diam., tapering to acute apices. Conidiophores hyaline to pale brown, smooth-walled, septate. Conidiogenous cells hyaline to pale brown, smooth-walled, cylindrical to clavate, 8–14 × 2.5–3 µm, opening up to 2 µm diam.,

Figure 2. The first of 440 most parsimonious trees obtained from a heuristic search of the combined ITS, act, gapdh, chs-1, his3, tub2 sequence alignment of Colletotrichum isolates from Fragaria and representative strains of the C. dematium species complex. Bootstrap support values of the MP analysis >70% and of the ML analysis >95% are shown at the nodes. *Colletotrichum chlorophyti* IMI 103806 was used as outgroup. Numbers of ex-type strains are indicated by an asterisk. Strains obtained or sequenced in this study are emphasised in bold font. Strain numbers are followed by substrate (host genus) and country of origin (NL = Netherlands, CR = Czech Republic).
Diversity of *Colletotrichum* species on strawberry (*Fragaria × ananassa*) in Germany

Collarettes distinct, up to 2 µm long, periclinal thickening visible. *Conidia* hyaline, aseptate, smooth-walled, slightly curved, bases truncate, apices acute, (25–27.5) × 2.5–3.5 µm, mean ± SD = 26.5 ± 0.7 × 3.1 ± 0.4 µm, L/W ratio = 8.6.

Cultural characteristics. Colonies on SNA flat with entire margins, medium hyaline to pale cinnamon partly covered by whitish aerial mycelium, filter paper partly covered by olivaceous grey aerial mycelium, medium and *Anthriscus* stems partly with tiny dark grey spots, colony reverse sides same colours; 20–25 mm in 7 d (31–37 mm in 10 d). Colonies on OA flat with entire margins, olivaceous grey to iron grey, buff with iron grey spots towards the margins, colony reverse sides olivaceous grey, buff towards the margins; 18–26 mm in 7 d (30–35 mm in 10 d). Conidia in mass whitish to pale grey.

Material examined: Germany, Saxony, Markersdorf, forest, leaf spot of Fragaria vesca, 22 Sep. 2019, U. Damm, culture GLMC 2616 = DSM 115225.

Notes: Although the molecular data were identical, the conidia of the isolate from F. vesca formed on both media were slightly narrower, and appressoria were shorter (mean ± SD = 13.7 ± 8.8 × 7.0 ± 1.6 µm vs. 17.3 ± 6.1 × 7.0 ± 1.3 µm) than those in the original description of C. anthrisci (Damm et al., 2009).

Colletotrichum fioriniae (Marcelino & Gouli) Pennycook, Mycotaxon 132(1): 150 (2017). (Figure 4)

Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae 1.5–4 µm diam., hyaline, smooth-walled, septate, branched. Conidiomata acervular, conidiophores formed on pale brown, angular cells. Setae not observed. Conidiophores hyaline, smooth-walled, septate. Conidiogenous cells hyaline, smooth-walled, cylindrical, 11–14 × 3 µm, openings 1–1.5 µm diam., collarettes up to 1 µm long. Conidia hyaline, aseptate, smooth-walled, fusiform, both ends acute, (12–)13.5–16.5(–17.5) × 4–5.5 µm, mean ± SD = 15.0 ± 1.5 × 4.6 ± 0.5 µm, L/W ratio = 3.3. Appressoria single, pale brown, mostly clavate, with entire edges, (5.5–)7–11(–14.5) × (4.5–)5–6.5(–8) µm, mean ± SD = 8.9 ± 2.1 × 5.8 ± 0.7 µm, L/W ratio = 1.5. Asexual morph on Anthriscus stems. Conidiomata acervular, conidiophores formed on pale brown, angular cells. Setae not observed. Conidiophores hyaline, smooth-walled, septate. Conidiogenous cells hyaline, smooth-walled, cylindrical, 12–14 × 2.5–3 µm, openings up to 1.5 µm diam., collarettes distinct, up to 1 µm long, periclinal thickenings visible. Conidia hyaline, aseptate, smooth-walled, fusiform,
Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany

both ends acute, (12.5–)14.5–16.5(–17.5) × 4–5.5 µm, mean ± SD = 15.4 ± 1.0 × 4.8 ± 0.4 µm, L/W ratio = 3.2.

