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Summary. Rhizoctonia root rot of eggplant, caused by Rhizoctonia solani, is an eco-
nomically important disease. Niallia circulans YRNF1 and arbuscular mycorrhizal fun-
gi (AMF) were assessed for their biocontrol and biofertilizing effects against R. solani, 
as potential replacements for synthetic fungicides and fertilizers. The diazotrophic N. 
circulans YRNF1, isolated from soil, reduced in vitro growth of R. solani by 42%. GC-
MS analysis of culture filtrate of N. circulans YRNF1 detected bioactive compounds, 
including butyric acid (85%) and ethylene glycol (8%). In greenhouse experiments, 
combined application of N. circulans YRNF1 and AMF reduced the severity of egg-
plant root rot by 26%. This combined treatment triggered the transcriptional expres-
sion of five resistance genes (JERF3, PAL1, C3H, CHI2, and HQT) in the treated egg-
plants. Biochemical analyses of the infected eggplant roots treated with the combined 
bio-inoculants showed enhancement of the phenol content (+188%), and increased 
antioxidant enzyme activity, mainly of POD (+104%) and PPO (+72%). Combined 
application of N. circulans YRNF1 and AMF also promoted eggplant growth and 
improved the total NPK concentrations in treated plant leaves. Inoculation of eggplant 
with N. circulans YRNF1 in the presence of AMR increased the mycorrhization level. 
This is the first report of N. circulans and AMF as potential agents for biological con-
trol of Rhizoctonia root rot and growth promotion of eggplant.
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INTRODUCTION

Solanum melongena L. (eggplant) is the most impor-
tant member of Solanaceae (Kaniyassery et al., 2022). 
China is the greatest eggplant producer and Egypt is the 
3rd largest producer, recording annual production of 
1,396,725 tons (FAOSTAT, 2024). Rhizoctonia root rot of 
eggplant is caused by Rhizoctonia solani Kühn (Almam-
mory and Matloob, 2019). The soil-borne pathogen caus-
es diseases of several hosts, including root rots, damp-
ing-off, leaf spots, and leaf blights, which result in a sig-
nificant reductions in crop yields (Rashad et al., 2018).

Effective control of R. solani is difficult, due to its 
wide host range (Cook et al., 2002). The most widely 
used control method is application of synthetic fungi-
cides, but these can have deleterious effects on human 
and animal health, may induce fungicide resistance in 
pathogens (Hollomon, 2015), and lead to environmental 
pollution (Baite et al., 2021). Biological control of plant 
diseases has received increasing attention as a possible 
effective, eco-friendly and safe control strategy against 
various plant diseases (Al-Askar et al., 2014).

Arbuscular mycorrhizal fungi (AMF: Glomeromyco-
tina) live in symbiotic associations with more than 85% 
of the terrestrial plants (Spatafora et al., 2016; Mathur et 
al., 2018). AMF have been extensively studied as poten-
tial bio-protectants against several fungal pathogens, 
including R. solani, Colletotrichum spp., Alternaria spp., 
Phytophthora spp., Fusarium spp., and Puccinia spp. 
(Devi et al., 2022). AMF can also promote plant growth 
(de Oliveiraa et al., 2022). For example, mycorrhization 
of pea roots gave effective biocontrol of Rhizoctonia 
root rot (Rashad et al., 2022a). However, improvement 
of AMF biocontrol efficiency by application with oth-
er compatible antifungal microorganisms may also be 
worthwhile.

Nitrogen-fixing bacteria convert atmospheric nitro-
gen to ammonia, which can be absorbed by plants. These 
bacteria can promote plant growth, facilitate nutrient 
uptake and phosphorous solubilization, and produce 
siderophores and phytohormones (Shameem et al., 2023). 
In addition, Bacillus circulans CB7 Jordan, 1890 (now 
known as Niallia circulans), a non-symbiotic nitrogen-
fixing bacterium, with plant growth-promoting proper-
ties due to auxin production, P-solubilization and sidero-
phore production, has also shown antagonistic effects 
against Dematophora necatrix (Mehta et al., 2015).

Triggering immunity-related genes in plants is an 
important mode of action of biocontrol agents. Jasmonic 
acid and ethylene-response factor 3 gene (JERF3), the 
responsive gene that manages several defence-response 
genes through the jasmonate/ethylene signalling path-

way, is elicited by abiotic and biotic plant stresses 
(Rashad et al., 2022b).

Polyphenols have potential as natural antioxidants, 
which can protect the living organisms from deleterious 
effects of the reactive oxygen species (ROS) (Elshafie et 
al., 2023). These compounds have antioxidant activity, 
as well as antihypertensive, antimicrobial, and antiviral 
activity (Losada-Barreiro et al., 2022). Excessive produc-
tion of ROS causes oxidative stress in humans, leading 
to the development of several ailments (Forman, and 
Zhang, 2021). Antioxidant polyphenols have several 
modes of action, including reductive ability to neutral-
ize ROS, chelation of metal ions that elicit the oxidative 
stress, inhibition of enzymes involved in the formation 
of ROS, and activation of the antioxidant enzymes (Dias 
et al., 2021). Upon infection of plants by the microbial 
pathogens, their cell walls accumulate large amounts of 
lignin (Rashad et al., 2020a). Increased lignification is a 
main barrier against the pathogen spread, and reduces 
the infiltration of toxins and fungal enzymes into plant 
cell walls. Lignin compounds also cause fungal patho-
gens to lose abilities to infect host plants, and prevent 
pathogen movement and multiplication (Ma et al., 2017). 
Flavonoids are plant responsive metabolites that con-
tribute to host resistance in response to various abiotic 
and biotic stresses. These compounds act as physical or 
chemical barriers to prevent the microbial invasion, and 
are toxic defences against the microbial pathogens and/
or insects. They interfere with pathogen cellular pro-
cesses and structures (Ramaroson et al., 2022). The phe-
nylalanine ammonia lyase 1 gene (PAL1) encodes phe-
nylalanine ammonia lyase, which is involved in biosyn-
thesis of polyphenolic compounds that have roles in host 
plant systemic resistance (Rashad et al., 2020a). During 
the early stages of lignin biosynthesis, the 4-coumarate 
3-hydroxylase gene (C3H) catalyzes conversion of 4-cou-
marate to caffeate (Shrestha et al., 2022). The Chalcone 
isomerase 2 gene (CHI2) encodes for chalcone flavonone 
isomerase that catalyses the first two steps of flavonoid 
biosynthesis (Chao et al., 2021). Niggeweg et al. (2004) 
reported that the Hydroxycinnamoyl-CoA quinate 
hydroxycinnamoyl transferase gene (HQT) catalyzes 
biosynthesis of chlorogenic acid from caffeoyl-CoA and 
quinic acid.

The present study had the following objectives: 1) 
to investigate in vitro suppressive potential of the diazo-
trophic bacterium N. circulans YRNF1 against R. solani; 
2) to assess biocontrol effects of a combined treatment 
with N. circulans YRNF1 and AMF on Rhizoctonia root 
rot of eggplant, 3) elucidate the host defensive mecha-
nisms elicited by these combined bioagents, based on the 
transcription of some responsive genes, phenolic com-
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pound content, and antioxidant activity; and 4) assess 
effects of combined bioagents on eggplant development.

MATERIALS AND METHODS

Fungi and eggplant cultivar

The pathogenic fungus R. solani (AG-2-2 IIIB) was 
provided from Mansoura University, Egypt. To pre-
pare the inoculum, a 500 ml glass flask containing 100 
g of sterilized oat grains mixed with sand (1:2 v:v) was 
aseptically inoculated with five discs (6 mm diam.) cut 
from a 5-d-old culture of R. solani, incubated at 28±2°C, 
and was shaken daily for two weeks to ensure uniform 
growth of the fungus (Youssef et al., 2016). AMF inocu-
lum (73% colonization index) was provided by the Agri-
cultural Research Center (ARC), Giza, Egypt. The mixed 
inoculum of potential biocontrol AMF contained spores 
of Claroideoglomus etunicatum (W.N. Becker & Gerd.) 
C. Walker & A. Schüsler and Rhizoglomus intraradices 
(N.C. Schenck & G.S. Sm.) Sieverd, G.A. Silva & Oehl 
(in an equal ratio). AMF were propagated by inocula-
tion of sterilized sandy-clay soil with 10 g of grain of the 
AMF inoculum (approx. 50 AM spores and root pieces 
g-1 soil). The inoculum was applied as a grain bed before 
planting grains of maize (potential host) in a sterilized 
plastic pot under the greenhouse conditions (27/22°C, 
75% relative humidity, and 16 h daily light period). 
No fertilizers were added and irrigation was regularly 
applied to 50% field capacity. After 3 months, the AMF 
colonized roots were cut using a sterile scalpel into small 
segments, and were mixed with the AMF spores in the 
maize rhizosphere soil to be used as AMF inoculum 
(approx. 45 AM spores and mycorrhizal root pieces g-1 
soil) (Nafady et al., 2019). Seeds of the eggplant cultivar 
‘Rondona’ were used, which were provided by the ARC, 
Giza, Egypt.

Collection of soil samples

Twenty-one soil samples were collected from several 
cultivated fields in Alexandria and El- Beheira governo-
rates, Egypt, and were immediately transported to the 
laboratory. These samples were stored for subsequent 
studies at 4°C.

Isolation of the diazotrophic bacteria

Approximately 10 g of each soil sample were added 
aseptically to 90 mL of sterilized water in an Erlenmey-

er flask, vigorously mixed for 45 min at 150 rpm, and 
then serial dilutions were prepared (10-1 to 10-4). Diazo-
trophic bacteria were isolated from the soil according 
to Döbereiner (1988) with slight modifications. Plates of 
nitrogen free (NF) agar medium, containing glucose (20 
g L-1); K2HPO4 (0.2 g L-1), NaCl (0.2 g L-1), MgSO4.7H2O 
(0.2 g L-1), K2SO4 (0.1 g L-1), CaCO3 (5 g L-1), and agar 
(20 g L-1), were individually inoculated with 0.1 mL of 
each serial dilution of soil suspension; Three replicated 
plates were used for each dilution. The plates were then 
incubated for 5 d at 28±2°C. Growing bacterial colonies 
were then singly transferred onto fresh NF plates and 
incubated at the same conditions. The resulting cultures 
were stored in 15% glycerol at -80°C until used (Kifle 
and Laing, 2016).

Screening of the diazotrophic bacteria for antifungal poten-
tial against R. solani

The ability of the isolated diazotrophic bacteria to 
antagonize R. solani was evaluated using the in vitro 
dual plate method (Jasim et al., 2016) on potato dextrose 
agar plates (PDA, Difco). In each plate, 10 μL of each 
bacterial isolate (106 cells mL-1) were streaked aseptical-
ly as a longitudinal line 2 cm away from the border of 
the plate. A disc (6 mm diam.) cut from a freshly grown 
R. solani culture was placed 20 mm from the opposite 
side of the plate. Plates inoculated only with pathogen 
discs served as experimental controls. Each treatment 
was applied in six replicates, and the assay was repeated 
twice. After incubating the plates for 4 d at 25°C, and 
upon complete coverage of control plates with fungal 
growth, inhibition of fungal growth in the dual plates 
was measured using a calibrated ruler, and compared 
with the fungal diameter in the corresponding control 
plate. Suppression of the fungal growth (S %) was deter-
mined using the equation of Ferreira et al. (1991):

S	% =
C − T
C 	× 100 

where C = radial growth in the control plate, and T = 
radial growth in the treated plate.

Biochemical analyses of bacterial culture filtrate using gas 
chromatography-mass spectrometry (GC-MS)

Secondary metabolites in cell free culture filtrate of 
N. circulans YRNF1 were identified qualitatively using 
GC-MS. The culture filtrate of N. circulans YRNF1 was 
obtained by inoculating 200 µL of the bacterial suspen-
sion in sterile distilled water (6 × 106 cfu mL-1) into a 
500 mL capacity Erlenmeyer flask containing 250 mL of 
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nutrient broth (NB) [1% (w/v) each of beef extract and 
peptone, and 5% (w/v) NaCl]. The culture was incubat-
ed under shaking at 120 rpm at 28°C (Nisa et al., 2019). 
After 3 d, the NB was centrifuged for 10 min. at 4°C at 
11,200 g (Thermo Fisher Scientific). The collected cell-
free supernatant was filter sterilized using 0.22 µm filters 
(Millex-GS, Millipore). The cell-free culture filtrate was 
lyophilized to complete dryness, re-suspended in meth-
oxyamine hydrochloride (50 µL) dissolved in pyridine, 
followed by incubation for 90 min. For derivatization of 
the sample, 50 µL of silylation reagent [bis(trimethylsilyl) 
trif luoroacetamide + trimethylchloro-silane, 99:1 v:v] 
were added to the sample. The GC-MS system (GCMS-
QP2010 Plus, Shimadzu), equipped with a gas chromato-
graph (7890B) and a mass spectrometer detector (5977A), 
was used to analyze the sample, at the Central Laborato-
ries Network, NRC, Giza, Egypt. This system involved an 
HP-5MS column (30 m × 0.25 mm × 0.25 μm). Hydro-
gen was used as the carrier gas at the flow rate of 2.0 mL 
min-1. In this assay, 1 µL was used as an injection volume 
according to several processing conditions, including 
50°C for 5 min, which rose at 10°C min-1 to 100°C, and 
then at 20°C min-1 to 320°C. Mass spectra were obtained 
by electron ionization (EI) at 70 eV, involving a spectral 
range of m/z 50–700, and a solvent delay of 4 min, where 
230°C was the mass temperature used and the Quad was 
at 150°C. Biochemical characterization of the different 
bacterial filtrate constituents was obtained by comparing 
the spectrum fragmentation pattern with that stored in 
the data of Wiley and the National Institute of Standards 
and Technology (NIST) Mass Spectral Library.

Detection of the nitrogenase gene (nifH)

Presence of the nitrogenase (nifH) gene was detected 
in the isolated diazotrophic bacteria according to Tan et 
al. (2009), as follows:

DNA extraction. A 2-d culture of each bacterial iso-
late grown on NF medium was centrifuged for 2 min at 
1792 g. The resulting pellet was re-suspended in steri-
lized water (100 mL) and re-centrifuged for an addition-
al 2 min at 1792 g, followed by heating in a water bath 
(90°C) for 10 min. After re-centrifugation, the superna-
tant was added to a sterile tube (0.5 mL capacity) and 
used as a DNA template. The resulting crude DNA con-
centration was estimated at using a UV spectrophotom-
eter at OD260 and OD280 (PERSEE).

Polymerase chain reaction (PCR). The reaction mix-
ture (25 mL) of PCR reaction involved a template DNA 
(≈ 100 ng); primer (1 mM of each primer), DNA poly-
merase (25 µL-1), 5 × buffer, MgCl2 (1 mM), dNTPs (0.2 
mM), and sterile H2O. Sequences of the nifH primers 

used were as follows: nifH-F (5’AAAGGYGGWATCG-
GYAARTCCACCAC3’) and nif H-R (5’TTGTTSGCS-
GCRTACATSGCCATCAT3’) (Turk-Kubo et al., 2012). 
The processing reaction was conducted on a thermocycler 
(Eppendorf) under processing conditions of one cycle 
(95°C for 3 min), then 30 cycles (each of 95°C for 1 min, 
52°C for 1 min, 72°C for 1 min, and 72°C for 5 min).