Cultural characteristics. Colonies on SNA flat with entire margins, medium hyaline, pale cinnamon to pale peach, partly covered by whitish aerial mycelium, Anthriscus stems partly covered by saffron spore masses, colony reverse sides same colours; 21–26 mm in 7 d (30–38 mm in 10 d). Colonies on OA flat with undulate margins, surface coral to luteous, almost entirely covered by felty, flesh to rosy vinaceous aerial mycelium and saffron spore masses, colony reverse sides red, coral to brick to apricot; 9–18 mm in 7 d (14–30 mm in 10 d). Conidia in mass saffron.

Material examined: Germany, Saxony (Ore Mountains), from fruit anthracnose of Fragaria × ananassa, 18 Aug. 2021, C. Rose, culture GLMC 2660 = DSM 115228.

Notes: The morphology generally agreed with that of the ex-type strain on the same media. The isolate from strawberry studied here had very distinctly fusiform conidia, while other strains had fusiform to cylindrical conidia each with one round and one slightly acute end (Damm et al., 2012a).

Colletotrichum godetiae Neerg., Friesia 4(1–2): 72 (1950). (Figure 5)

Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae 2–4 µm diam., hyaline, smooth-walled, septate, branched. Setae not observed. Conidiophores hyaline, smooth-walled, septate. Conidiogenous cells hyaline, smooth-walled, cylindrical, 11–18 × 3.5 µm, opening 1 µm diam., collarette up to 1.5 µm long, periclinal thickenings visible. Conidia hyaline, asep-
tate, smooth-walled, cylindrical, each one end round, the other end acute to round, (14.5–)15–16.5–(17.5) × (4–)4.5–5–(5.5) µm, mean ± SD = 15.9 ± 0.8 × 4.7 ± 0.3 µm, L/W ratio = 3.4. **Appressoria** medium brown, ellipsoidal to clavate, with entire to undulate edges, appressoria of strain GLMC 2590 measured (6–)7.5–13–(17.5) × (4–)4.5–6–(6.5) µm, mean ± SD = 10.3 ± 2.9 × 5.5 ± 0.7 µm, L/W ratio = 1.9, appressoria of GLCM 2589 broader, measuring (5–)7.5–13–(18) × (3.5–)5–7.5–(8.5) µm, mean ± SD = 10.0 ± 2.6 × 6.2 ± 1.2 µm, L/W ratio = 1.6. **Asexual morph on Anthriscus stems. Conidiomata** acervular, conidiophores on pale brown angular cells. **Setae** not observed. **Conidiophores** hyaline, smooth-walled, septate. **Conidiogenous cells** hyaline, smooth-walled, cylindrical, 9.5–21 × 3 µm, openings 1.5 µm diam., collarettes up to 2 µm long, periclinal thickenings visible. **Conidia** hyaline, asceptate, smooth-walled, cylindrical, each one end round, the other end acute to round, conidia of GLCM 2590 measured (15–)15.5–17–(17.5) × 4.5–5 µm, mean ± SD = 16.0 ± 0.8 × 4.7 ± 0.3 µm, L/W ratio = 3.4, conidia of GLCM 2589 shorter, measuring (12.5–)13.5–15.5–17) × (4–)4.5–5–(5.5) µm, mean ± SD = 14.7 ± 1.1 × 4.6 ± 0.2 µm, L/W ratio = 3.2.

Cultural characteristics. Colonies on SNA flat with entire margins, medium hyaline to pale cinnamon, partly covered by whitish to pale grey aerial mycelium, **Anthriscus** stems partly covered by saffron spore masses, filter papers partly pale olivaceous grey to olivaceous grey, colony reverse sides same colours; GLCM 2590: 18–24 mm in 7 d (29–35 mm in 10 d). **Colonies on OA** flat with entire margins, covered by woolly to feltly, greyish sepia, pale smoke grey to white aerial mycelium, colony reverse sides pale purplish grey vinaceous grey to fuscous black; GLCM 2590: 6–19 mm in 7 d (15–28 mm in 10 d), GLCM 2589 faster growing: 16–22 mm in 7 d (25–32 mm in 10 d). Conidia in mass saffron.

Material examined: Germany, Mecklenburg-Western Pomerania, Rostock, vegetable farm, from a fruit of *Fragaria × ananassa*, 17 June 1999, P. Steinbach, culture GLCM 2590 = BBA 71234 = DSM 115223; Baden-Württemberg, from a necrotic runner of *Fragaria × ananassa*, unknown collection date (accessed by BBA 31 Oct. 1996), culture GLCM 2589 = BBA 70063 = DSM 115222.