Molecular identification of the selected bacterium using 
16S rRNA gene

DNA of the promising nitrogen-fixing bacterial 
isolate was subjected to amplification of the 16S-rRNA 
region, using the primer 16S-27F: 5’-AGAGTTTGATC-
MTGGCTCAG-3’ and 16S-1492R: 5’-CGGTTACCTT-
GTTACGACTT-3’ (dos Santos et al., 2019). The PCR 
mixture was subjected to the Exosap-IT (GE Healthcare) 
PCR clean up protocol. The 16S rRNA gene nucleotide 
sequence was determined through Sanger sequencing 
using the DNA Analyzer of Applied Biosystems 3730 × l. 
Using the Big Dye Terminator from ABI; the two prim-
ers 27b F and 1492uR were used for setting up the PCR 
reactions (dos Santos et al., 2019). The Vector NTI soft-
ware (Invitrogen) was used to align the sequences from 
the forward and reverse primers, while the contigs were 
subjected to BLAST to search for nucleotide similarity 
(Zhang et al., 2000). The maximum likelihood method 
through MEGA X software (10.2.4) was used to generate 
a phylogenetic tree of the selected isolate.

Greenhouse experiment

Eggplant seeds were surface sterilized (using 0.05% 
sodium hypochlorite) and planted (one per pot) into 20 
cm diam. plastic pots containing sterilized clay soil. The 
soil physical composition was: silt (35 ± 0.13 g kg-1), sand 
(110.2 ± 0.21 g kg-1), and clay (453 ± 0.18 g kg-1). The soil 
chemical properties were: pH = 7.58, EC, 1.32 dS m-1, 
available P (26 mg kg-1), total N (2.84 g kg-1), available K 
(310 mg kg-1), organic matter (1.72 g kg-1), total organic 
carbon (0.99 g kg-1), and total CaCO3 (5.9%). For AMF 
colonization, an AMF inoculum was added to each pot 
under the seeds (10 g seed-1 of the AMF inoculum). 
Infestation of the soil was carried out by mixing the 
upper layer with the R. solani inoculum (3% w/w), and 
the pots were watered daily for 10 d before planting. 
For preparation of bacterial inoculum, the diazotrophic 
bacterium N. circulans strain YRNF1 was grown in NF 
broth on a rotary shaker for 3 d. The resulting bacterial 
suspension (adjusted at 108 cell mL-1) was mixed with 
1% Arabic gum. For application of N. circulans YRNF1, 
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eggplant seeds were soaked for 30 min before planting in 
freshly prepared bacterial inoculum. Three hours before 
planting, the seeds in control pots were treated with the 
fludioxonil (50.0%) fungicide at 3.5 mL kg-1 as a positive 
fungicide control. The negative control involved a set of 
pots that was untreated. Nine treatments were applied in 
this experiment. These were:
•	 non-mycorrhizal, untreated, uninfected plants (des-

ignated C);
•	 non-mycorrhizal, untreated and infected plants (P);
•	 non-mycorrhizal, treated with N. circulans YRNF1 

and uninfected plants (B);
•	 mycorrhizal, untreated and uninfected plants (M);
•	 mycorrhizal, treated with N. circulans YRNF1 and 

uninfected plants (B+M);
•	 non-mycorrhizal, treated with N. circulans YRNF1 

and infected plants (B+P);
•	 mycorrhizal, untreated and infected plants (M+P);
•	 non-mycorrhizal, treated with the fungicide and 

infected plants (F+P); and
•	 mycorrhizal, treated with N. circulans YRNF1 and 

infected plants (B+M+P).
No fertilization was applied in this experiment. Five 

replicates were used, and the pots were arranged in a 
randomized complete block design. They were main-
tained at 70% relative humidity, in a 27°C day 17°C 
night temperature regime in a greenhouse, and were 
irrigated with tap water when necessary. This experi-
ment was repeated twice

Assessment of the disease severity

Five plants from each treatment were carefully 
uprooted, and the adhering soil was removed with tap 

water. The disease severity was evaluated according to 
Wen et al. (2005). This scale included six severity catego-
ries: 0 = no necrosis; 1 = small root necroses (2.5 mm 
length); 2 = necrosis (2.5–5 mm); 3 = necrosis ≥ 5 mm; 
4 = crown and shoots covered with necrotic lesions; or 5 
= seedlings damped-off. The disease severity (DS%) was 
estimated according to Taheri and Tarighi (2010): 

DS	(%) = 	
1n1	 + 	2n2	 + 	3n3	 + 	4n4	 + 	5n5

5N × 100 

where n1 was the number of plants that had severity cat-
egory 1; n2 was number of plants that had level 2; etc., 
and N was the total number of evaluated plants.

Quantifying the expression of the defense-related genes 
using qPCR

Transcription of some responsive genes in egg-
plant roots was quantified at 14 d post planting (dpp). 
The studied genes included JERF3, PAL1, C3H, CHI2, 
and HQT. α-Tubulin and β-actin were used as reference 
genes, based on their stability in the mycorrhizal plants 
(Fuentes et al., 2016). The primer sequences used are 
shown in Table 1. The RNeasy Kit (Qiagen) was used for 
extraction of total RNA, in accordance with the manu-
facturer’s instructions. A SureCycler 8800 (Agilent, 
USA) was used to synthesize the cDNA. The total vol-
ume (20 μL) of the reaction mixture was composed of 
3.5 μL RNase-free H2O; 3 μL 5×-buffer; 3 μL RNA (30 
ng), 3 μL of dNTPs (10 mM), 7 μL of dT primer (5 pmol 
μL-1), and 0.5 μL of the RT enzyme.

The reaction was carried out using the RotorGen 
6000 (Qiagen) real-time system The qPCR was run for 1 
h at 43°C, then 10 min at 71°C. The qPCR mixture con-
sisted of 3 μL cDNA, 1.6 μL sterile water, 1.5 μL of each 

Table 1. Primer sequences of the defense-related genes used in this study (Rashad et al., 2020b).

Primer name Abbreviation (5’-3’)

Jasmonate and ethylene-responsive factor 3 JERF3 F
R

GCCATTTGCCTTCTCTGCTTC
GCAGCAGCATCCTTGTCTGA

Phenylalanine ammonia lyase 1 PAL1 F
R

ACGGGTTGCCATCTAATCTGACA
CGAGCAATAAGAAGCCATCGCAAT

4-coumarate 3-hydroxylase C3H F
R

TTGGTGGCTACGACATTCCTAAGG
GGTCTGAACTCCAATGGGTTATTCC

Chalcone isomerase 2 CHI2 F
R

GGCAGGCCATTGAAAAGTTCC 
CTAATCGTCAATGATCCAAGCGG

Hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase HQT F
R

CCCAATGGCTGGAAGATTAGCTA
CATGAATCACTTTCAGCCTCAACAA

α-tubulin α-tubulin F
R

TATCTGCTACCAGGCTCCCGAGAA
TGGTGTTGGACAGCATGCAGACAG

β-actin β-actin F
R

GTGGGCCGCTCTAGGCACCAA
CTCTTTGATGTCACGCACGATTTC
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primer, and 12.4 μL 2× SYBR® Green Mix. The qPCR 
reaction was run with one cycle at 95°C (for 3 min), 45 
cycles each of 95°C for 15 s and 56°C for 35 s, then 75°C 
for 250 s. The comparative CT method (2−ΔΔCT) was used 
to estimate the transcriptional expression of the tested 
genes, in accordance with Schmittgen and Livak (2008). 
Triplicates of each treatment (biological and technical) 
were used, and the assay was conducted twice.

Determination of the biochemical plant defense responses

At 30 dpp, samples from the eggplant roots were 
collected from each treatment. Estimation of the total 
phenolics, and activities of peroxidase (POD) and poly-
phenol oxidase (PPO) were assessed (five replicates). 
The Folin-Ciocalteu test was used to determine the 
total phenolic content (Singleton et al., 1999). Approxi-
mately 1 g of roots was ground in 5 mL of 80% metha-
nol, at 5°C overnight. This homogenate was then cen-
trifuged at 1344 g for 10 min. The supernatant (100 μL) 
was then mixed with 20% Na2CO3 (50 μL), 1750 μL of 
dH2O, and 250 μL of Folin-Ciocalteu reagent (Sigma-
Aldrich), and the resulting mixture was left at 40°C for 
35 min. Caffeic acid was used as a reference. Phenolic 
contents were estimated using spectrophotometry at 
760 nm. For POD activity determination, approx. 1 g of 
the root was ground in 3 mL of 0.1 M Na2HPO4 buffer, 
and the homogenate was centrifuged for 10 min at 1792 
g. POD enzyme activity was estimated spectrophoto-
metrically at 470 nm, which was represented as ∆A470 
min-1 g-1 f wt (Gong et al., 2001). Estimation of the PPO 
activity was carried out according to Singh and Ravin-
dranath (1994). Five g of root tissue were homogenized 
and kept for 35 min in acetone at 4°C. PPO enzyme 
potential was evaluated spectrophotometrically at 420 
nm using catechin as the substrate, and was recorded 
as ∆A420 min-1 g-1 f wt.

Estimation of levels of plant mycorrhization

Mycorrhizal colonization in eggplant roots was esti-
mated 45 dpp according to Trouvelot et al. (1986). Plant 
roots were fragmented (10 mm diam.) using a scalpel 
and were boiled in 10% potassium hydroxide solution. 
The treated segments were stained using 0.05% trypan-
blue, as described by Phillips and Hayman (1970). For 
each root treatment, approx. 50 stained fragments were 
checked under a light microscope. Three mycorrhization 
parameters were assessed, including frequency of mycor-
rhizal colonization, colonization intensity, and frequency 
of formation of arbuscules (Trouvelot et al., 1986). Esti-

mation of mycorrhization was repeated twice, each time 
on 50 stained fragments.

Evaluation of the eggplant growth parameters

At 45 dpp, approx. five replicate eggplant were care-
fully uprooted. Adhering soil particles were removed 
and plant growth was estimated using the following 
parameters: shoot height, root length, shoot and root 
dry weights, and leaf area. For the evaluation of the dry 
weights, the plants were dried at 80°C in an oven (3 d). 
This assay was conducted twice.

Influence of bioagents on macronutrient contents of egg-
plant leaves

For quantitative analysis of the nutrients content in 
eggplant leaves, approx. ten leaves from each treatment 
were collected, and then air dried. The leaves were frag-
mented using a grinding machine, and then used for 
estimation of the total contents of nitrogen (N), phos-
phorus (P), and potassium (K). Using Kjeldhal assays, N 
was estimated by titration following distillation (Goyal 
et al., 2022). Total P was evaluated as per Singh et al. 
(2022). Total K was determined based on Goyal et al. 
(2022). Determinations were each carried out twice.

Statistical analyses

The results were statistically analyzed using CoStat 
software 6.4. Data were checked for normality before 
applying the analyses of variance. Treatment means were 
compared using Tukey’s HSD test (P ≤ 0.05).

RESULTS

Antagonistic potential of the isolated diazotrophic bacteria 
against R. solani

Eight isolates of diazotrophic bacteria were recov-
ered from the collected soil samples. Results of the in 
vitro antifungal assays against R. solani showed that 
inhibition of R. solani mycelial growth varied among 
the eight isolates ranging from no inhibition to medi-
um inhibition. The greatest level of growth inhibition 
(42% growth, compared to control plates) was observed 
with the isolate designated as YRNF (Figure 1, a and b). 
Growth of the R. solani colony was suppressed and the 
colony had an arc-shaped border with the diazotroph-
ic bacterium YRNF1, with a clear no-growth zone in 
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between the fungus and bacterium, indicating release of 
antifungal metabolites by the bacterium, and an antibio-
sis-based mechanism of antifungal activity (Figure 1).

GC-MS analysis of the bacterial culture filtrate

Nineteen chemical constituents were detected in 
the culture filtrate of N. circulans YRNF1, which were 
identified by the GC-MS analysis (Figure 2). As pre-

sented in Table 2, the major biochemical constituents 
were butyric acid (85%) and ethylene glycol (8%). Some 
metabolites were recorded at intermediate proportions, 
including lactic acid, propanoic acid, 2-[(trimethyl-
silyl)oxy]-, trimethylsilyl ester (2TMS) derivative (1.5%) 
and α-D-mannopyranoside, methyl, cyclic 2,3:4,6-bis 
(butylboronate) (1.2%). The least detected components 
were β-hydroxyquebrachamine; 1,3-Dipalmitin tri-
methylsilyl ester (TMS) derivative; octadecanoic acid, 
2,3-bis[(trimethylsilyl) oxylpropyl ester (Glycerol mon-

Figure 1. In vitro antagonism of the diazotrophic bacterium Niallia circulans strain YRNF1 against Rhizoctonia solani. Confrontation test in 
dual culture; a) Unchallenged R. solani (control); b) R. solani challenged by N. circulans strain YRNF1.

Figure 2. GC-MS chromatogram of the secondary metabolites detected in culture filtrates of Niallia circulans YRNF1.
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ostearate, 2TMS derivative); 2,4,6(1H,3H,5H)-pyrimi-
dine-trione, 5-(1-cyclohexen-1-yl)-5-ethyl- (cyclobarbi-
tal), and cedrane-8,13-diol (cedran-diol, 8S,13-). 

Detection of the nitrogenase gene (nifH) in the diazotroph-
ic bacteria

Results obtained from PCR analyses showed that the 
selected isolate YRNF1 possessed the nifH nitrogenase 
gene, which was observed as a single band at 450 bp 
(Figure 3). This indicated that the isolate was a nitrogen 
fixing bacterium.

Molecular identification of the diazotrophic bacterium 
YRNF1

Results of BLAST analysis of the 16S rRNA sequence 
showed that the diazotrophic bacterial strain YRNF1 
had 99.71% similarity with N. circulans (reference strain 
MH130347). The nucleotide sequence of N. circulans 
YRNF1 was deposited in the GenBank under accession 
number OP703372. The phylogenetic analysis of N. circu-
lans YRNF1 in comparison to ten species of the genus 
Bacillus (Figure 4) showed that the strain grouped with 
B. circulans (MW547978) in a single distinct clade, with 
66% bootstrap support. The Bacillus spp. strains clus-

tered in two major groups. The first contained B. alti-
tudenis (MK424248), B. velezensis (MG651075), and 
B. subtilis (HE610894), with 70% bootstrap support. 
Bacillus mycoides (ON464184) clustered with 64% boot-
strap support in the other clade, while B. toyonensis 
(MZ773910) represented an outgroup. The second major 
group also included B. licheniformis (MK280728) and B. 
amyloliquefaciens (MF423459), with 64% bootstrap sup-
port, and clustered in a separate clade. The other clade 
involved B. cereus (OQ152624) and B. thuringiensis 
(MY912020), with 62% bootstrap support.