Notes: Sequence data and morphology of *C. godeti-ae* are very variable, including the shape and size of the conidia that are studied and discussed in Damm *et al.* (2012a). While the ex-type strain and a strain from *Fragaria* in the Netherlands (CBS 125972) formed comparatively fusiform conidia, conidia of other strains, including those from *Fragaria* in Germany studied here, were rather cylindrical, and those of further strains were even clavate (Damm *et al.*, 2012a; this study, Figure 5L).

Colletotrichum lineola Corda, *Deutschlands Flora*, Abt. III. Die Pilze Deutschlands 3 (12): 41 (1831). (Figure 6)

Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae 3.5–5 µm diam., hyaline, smooth-walled, septate, branched. **Conidiomata** acervular, conidiogenous cells and setae formed on bases of brown angular cells. **Setae** dark brown, 64–72.5 µm long, bases cylindrical to slightly inflated, 2.5–5 µm diam. **Conidiophores** pale brown, smooth-walled, septate. **Conidiogenous cells** pale brown, smooth-walled, cylindrical, 12–16.5 × 3.5 µm, openings 1–1.5 µm diam., collarettes visible. **Conidia** hyaline, asceptate, smooth-walled, slightly curved, bases truncate, apices acute, (21.5–)22.5–25.5–(26.5) × 2.5–3.5 µm, mean ± SD = 24.1 ± 1.4 × 3.1 ± 0.4 µm, L/W ratio = 7.7. **Appressoria** single, medium brown, obovoidal to clavate, sometimes crenate or lobed, (5–)6.5–16.5–17.5 × 4.5–11–16 µm, mean ± SD = 11.6 ± 4.9 × 7.9 ± 3.2 µm, L/W ratio = 1.5. **Asexual morph on Anthriscus stems. Conidiomata** acervular, conidiophores formed on brown angular cells. **Setae** dark brown, 64.5–68.5 µm long, base 2–4.5 µm diam. **Conidiophores** pale brown, smooth-walled, septate. **Conidiogenous cells** pale brown, smooth-walled, cylindrical, 13.5–16.5 × 3.5 µm, openings 1.5 µm diam. **Conidia** hyaline, asceptate, smooth-walled, slightly curved, bases truncate, apices acute, (22–)23–26–26.5 × (2.5–)3–3.5 µm, mean ± SD = 24.4 ± 1.4 × 3.1 ± 0.3 µm, L/W ratio = 7.8.

Cultural characteristics. Colonies on SNA flat with entire margins, medium hyaline to pale ochreous, medium, filter papers and **Anthriscus** stems partly covered by tiny olivaceous black spots, aerial mycelium lacking, colony reverse sides same colours; 29–36 mm in 7 d (38–40 mm in 10 d). **Colonies on OA** flat with entire margins, medium buff to honey, with tiny olivaceous grey to olivaceous black spots, aerial mycelium lacking, colony reverse sides honey to vinaceous buff; 21–26 mm in 7 d (36–40 mm in 10 d). Conidia in mass whitish.

Material examined: Germany, Brandenburg, from fruit anthracnose of *Fragaria × ananassa*, 19 Jun. 2001, unknown collector, culture GLCM 2587 = BBA 71830 = DSM 115221.

Notes: The morphology of isolate GLCM 2587 agreed with the description in Damm *et al.* (2009) that based on material from **Apiaceae** hosts, except for the slightly longer conidia of the isolate from strawberry formed on **Anthriscus** stems.

Colletotrichum nymphaeae (Pass.) Aa, *Netherlands J. Plant Pathol.* 84: 110 (1978). (Figure 7)