Disease severity

Mean severity of Rhizoctonia root rot in the infect-
ed, non-treated eggplant plants was 69%, which was 
the greatest of the nine treatments. Control plants with 
either one of the two bio-inoculants had no disease. 
Moderate disease severity was observed for the infected 
plants inoculated with N. circulans YRNF1 (45%), and 
32% for that inoculated with AMF. Application of both 
bio-inoculants reduced disease severity by 26% com-
pared to the non-treated infected plants. This indicated 
additive activity of these two bio-inoculants. Treatment 
with fludioxonil decreased the disease severity by 25% 
(Figure 5). 

Table 2. Secondary metabolites identified in culture filtrates of Niallia circulans YRNF1.

Peak 
no.

Retention time 
(min)

Peak area 
(%) Compound name Chemical formula

1 4.153 23.11 Butyric Acid, TMS derivative C7H16O2Si
2 5.2 61.53 Butyric acid C4H8O2

3 7.074 7.75 Ethylene glycol, 2TMS derivative C8H22O2Si2

4 7.265 0.22 Cyclobarbital C12H16N2O3

5 7.309 0.16 2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-(1-cyclohexen-1-yl)-5-ethyl- C12H16N2O3

6 7.47 0.91 Propylene glycol, 2TMS derivative C9H24O2Si2

7 8.195 0.28 2-Ethoxyethanol, TMS derivative C7H18O2Si
8 8.649 0.17 Cedran-diol, 8S,13- C15H26O2

9 8.722 0.85 1-Ethyl-1-(2-phenylethoxy)-1-silacyclohexane C15H24OSi
10 8.934 1.48 Lactic Acid, 2TMS derivative C9H22O3Si2

11 9.249 0.4 β-D-Galactopyranoside, methyl 2,3-bis-O-(trimethylsilyl)-, cyclic butylboronate C17H37BO6Si2

12 10.443 0.11 β-Hydroxyquebrachamine C19H26N2O
13 10.801 0.46 Acetin, bis-1,3-trimethylsilyl ether C11H26O4Si2

14 15.07 1.19 α-D-Mannopyranoside, methyl, cyclic 2,3:4,6-bis (butylboronate) C15H28B2O6

15 18.555 0.23 1-Heptatriacotanol C37H76O
16 18.768 0.57 1-Monopalmitin, 2TMS derivative C25H54O4Si2

17 18.892 0.13 1,3-Dipalmitin trimethylsilyl ester (TMS) derivative C38H76O5Si
18 19.507 0.31 2-Oleoylglycerol, 2TMS derivative C27H56O4Si2

19 19.603 0.14 Glycerol monostearate, 2TMS derivative C27H58O4Si2
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Triggering of the resistance-related genes in eggplant roots

Transcriptional expression of the resistance genes 
JERF3, PAL1, C3H, CHI2, and HQT in eggplant roots 
inoculated with N. circulans YRNF1 and colonized 
with AMF is shown in Figure 6. Compared to the con-
trol treatment, all of the experimental treatments elic-
ited expression of JERF3. Combined application of N. 
circulans YRNF1 and AMF up-regulated the JERF3 
gene more than the single treatments. The greatest gene 
expression (29.4-fold) was for infected eggplant roots 
after inoculation with N. circulans YRNF1 and colo-
nization by the AMF. Both applied bioagents increased 
the expression of PAL1, compared to the control plants. 
Greatest gene expression (17-fold) was for infected egg-
plant roots inoculated with N. circulans YRNF1 and 
colonized with the AMF. This was the same for C3H, 

where all the treatments induced expression of this gene, 
compared to the control treatment. Overexpression (8.6-
fold) was detected for infected eggplant roots inoculated 
with N. circulans YRNF1 and colonized with the AMF. 
The applied treatments up-regulated expression of CHI2 

Figure 3. Agarose gel showing the amplified DNA product of the 
nitrogenase gene (nifH) of the diazotrophic bacterium YRNF1 as a 
single band (450 bp).

Figure 4. Phylogenetic tree of the diazotrophic bacterium Niallia 
circulans YRNF1.

Figure 5. Mean root rot disease severities of eggplant plants treated 
with the diazotrophic bacterium Niallia circulans YRNF1 and/or 
AMF. Columns accompanied by the same superscript letters are not 
significantly different (Tukey’s HSD test, P ≤ 0.05). Error bars are 
Standard deviations (± SD). Treatments were: C, non-mycorrhizal, 
untreated and uninfected; P, non-mycorrhizal, untreated and infect-
ed; B, non-mycorrhizal, treated with N. circulans YRNF1 and unin-
fected; M, mycorrhizal, untreated and uninfected; B+M, mycor-
rhizal, treated with N. circulans YRNF1 and uninfected; B+P, non-
mycorrhizal, treated with N. circulans YRNF1 and infected; M+P, 
mycorrhizal, untreated and infected; F+P, non-mycorrhizal, treated 
with the fungicide and infected; and B+M+P, mycorrhizal, treated 
with N. circulans YRNF1 and infected.
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at varying levels compared to the untreated non-infected 
eggplants, with greatest expression of this gene record-
ed value showing a 15.9-fold increase. Application of all 
the treatments led to overexpression of HQT, compared 
to the control plants. The infected eggplant roots inocu-
lated with N. circulans YRNF1 and colonized with the 
AMF had maximum expression of 11.7-fold.

Effects of bioagents on phenol levels and antioxidant 
enzyme activities in treated eggplant roots

Eggplants challenged with N. circulans YRNF1 and 
AMF and inoculated with R. solani had increased level 
in total phenol contents, and increased POD and PPO 
enzyme potential (Table 3). At 30 dpp, mean phenolic 
content increased in the infected, non-treated eggplant 

Figure 6. Mean transcriptional expression of resistance genes (JERF3, PAL1, C3H, CHI2, and HQT) in eggplant roots treated with Niallia 
circulans YRNF1 and colonized with AMF and inoculated with Rhizoctonia solani. For each gene, columns accompanied by the same super-
script letter are not different (P ≤ 0.05), according to Tukey’s HSD test. The error bars are the standard deviations of the means. The experi-
mental treatments were: C, non-mycorrhizal, untreated and uninfected; P, non-mycorrhizal, untreated and infected; B, non-mycorrhizal, 
treated with N. circulans YRNF1 and uninfected; M, mycorrhizal, untreated and uninfected; B+M, mycorrhizal, treated with N. circulans 
YRNF1 and uninfected; B+P, non-mycorrhizal, treated with N. circulans YRNF1 and infected; M+P, mycorrhizal, untreated and infected; 
F+P, non-mycorrhizal, treated with the fungicide and infected; and B+M+P, mycorrhizal, treated with N. circulans YRNF1 and infected.
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roots, to 673.2 mg g-1 f wt compared to the control 
plants (415.7 mg g-1 f wt). Phenolic content of the non-
infected eggplant roots treated with N. circulans YRNF1 
was 579.0 mg g-1 f wt, and for roots treated with AMF 
was 594.4 mg g-1 f wt. Combination of both bio-inocu-
lants increased phenolic content of the non-infected egg-
plant roots to 763.3 mg g-1 f wt. Treatment of the infect-
ed eggplant roots with a combination of both bioagents 
resulted in increased phenolic content up to 1197.4 mg 
g-1 f wt. Application of fludioxonil increased phenolic 
content to 668.2 mg g-1 f wt.

Compared to the control plants, POD enzyme 
activity increased in the infected non-treated eggplant 
roots to 1.53 ∆A470 min-1 g-1 f wt, and for PPO activ-
ity increased to 1.34 ∆A420 min-1 g-1 f wt. Enhancements 
in POD and PPO potential were recorded after treat-
ments of plants with the two bio-agents, either singly 
or in combination. Greatest activity of both enzymes 
was recorded in the infected eggplant roots treated 
with N. circulans YRNF1 (2.32 ∆A470 min-1 g-1 f wt) and 
AMF (1.86 ∆A420 min-1 g-1 f wt). Compared to R. solani-
inoculated non-treated plants, activity of both enzymes 
increased after treatment of infected roots with both 

bio-inoculants. However, the increases in enzyme activ-
ity attributable to the combined treatment (B+M+P) was 
higher than each single treatment. Application of the 
fungicide resulted in a recognizable increase in the POD 
and PPO activity, compared to the control plants.

Mycorrhization of eggplants after treatment with Niallia 
circulans YRNF1

Effects of N. circulans YRNF1 on mycorrhizal colo-
nization of eggplant roots infected with R. solani are 
summarized in Table 4. Eggplant roots un-treated with 
AMF did not develop mycorrhizal colonization. In 
contrast, all eggplant roots treated with AMF showed 
varying levels of mycorrhization. Greatest coloniza-
tion parameters were recorded for roots treated with 
N. circulans YRNF1 and AMF, which gave means of 
88.7% colonization frequency, 56.1% colonization inten-
sity, and 39.7% arbuscule formation frequency, while the 
eggplants colonized by AMF only had 76.3% coloniza-
tion frequency, 45.3% colonization intensity, and 27.4% 
arbuscule formation frequency. These results indicated 
the compatibility between the two potential bio-agents. 
However, R. solani inoculation of the mycorrhizal egg-
plants reduced the mycorrhization levels, compared to 

Table 3. Mean phenolic contents and antioxidant enzyme (POD or 
PPO) activities in eggplant roots 30 d after inoculation with Rhizoc-
tonia solani and treatments with Niallia circulans YRNF1 and/or 
mycorrhizae.

Treatment Phenolic content
(mg-1g-1 f wt)*

POD
(∆A470 min-1 g-1 

f wt)*

PPO
(∆A420 min-1 g-1 

f wt)*

C 415.7 ± 8.19f 1.14 ± 0.07h 1.08 ± 0.05g

P 673.2 ± 11.20d 1.53 ± 0.05e 1.34 ± 0.04e

B 579.0 ± 7.32e 1.38 ± 0.05f 1.24 ± 0.05f

M 594.4 ± 8.17e 1.76 ± 0.09d 1.56 ± 0.07c

B+M 763.3 ± 8.41c 1.90 ± 0.07c 1.47 ± 0.09d

B+P 772.5 ± 10.50c 1.68 ± 0.05d 1.57 ± 0.07c

M+P 832.4 ± 9.13b 2.12 ± 0.08b 1.69 ± 0.05b

F+P 668.2 ± 4.88d 1.25 ± 0.04g 1.29 ± 0.07ef

B+M+P 1197.4 ± 12.02a 2.32 ± 0.08a 1.86 ± 0.09a

*Means followed by different superscript letters are significantly 
different (P ≤ 0.05), according to Tukey’s HSD tests. The data are 
means of five replicates ± SD. Treatments applied were: C, non-
mycorrhizal, untreated and uninfected; P, non-mycorrhizal, untreat-
ed and infected; B, non-mycorrhizal, treated with N. circulans 
YRNF1 and uninfected; M, mycorrhizal, untreated and uninfected; 
B+M, mycorrhizal, treated with N. circulans YRNF1 and uninfect-
ed; B+P, non-mycorrhizal, treated with N. circulans YRNF1 and 
infected; M+P, mycorrhizal, untreated and infected; F+P, non-myc-
orrhizal, treated with the fungicide and infected; B+M+P, mycorrhi-
zal, treated with N. circulans YRNF1 and infected, and peroxidase 
(POD) and polyphenol oxidase (PPO).

Table 4. Mean proportions (%) of mycorrhizal colonization fre-
quency, intensity and arbuscule frequency 45 d after treatments of 
eggplants with Niallia circulans YRNF1.

Treatment
Colonization 

frequency (%)*
Colonization 
intensity (%)*

Frequency of 
arbuscules (%)*

C 0 0 0
P 0 0 0
B 0 0 0
M 76.3 ± 4.12b 45.3 ± 6.13b 27.4 ± 3.17b

B+M 88.7 ± 6.23a 56.1 ± 5.41a 39.7 ± 5.11a

B+P 0 0 0
M+P 63.9 ± 4.55d 35.4 ± 6.04c 20.5 ± 4.03c

F+P 0 0 0
B+M+P 70.33.4 ± 4.81c 43.4 ± 5.22b 24.5 ± 5.15bc

*Means accompanied by the same superscript letter are not sig-
nificantly different (P ≤ 0.05), according to Tukey’s HSD test. The 
values are means of five replicates ± SD. Treatments applied were: 
C, non-mycorrhizal, untreated and uninfected; P, non-mycorrhizal, 
untreated and infected; B, non-mycorrhizal, treated with N. circu-
lans YRNF1 and uninfected; M, mycorrhizal, untreated and unin-
fected; B+M, mycorrhizal, treated with N. circulans YRNF1 and 
uninfected; B+P, non-mycorrhizal, treated with N. circulans YRNF1 
and infected; M+P, mycorrhizal, untreated and infected; F+P, non-
mycorrhizal, treated with the fungicide and infected; and B+M+P, 
mycorrhizal, treated with N. circulans YRNF1 and infected.
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the mycorrhizal eggplants not inoculated by the patho-
gen. This was also the case for the mycorrhizal-infected 
roots treated with N. circulans YRNF1.

Eggplants growth in response to application of N. circulans 
YRNF1 and AMF

Results from treatments of R. solani inoculated 
eggplants with N. circulans YRNF1 and AMF showed 
increases in most of the measured plant growth param-
eters (Table 5). Compared to experimental controls, the 
R. solani-inoculated had 20.5% reduction in mean shoot 
height and 26.3% reduction in mean root length. Egg-
plant roots colonized by AMF had 54.6% greater shoot 
height and 54.7% greater root length. Treating the non-
R. solani inoculated plants with N. circulans YRNF1 and 
AMF increased shoot height by 71.4% and root length by 
41.8%. Treatment of the R. solani inoculated eggplants 
with both bio-inoculants, increased shoot height by 53.7% 
and root length 66.5%. Treatment with fludioxonil also 
increased shoot height and root length of the R. solani-
inoculated eggplants. Compared to controls, inoculation 
of the plants reduced shoot dry weight by 41.0% and root 
dry weight by 60.0%. Treatment of the non-infected egg-
plants with N. circulans YRNF1 and AMF increased shoot 
dry weight 79.5 and root dry weight by 130%. Application 
of both bio-agents to infected plants increased shoot dry 
weight by 51.3% and root dry weight by 90%. Treatment 
of infected plants with fludioxonil also increased shoot 
and root dry weights. Inoculation of plants with R. solani 
also reduced mean leaf area by 34.3%. Application of both 

bio-inoculants increased the leaf area by 115.7%. Com-
bined treatment of the infected eggplants with both bio-
agents increased mean leaf area by 85.8%. Treatment of 
the infected eggplants with fludioxonil increased leaf area, 
compared to the untreated infected plants.