Sexual morph not observed. Asexual morph on SNA. Vegetative hyphae 2–3.5 µm diam., hyaline, smooth-
walled, septate, branched. *Setae* not observed. *Conidiogenous cells* hyaline, smooth-walled, septate. *Conidiogenous cells* hyaline, smooth-walled, cylindrical, 14–15.5 × 2–3 µm, openings 1.5–2 µm diam., collarettes up to 2 µm long, periclinal thickenings distinct. *Conidia* hyaline, aseptate, smooth-walled, cylindrical to fusiform, ends acute to round, conidia of GLMC 2445 measured (8.5–)12–16–17 × (2–)2.5–3.5(–4.5) µm, mean ± SD = 13.8 ± 1.9 × 3.1 ± 0.5 µm, L/W ratio = 4.5, conidia of GLMC 2653 shorter and wider, measuring (4.5–)9–15.5–18 × (3–)3.5–4.5(–5) µm, mean ± SD = 12.4 ± 3.3 × 3.9 ± 0.5 µm, L/W ratio = 3.2, conidia of GLMC 2656 longer, measuring (8.5–)12–17–22.5 × (2.5–)3.5–4(–4.5) µm, mean ± SD = 14.7 ± 2.5 × 3.7 ± 0.3 µm, L/W ratio = 4.2. *Appressoria* single, medium to pale brown, mostly clavate, with entire edges, appressoria of GLMC 2445 measured (6.5–)7–13(–20.5) × (5.5–)6–7.5(–9) µm, mean ± SD = 10.0 ± 3.2 × 6.8 ± 0.6 µm, L/W ratio = 1.5, appressoria of GLMC 2656 narrower, measuring (5–)6.5–13(–21) × (3.5–)5–7(–9) µm, mean ± SD = 10.0 ± 3.3 × 6.0 ± 1.1 µm, L/W ratio = 1.7. *Asexual morph on Anthriscus stems*. *Conidiomata* acervular, conidiophores formed on brown angular cells. *Setae* not observed. *Conidiophores* hyaline, smooth-walled, septate. *Conidiogenous cells* hyaline, smooth-walled, cylindrical, 14.5–18 × 2 µm, openings 1.5–2 µm diam., collarettes distinct, up to 2 µm long, periclinal thickenings visible. *Conidia* hyaline, aseptate, smooth-walled, fusiform to cylindrical, ends acute to round. (13.5–)14.5–17(–18.5) × 4–4.5 µm, mean ± SD = 15.7 ± 1.3 × 4.3 ± 0.2 µm, L/W ratio = 3.6, conidia of GLMC 2653 shorter, measuring (9.5–)12–14.5(–16) × (3–)4–4.5 µm, mean ± SD = 13.3 ± 1.3 × 4.3 ± 0.4 µm, L/W ratio = 3.1.

Cultural characteristics. Colonies on SNA flat with entire margins, medium hyaline to pale cinnamon, partly covered by whitish aerial mycelium and by saffron to orange spore masses, filter paper partly pale olivaceous grey, colony reverse sides hyaline to pale cinnamon, saffron to orange spore masses shining through, filter paper partly pale olivaceous grey to olivaceous black; 19–30 mm in 7 d (31–36 mm in 10 d). Colonies on OA flat with entire margins, entirely covered with woolly to felty, greyish sepia, pale mouse grey, rosy buff to white aerial mycelium, orange spore masses mainly in the centres, colony reverse sides olivaceous grey, saffron to pale luteous; GLMC 2445 16–25 mm in 7 d (29–39 mm in 10 d), GLMC 2656 slower growing; 16–22 mm in 7 d (25–32 mm in 10 d). Conidia in mass saffron to orange.

Notes: The ex-type strain of C. nymphaeae formed clavate conidia, while other strains studied by Damm et al. (2012a) including strains from Fragaria as well as the strains from Fragaria in Germany studied here form fusiform to cylindrical conidia.
Pathogenicity

Seven dpi, all tested isolates of the five Colletotrichum species caused symptoms on strawberry fruit *F. × ananassa* ‘Asia’. However, for almost all isolates and species in both experiments, some fruit did not develop symptoms or showed symptoms that were very slight 7 dpi.

Colletotrichum anstrisci and *C. lineola* caused no or small lesions 7 dpi (GLMC 2616: 0.0–0.25 cm², GLMC 2587: 0.0–0.5 cm²). Even 10 dpi the symptoms were small: after inoculations with *C. antrisci*, circular, dry, sunken, black necroses developed that contained tiny dark grey spots, covered by whitish aerial mycelium and rosy vinaceous conidial masses (Figure 4C, 10 dpi). After inoculations with *C. lineola*, circular, dry, brown, sunken necroses developed, which were covered by sparse whitish aerial mycelium; rosy vinaceous conidial masses developed (Figure 6C, 10 dpi). The two strains of *C. godetiae* developed noticeable fruit symptoms 7 dpi. Variability of lesion sizes from the two strains was similar (GLMC 2589: 0.2–1.2 cm², GLMC 2590: 0.5–1.0 cm²). Necroses formed that were nearly circular, brown, sunken and entirely covered by uniform woolly to felty, white to pale smoke grey aerial mycelium, without conidium formation (Figure 5C, 7 dpi).