Influence of Niallia circulans YRNF1 and AMF on the 
macronutrient contents in the eggplant leaves

Total nitrogen (TN) contents in eggplant leaves var-
ied across the different treatments (Table 6). Compared 
to experimental controls, all the treatments caused 
increased TN. Greatest mean TN increases resulted for 
R. solani-inoculated plants colonized by AMF (3.9%), 
inoculated with N. circulans YRNF1 (3.6%) or treated 
with fludioxonil (3.6%). Greatest total phosphorus (TP: 
2.55%) was measured in non-inoculated plants colonized 
with AMF, and in R. solani-inoculated plants colonized 
with AMF (TP = 2.26%). Most of the applied treatments 
also increased total potassium (TK) contents in the egg-
plant leaves, compared to control. Measured N/P ratios 
were increased in the R. solani inoculated plants either 
treated with the fludioxonil (mean N/P ratio = 4.29), 
inoculated with N. circulans YRNF1 (N/P = 3.86), or 
colonized with AMF (N/P = 3.85).

DISCUSSION

Rhizoctonia solani is a damaging pathogen that 
infects several economically important host plants. In 

Table 5. Mean eggplant shoot heights, root lengths, shoot and root dry weights, and leaf areas 45 d after inoculation with Rhizoctonia solani 
and treatments of Niallia circulans YRNF1 and/or mycorrhizal colonization.

Treatment Shoot height (cm)* Root length (cm)* Shoot dry weight (g)* Root dry weight (g)* Leaf area (cm2)*

C 12.50 ± 1.12d 5.17 ± 0.80e 0.39 ± 0.03c 0.10 ± 0.02c 17.99 ± 1.23f

P 10.00 ± 0.99e 3.81 ± 0.73f 0.23 ± 0.05d 0.04 ± 0.01d 11.82 ± 1.01g

B 13.50 ± 1.37cd 7.16 ± 0.95bcd 0.62 ± 0.04ab 0.22 ± 0.02a 24.71 ± 2.33d

M 19.33 ± 1.40b 8.00 ± 1.00ab 0.68 ± 0.06a 0.21 ± 0.04ab 33.54 ± 2.15b

B+M 21.42 ± 1.22a 7.33 ± 0.87bc 0.70 ± 0.09a 0.23 ± 0.05a 38.82 ± 2.56a

B+P 13.17 ± 0.87cd 7.33 ± 0.74bc 0.39 ± 0.08c 0.10 ± 0.03c 21.76 ± 1.81e

M+P 18.14 ± 1.13b 7.30 ± 0.81bc 0.58 ± 0.07b 0.21 ± 0.05ab 28.48 ± 1.64c

F+P 15.83 ± 1.41c 6.33 ± 0.89cd 0.36 ± 0.06c 0.11 ± 0.06c 17.43 ± .98f

B+M+P 19.21 ± 1.42b 8.61 ± 0.78a 0.59 ± 0.08b 0.19 ± 0.07b 33.42 ± 1.11b

*Means accompanied by the same superscript letter are not significantly different (P ≤ 0.05), according to Tukey’s HSD test. The values are 
means of five replicates ± SD. Treatments applied were: C, non-mycorrhizal, untreated and uninfected; P, non-mycorrhizal, untreated and 
infected; B, non-mycorrhizal, treated with N. circulans YRNF1 and uninfected; M, mycorrhizal, untreated and uninfected; B+M, mycor-
rhizal, treated with N. circulans YRNF1 and uninfected; B+P, non-mycorrhizal, treated with N. circulans YRNF1 and infected; M+P, myc-
orrhizal, untreated and infected; F+P, non-mycorrhizal, treated with the fungicide and infected; and B+M+P, mycorrhizal, treated with N. 
circulans YRNF1 and infected.
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this study, isolation of diazotrophic bacteria from the 
soil samples resulted in the recovery of eight bacterial 
isolates. Results of in vitro antagonism assays of these 
isolates against R. solani showed that one strain YRNF1, 
molecularly identified as N. circulans, considerably 
inhibited R. solani growth in culture. This was prob-
ably because of antifungal compounds production (anti-
biosis) by N. circulans. Analysis of N. circulans YRNF1 
culture filtrate using GC-MS indicated occurrence of 
19 metabolites. Butyric acid and ethylene glycol were 
the major components of the culture filtrate. Previous 
studies have reported antifungal activity of butyric acid, 
which is a short chain fatty acid produced by bacteria 
(e.g. Lactobacilli spp.), and this compound is widely 
used as a bio-preservative in dairy products due to its 
high antifungal activity (Garnier et al., 2020). Ethylene 
glycol is widely used as an effective antifungal compo-
nent in the hand sanitizers (Vuai et al., 2022). The in 
vitro antifungal potential of N. circulans YRNF1 may 
be due to additive actions of butyric acid and ethylene 
glycol. It is possible that ethylene glycol, thanks to its 
amphiphilic nature, facilitates contact between butyric 
acid, which is a hydrophobic and antifungal compound, 
and R. solani cells, whose contents are hydrophilic 
(Abouloifa et al., 2022).

Nitrogen fixation is an important biological process 
as nitrogen (N) is a limiting nutrient for crop growth. 
The nitrogen fixing ability of N. circulans YRNF1 was 
confirmed by the presence of nifH gene in its DNA, 
which provides marker for N fixation ability (Young, 
1992). Nitrogen fixation by N. circulans YRNF1 is prob-
ably the main mechanism of the observed promotion of 
the eggplant growth, as shown by the increases of NPK 
contents in leaves of the treated plants. Nitrogen is the 
most important element in plant nutrition, and nitrogen 
nutrition via nitrogen fixation increases plant vegeta-
tive vigor. Phosphorus and potassium are also vital for 
plant biochemical processes, such as photosynthesis and 
for the nitrogen fixation process itself (Abdelraouf et al., 
2020). Potassium has an important function in activat-
ing enzymes including nitrogenase (Rashad et al., 2023). 
Coskun et al. (2017) highlighted that the form of avail-
able N, particularly NH4

+ and NO3
- , and the transfor-

mation of N in soil, also affect K uptake by plants. These 
authors reported that administration of NH4

+ to barley 
plants enhanced K+ uptake. Phosphorus nutrition is also 
important for N fixation processes, where conversion of 
N2 to NH4

+ catalyzed by nitrogenase depends on ATP 
(Bello et al. 2023). Nitrogen fertilization also positively 
affects P uptake by plant roots (Krouk and Kiba, 2020).

The results obtained in the present study from the 
greenhouse assays showed that application of N. circu-
lans YRNF1 suppressed disease severity caused by R. 
solani in the treated eggplants. The bio-control efficacy 
of N. circulans YRNF1 was probably due to its ability to 
produce metabolites (particularly butyric acid and eth-
ylene glycol) with antifungal potential. Other possible 
mechanisms of action include the ability to inhibit the 
growth of R. solani and limit severity of root rot through 
colonization of root infection sites, competitive exclu-
sion of the fungal pathogen, and secretion of antifungal 
and/or cell wall hydrolyzing enzymes (Lugtenberg et al., 
2009; Berendsen et al., 2012). Systemic immunity may 
also be triggered by N. circulans in treated eggplants. All 
the above mentioned results are promising for the poten-
tial use of N. circulans YRNF1 as an effective biocontrol 
agent. Disease severity may also be reduced by AMF 
colonization of eggplants infected by R. solani, which 
triggers host defense responses in plants under stress 
caused by plant pathogens (Rashad et al. 2020b). AMF 
can also enhance plant resistance, by promoting plant 
growth and vigor via improvement of plant nutrition 
(El-Sharkawy et al., 2023) and production of plant hor-
mones (Song et al., 2020). In the present study, co-inoc-
ulation of infected plants with the two biocontrol agents 
decreased disease severity by 26%, indicating an additive 
action of the N. circulans YRNF1 and AMF.