Variability of strawberry lesion sizes was high after inoculations with the two isolates of *C. fioriniae*, and the nine isolates of *C. nymphaeae*. Both species caused large necrotic areas with abundant sporulation. The isolates of *C. fioriniae* formed circular, dry, dark brown, sunken necrotic areas, almost entirely covered by feltly whitish to grey mycelium and saffron to brick conidial masses that were aggregated to large drops. There were also drops of discharged dark liquid in the lesions (Figure 4C, 7 dpi). The lesion sizes 7 dpi were 0.1–2.4 cm² with isolate GLMC 2660 and 0.0–0.6 cm² with isolate GLMC 2661. *Colletotrichum nymphaeae* formed brown, dry, sunken necrotic areas on inoculated strawberries that were entirely covered by woolly to felty, white to pale mouse grey aerial mycelium in concentric rings and small orange conidial masses, as well as drops of discharged liquid (Figure 7C, 7 dpi). The lesion sizes 7 dpi with different isolates were: GLMC 2445: 0.5–1.5 cm², GLMC 2552: 0.12–0.95 cm², GLMC 2588: 0.02–2.5 cm², GLMC 2595: 0.0–0.1 cm², GLMC 2600: 0.05–1.75 cm², GLMC 2610: 1.5–2.75 cm², GLMC 2653: 0.0–0.95 cm², GLMC 2656: 0.0–0.5 cm² and GLMC 2658: 0.0–0.25 cm².

Due to infection by other fungi or collapsing of individual strawberries, some were excluded from both experiments, and resulted in failures, especially after inoculations with *C. nymphaeae* isolates GLMC 2445, GLMC 2588, GLMC 2600, GLMC 2610, GLMC 2658, *C. lineola* isolate GLMC 2587 and *C. fioriniae* isolate 2661. However, all inoculated fruit in the experiments showed symptoms 10 dpi.

The species that were inoculated were respectively re-isolated from all symptoms developing on inoculated strawberries. No symptoms developed after control treatments with sterile, distilled water.

DISCUSSION

This study has demonstrated that Colletotrichum is widespread on strawberries in Germany, although neither the BBA collection nor recent sampling described here covered all regions of this country. The *Colletotrichum* collection of the BBA shows occurrence of *Colletotrichum* on strawberries around the year 2000 in up to seven federal states of Germany, including Brandenburg, Lower Saxony, Saxony, Mecklenburg-Western Pomerania, Baden-Württemberg, Hesse and (probably) Rhineland-Palatinate. The new collections (2019–2021) confirm this genus in Brandenburg, Lower Saxony, Saxony, Mecklenburg-Western Pomerania, and also include collections from North Rhine-Westphalia.

Most of the samples in these collections were of *C. nymphaeae*, which is the most common Colletotrichum species on strawberry in Germany. This species belongs to the *C. acutatum* species complex, occurs on several hosts and is common on strawberry in Europe, Iran and North America (Damm et al., 2012a; Baroncelli et al., 2015; Karimi et al., 2017; Grammen et al., 2019; Wang et al., 2019; Tsvetkova and Kuznetsova, 2022). Based on the present study, *C. nymphaeae* is present in all federal states of Germany for which data are available and occurs on *F. × ananassa* and *F. vesca* var. *semperflorens*, a cultivated variety of wild strawberry. *Colletotrichum nymphaeae* was mostly isolated from fruit of *F. × ananassa* in the field and from the market. Fruit bought from the marked in Görlitz originated from Poland, confirming a recent report of *C. nymphaeae* on strawberries in that country (Tsvetkova and Kuznetsova, 2022). This species was also isolated from symptoms on different green plant parts of *F. × ananassa*, both from established plants in the field and from purchased young plants from German propagation culture.

In a survey of the *C. acutatum* species complex on strawberry in the USA, *C. nymphaeae* dominated (97.7% of the isolates), and almost all isolates were of one clonal lineage regardless of the isolation source (Wang et al., 2019). One representative of these strains (isolate 16-320) was included in the phylogeny of the present study, and this isolate grouped with most of the isolates
from strawberry and with the majority of those examined by Damm et al. (2012a) and Baroncelli et al. (2015). Thus, this one clonal lineage is almost entirely restricted to strawberry, is distributed throughout Europe, also occurs in Israel and some African countries, and is demonstrated here to occur in Germany and Poland and to be the dominating lineage in Germany, both in historical and recent collections (Damm et al., 2012a; the present study). Wang et al. (2019) suggested that this clonal lineage had been distributed throughout the USA and Canada via quiescently infected strawberry transplants, which could also explain its widespread occurrence in European countries. In contrast, the dominating species on strawberry in China, Korea, Japan and Taiwan belong to the C. gloeosporioides complex. The species detected in Korea, Japan and Taiwan were completely different from those found in Europe, while in China C. nymphaeae is also present, but to a lesser extent (Nam et al., 2013; Han et al., 2016; Jayawardena et al., 2016; Gan et al., 2017; Chung et al., 2020).