Table 6. Mean contents of nitrogen, phosphorus, and potassium, 
and N/P ratios 45 d after treatments of eggplants with Niallia circu-
lans YRNF1 and/or AMF.

Treatment Total nitrogen 
(%)*

Total 
phosphorus 

(%)*

Total 
potassium

(%)*
N/P ratio*

C 2.66 ± 0.08e 1.59 ± 0.04d 2.15 ± 0.08c 3.72 ± 0.21ab

P 3.15 ± 0.04cd 2.17 ± 0.03bc 2.70 ± 0.15ab 3.20 ± 0.02b

B 3.22 ± 0.08cd 2.01 ± 0.06bc 2.9 ± 0.06a 3.57 ± 0.20ab

M 3.50 ± 0.08bc 2.55 ± 0.09a 2.77 ± 0.06ab 3.06 ± 0.17b

B+M 3.23 ± 0.02cd 2.04 ± 0.02bc 2.89 ± 0.07a 3.52 ± 0.05ab

B+P 3.64 ± 0.16ab 2.15 ± 0.15bc 2.81 ± 0.02ab 3.86 ± 0.06ab

M+P 3.92 ± 0.09a 2.26 ± 0.04ab 3.04 ± 0.09a 3.85 ± 0.45ab

F+P 3.64 ± 0.04ab 1.88 ± 0.02cd 3.09 ± 0.11a 4.29 ± 0.08a

B+M+P 3.10 ± 0.08d 2.12 ± 0.06bc 2.45 ± 0.03bc 3.24 ± 0.08b

*Means accompanied by the same superscript letter are not sig-
nificantly different (P ≤ 0.05), according to Tukey’s HSD test. The 
values are means of five replicates ± SD. Treatments applied were: 
C, non-mycorrhizal, untreated and uninfected; P, non-mycorrhizal, 
untreated and infected; B, non-mycorrhizal, treated with N. circu-
lans YRNF1 and uninfected; M, mycorrhizal, untreated and unin-
fected; B+M, mycorrhizal, treated with N. circulans YRNF1 and 
uninfected; B+P, non-mycorrhizal, treated with N. circulans YRNF1 
and infected; M+P, mycorrhizal, untreated and infected; F+P, non-
mycorrhizal, treated with the fungicide and infected; and B+M+P, 
mycorrhizal, treated with N. circulans YRNF1 and infected.
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Both potential biocontrol agents affected expres-
sion of the defense genes JERF3, PAL1, C3H, CHI2, 
and HQT. The JERF3 gene was particularly expressed 
in response to treatment of eggplants with N. circu-
lans YRNF1 and AMF. The gene JERF3 controls sev-
eral plant defense genes (Rashad et al., 2022b). PAL1 
regulates the main step in the polyphenolic biosyn-
thetic pathway, through conversation of phenylalanine 
to t-cinnamic acid (Mouradov and Spangenberg, 2014). 
C3H has an important role in biosynthesis of monol-
ignols that constitute lignin (Tao et al., 2015), where lig-
nification of the infected cell walls is a pivotal physical 
mechanism preventing pathogen penetration of hosts 
and cell to cell proliferation. CHI2 catalyzes the biocon-
version of coumaroyl CoA to naringenin involved in the 
biosynthesis of several fungitoxic compounds, including 
flavonoids and phytoalexins (Zhou et al., 2018). HQT 
regulates biosynthesis of chlorogenic acid from caffeoyl 
CoA (André et al., 2009). Triggering expression of these 
defense genes indicates induction of effects of the com-
bined application of N. circulans YRNF1 and AMF for 
eggplant resistance.

Increases in phenolics and in activities of POD and 
PPO were detected in response to applying N. circulans 
YRNF1 and AMF. This is similar to the results of Singh 
et al. (2016). Increments of phenolic compounds con-
tent is a plant defense response associated with induced 
resistance (IR) in plants infected by pathogens (Chin 
et al., 2022). POD and PPO are important antioxidant 
enzymes, which catalyze formation of lignin, thus con-
tributing to structural reinforcement of plant cells and 
formation of physical barriers against invading patho-
gens (Nasr-Esfahani et al., 2020). In addition, POD and 
PPO scavenge the oxidative ROS generated within infec-
tion processes.

Results from the present study have demonstrated 
that the frequency of colonization of eggplant roots by 
AMF, the level of colonization, and the frequency of 
arbuscule formation were greater after treating eggplants 
with a combination of N. circulans YRNF1 and AMF. 
This revealed the inducing effect of N. circulans YRNF1 
on mycorrhizal colonization, which indicates compat-
ibility of the two potential biocontrol agents.

In the present study, the two applied potential bio-
control agents promoted eggplant growth. Colonization 
of plant roots by two or more AMF species has previ-
ously been reported to provide a spectrum of advan-
tages, and has more benefits to host plants than coloni-
zation by one species (Sharma and Kapoor, 2023). The 
strain N. circulans E9 has been found to promote plant 
growth (Sarmiento-López et al., 2022), which is associ-
ated with production of IAA and promotion of growth 

through stimulation of cell division and increased 
nutrient and water uptake, resulting in increased crop 
yield and quality (Sarmiento-López et al., 2022). In the 
present study, increases in the growth parameters of 
R. solani-infected eggplants were detected after indi-
vidual treatments with each of the two bio-inoculants. 
This may be due to the biocontrol potential of N. circu-
lans YRNF1 and growth promotion from each of the 
bio-inoculants. The recorded enhancement of eggplant 
growth after colonization with AMF was also similar 
to effects reported by Han et al. (2023), where treating 
lettuce by AMF increased the plant height by 30% and 
root length by 64%. Colonization by AMF is known 
to improve the host plants through multiple modes of 
action, including increases in active and passive nutri-
ent and water uptake, and increased hyphal networks 
on root radicles, which magnify the hydraulic conduc-
tivity of water from the soil (Rashad et al., 2020c). In 
addition, AMF can produce hydrolyzing phosphatases, 
pectinases, and cellulases, as well as organic acids, 
which assist in nutrient utilization and improve their 
plant availability (Liu et al., 2021). AMF also produce 
phytohormones (e.g. abscisic acid and strigolactones) 
that enhance plant growth (Pozo et al., 2015).

Niallia circulans YRNF1 also enhanced eggplant 
nitrogen nutrition via the N-fixation, which probably 
promoted eggplant growth, whether or not colonized by 
AMF. The enhancements of eggplant growth parameters 
were increased after applying the two bio-gents, suggest-
ing their additive action. This observation is consistent 
with that of El-Sharkawy et al. (2022), who showed that 
co-treating of pea plants by Streptomyces viridosporus 
HH1 and the mycorrhizal fungus Rhizophagus irregula-
ris increased pea growth, compared to individual treat-
ments with these two microorganisms. The AMF supply 
host plants with mineral nutrients, mainly phosphorus, 
which play prominent roles in plant growth (Adolfsson 
et al., 2015). The present results also demonstrated that 
combined application of N. circulans YRNF1 and mycor-
rhizal colonization improved the NPK contents in egg-
plant leaves, which was probably due to a cumulative 
effect of N. circulans YRNF1 and AMF. These data were 
similar to those of Hafez et al. (2022), who reported that 
combined application of growth-promoting rhizobacte-
ria with organic fertilizers increased total N, P, and K in 
treated plant tissues, compared to untreated plants, and 
to individual applications of the mineral fertilizers.

The present study is the first to report effective use 
and the additive effects of the diazotrophic bacterium N. 
circulans and AMF, as biofungicides and biofertilizers, 
for potential management of Rhizoctonia root rot and 
growth-promotion in eggplant.
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