The other two haplotypes of C. nymphaeae from strawberry in Germany detected in the present study were also identical to haplotypes from the USA, as described by Wang et al. (2019). This indicates three possibly independent introductions of this pathogen to German strawberries. One of these two haplotypes represented a clone that is closely related to the most common haplotype, which also includes some strains from strawberry from other European countries. The German isolates were part of the old collection. In contrast, the other haplotype has several nucleotide differences to the other haplotypes occurring on strawberry and included only three isolates, one from strawberry in the USA and two from a recent collection on strawberry in Brandenburg, Germany. This could represent a new lineage of C. nymphaeae which has restricted distribution and unknown impacts. Despite its dominating incidence on strawberries, there are few records of C. nymphaeae in Germany prior to the present study, including a collection from Freyburg, Saxony-Anhalt by H. Jage and one from a dried-up pond close to Flemsdorf, Brandenburg by J. Kruse (Dammrich et al., 2023). Both collections are from Nymphaea, and both specimens are kept in the fungarium of the Senckenberg Museum of Natural History Görlitz (GLM-F127296, GLM-F129560). However, these identifications were not confirmed by DNA sequence data.

Colletotrichum godetiae also belongs to the C. acutatum species complex and occurs on several hosts including many woody plants as well as strawberry (Damm et al., 2012a). Although this fungus is probably common on strawberry in Europe (Damm et al., 2012a; Baroncelli et al., 2015; Tsvetkova and Kuznetsova, 2022), it was found only twice on strawberries from Germany in the present study and was not detected in the new collections. Despite proven infectivity of C. godetiae on F. × ananassa ‘Asia’ under laboratory conditions, there has been no invasive spread in German strawberry stocks within the last 20 years. In contrast to C. nymphaeae and C. fioriniae, C. godetiae is not known from strawberry in the USA and Canada (Baroncelli et al., 2015; Wang et al., 2019). The only North American strain of this species included in Damm et al. (2012a) was from a different host, and the haplotype represented by the strains from strawberry in the present study occurs both on strawberry and on other hosts. This suggests spread of this species on strawberries within Europe, rather than an introduction from the USA or occasional transmissions to strawberries by other hosts. This species was previously found in Germany, on leaf spots of Mahonia aquifolium and in necrotic wood of sour cherry (Prunus cerasus) (Damm et al., 2012b; Bien and Damm, 2020). However, the present report is the first from strawberry in Germany. A clade that was previously regarded as a subclade of C. godetiae and comprised exclusively strains from South America was recently described as new species, C. americanum (Zapata et al., 2024).

Colletotrichum fioriniae is another species belonging to the C. acutatum species complex. This pathogen occurs on several hosts, mainly crops, and is common on fruit of apple and strawberry as well as Vaccinium species in Europe, the USA and New Zealand and on Persea in Australia. In Germany, C. fioriniae has previously only been reported from an indoor collection of Grevillea sp. (Proteaceae) (Damm et al., 2012a), an exotic genus from Australia. However, the present report is the first of C. fioriniae from strawberry in Germany, and is also the first report from an outdoor cultivated crop in Germany. In contrast to C. nymphaeae, the haplotype of C. fioriniae detected in the present study, is not specialised to strawberry. There are several haplotypes of this species that occur both on strawberry and other hosts (Damm et al., 2012a; this study). This suggests a different transmission route of this pathogen to strawberries, possibly by host-jumps rather than in planting material of the same host. The high variability between isolates of C. fioriniae from the same hosts could also be related to recombination, as the formation of sexual morphs and of hybrids with C. acutatum (sensu stricto) are known (Marcelino et al., 2008; Damm et al., 2012a). In the USA, C. fioriniae was determined to be of low incidence on strawberries (five of 217 Colletotrichum isolates; Wang et al., 2019). In the present study, C. fioriniae was isolated...
only twice from recently collected material from one strawberry field. However, since this fungus was able to infect *F. × ananassa* ‘Asia’ under laboratory conditions with development of large necrotic areas and abundant sporulation, there is a potential risk of the pathogen spreading to other strawberry stocks.

As the two subclades of *C. fioriniae* reported in the phylogeny of Damm *et al.* (2012a) were not supported and had similar hosts and distributions, they were treated as one species. The phylogeny of Chen *et al.* (2022) that included new strains from *Malus domestica* in China supported the two subclades, and the second subclade was described as *C. orientale* (actually as "orientalis"), but invalidly (Art. 40.8 Shenzhen), while Zhang *et al.* (2023a) described two further related strains from China as *C. radermacherae*. Since new strains from ornamental plants in China were intermediate between all three species, Zhang *et al.* (2023b) reduced both new species to synonymy with *C. fioriniae*. In the phylogeny of the present study that included one "*C. radermacherae*" strain (GZCC 21-0814) but not the intermediate strains of Zhang *et al.* (2023b), the two subclades were supported by one analysis (ML) that was not applied in Damm *et al.* (2012a). The strains from strawberry in Germany belong to the subclade containing the ex-type strain of *C. fioriniae*.

Colletotrichum lineola belongs to the *C. dematium* species complex and had been isolated from dead plant parts and diseases of several plants, mainly in Central Europe and North America. These hosts included *Fragaria* (petiole) in Canada (Damm *et al.*, 2009). Tsvetkova and Kuznetsova (2022) also isolated *C. lineola* from strawberries in Russia. In the present study, this fungus was found on strawberry fruit in Germany for the first time. In the pathogenicity tests, this species also caused very small symptoms on fruit, and it was not detected in the new collections. Therefore, *C. lineola* can be regarded as of minor importance for strawberry cultivation.

Another species of the *C. dematium* complex, *C. anthrisci*, was described from dead stems of *A. sylvestris* in the Netherlands (Damm *et al.*, 2009) and was recently classified as highly endangered (Talhinhas and Baroncelli, 2021). In contrast, this fungus was found to be ubiquitous in a forest in Japan, where it was isolated from seedlings of several trees, including *Prunus grayana*, *Fraxinus lanuginosa*, *Cornus controversa* and *Magnolia obovata* that had been killed by damping-off (Konno *et al.*, 2011). *Colletotrichum anthrisci* was also recorded on avocado fruit with anthracnose symptoms in Chile and was confirmed to cause this disease (Bustamente *et al.*, 2022).

In the present study, *C. anthrisci* was isolated from leaf spots of *F. vesca* in a forest in Germany and was shown to cause fruit anthracnose of cultivated strawberry. Thus, this species is neither host-specific nor rare, and is known from three continents where it is at least locally very common. This is the first report of *C. anthrisci* both from Germany and from *Fragaria* worldwide and the first evidence of this species causing anthracnose on cultivated strawberry fruit under laboratory conditions. However, the symptoms caused on *F. × ananassa* ‘Asia’ were mild and *C. anthrisci* has to date not been collected from cultivated strawberry in the field.

Prior to the present study, most of the *Colletotrichum* strains from strawberry in Europe had been identified as *C. acutatum*. This also applies to the isolates from the BBA collection examined, one of which was the basis of the report by Nirenberg *et al.* (2002). In the present study, isolates previously identified as *C. acutatum* were re-identified as *C. nymphaeae*, except for the isolate originating from the Netherlands that was shown to be *C. godetiae*. None of the isolates were *C. acutatum* (*sensu stricto*). *Colletotrichum acutatum* (*sensu stricto*) has been found predominantly in the southern hemisphere (Damm *et al.*, 2012a) and is known to be associated with fruit rot of strawberry, but only in Australia (Sreenivasaprasad and Talhinhas, 2005; Damm *et al.*, 2012a). To date, there is no confirmed occurrence of *C. acutatum* (*sensu stricto*) on strawberries elsewhere in the world. Nearly all reports from strawberry prior to the treatment of the *C. acutatum* complex by Damm *et al.* (2012a) and some later reports, refer to other species within this complex, which was confirmed here for the pathogens causing strawberry anthracnose in Germany.

Other previously unreported *Colletotrichum* strains from the BBA collection had been identified as *C. truncatum*, *C. fragariae* and *C. gloeosporioides*, based on the original strain list. In the present study, *C. truncatum* was re-identified as *C. lineola*, and *C. fragariae* and *C. gloeosporioides* were re-identified as *C. godetiae*. *Colletotrichum truncatum* has not been reported from Germany (Farr and Rossman, 2024). This fungus forms curved conidia, but with different shape than *C. lineola* and belongs to the *C. truncatum* species complex, while *C. lineola* belongs to the *C. dematium* complex (Damm *et al.*, 2009). In contrast, *C. fragariae* and *C. gloeosporioides* form cylindrical conidia and belong to the *C. gloeosporioides* complex. However, no species of the *C. gloeosporioides* complex were found among the isolates from Germany that were examined here. However, the conidia of the *C. godetiae* isolates from strawberry studied here were more cylindrical than fusiform (Figure 5L). The cylindrical conidium shape of isolates of *C. godetiae*, like those from strawberries studied here, as well as of some other species of the *C. acutatum* species complex, is reminiscent of species of the *C. gloeosporioides* complex.
(Damm et al., 2012a; Weir et al., 2012). This can cause confusion because identifications of isolates by morphology only are not reliable, even to species complex level. This also applies to species with curved conidia, as for the C. lineola isolate examined in this study. In contrast, C. theobromicola (syn. C. fragariae) has only been reported from strawberries from a few countries, of which only isolates from the USA have been confirmed by sequence data, while sequences of C. fragariae reported from the United Kingdom and Japan suggest also C. godetiae and a different species in the C. gloeosporioides complex, respectively (Nirenberg et al., 2002; Moriwaki et al., 2003; Weir et al., 2012; Farr and Rossman, 2024). The only reliable reports of C. gloeosporioides (sensu stricto) from strawberries are from China (e.g. Han et al., 2016). As the present study was the first molecular identification of Colletotrichum strains from strawberries in Germany after the revisions of the respective Colletotrichum species complexes based on multi-locus sequence data (Damm et al., 2009, 2012a; Weir et al., 2012), all species detected in this study are new reports on strawberries in Germany.

While symptoms caused by C. eriobotryae and C. nymphaeae on loquat fruit were indistinguishable (Damm et al., 2020), those caused by the species tested on strawberry fruit in the present study were very different from each other. This could be attributed to the high genetic distance of the species studied here that belong to different species complexes or at least different main clades within the C. acutatum complex. The two species from loquat both belonged to clade 2 of the C. acutatum complex. Although the symptoms caused by the five different species were typical for the individual species, it is unlikely that species can be identified based on host symptoms alone.

Colletotrichum nymphaeae and C. fioriniae were more aggressive than C. godetiae in strawberry fruit assays reported by Baroncelli et al. (2015). This can be tentatively confirmed by the present study, although our data could not be statistically analysed due to large variations and nil results. In pathogenicity tests, MacKenzie et al. (2009) showed that Colletotrichum isolates from strawberry and blueberry from Florida (USA) that were later identified as C. nymphaeae and C. fioriniae, respectively, based on ITS and gapdh sequences (Damm et al., 2012a), caused anthracnose on strawberry fruits; the lesions caused by C. nymphaeae isolates were larger than those caused by C. fioriniae isolates. This cannot be confirmed by the present study, because lesion sizes caused by one of the C. fioriniae isolates belonged to the largest in the tests. Because of variability in lesion sizes caused by these two species, no conclusions can be drawn about relative virulence of these species. Based on the number of isolates and virulence, C. nymphaeae is likely to be the most important strawberry anthracnose pathogen in Europe, representing the highest economic risk for commercial strawberry production. This was previously confirmed for the United Kingdom and Russia and in the present study also for Germany.

The present study has identified the pathogens causing anthracnose of cultivated strawberry in Germany, which provides the basis for application and development of targeted control measures for management of these pathogens in commercial strawberry cultivation. This will require assessments of fungicide effectiveness and pathogen resistance. Targeted strawberry breeding should be aimed at resistance to specific Colletotrichum pathogens defined at species and/or haplotype level. Monitoring of pathogens in the field and testing of acquired, especially imported planting material using molecular methods would help to detect possible new pathogen species and haplotypes, as the pathogen spectrum could change due to changes in prevailing climates.

ACKNOWLEDGEMENTS

The authors thank Dr Wolfgang Maier, curator of the JKI (previously BBA) culture collection, Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Braunschweig, Germany, for providing Colletotrichum strains, and Dr Alexandra Wichura, Landwirtschaftskammer Niedersachsen, Pflanzenschutzamt, Sachgebiet Obst- und Gemüsebau, Hannover, Germany, for providing diseased plant specimens. The authors also thank the other supporters who contributed material and data for this research. The research was financially supported by the Deutsche Bundesstiftung Umwelt, Osnabrück, Germany.

LITERATURE CITED

Diversity of *Colletotrichum* species on strawberry (*Fragaria × ananassa*) in Germany

Zhang Q., Nizamani M.M., Feng Y., Yang Y.Q., Jayawardena R.S., … Li C., 2023a. Genome-scale and multi-gene phylogenetic analyses of *Colletotrichum* spp. host preference and associated with medici-