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Summary. Strawberry powdery mildew, caused by Podosphaera aphanis, is an economi-
cally important disease for strawberry production. Typical symptoms are white myceli-
um on all aerial parts of affected plants, with young host tissues being the most suscep-
tible. The pathogen overwinters on infected leaves, either as mycelium or chasmothecia, 
although the quantitative role of chasmothecia in epidemics are not fully understood. In 
spring, under favourable conditions, the fungus sporulates, disseminating conidia and 
causing polycyclic infections. The disease is mainly controlled using synthetic fungi-
cides, but there is increasing interest in sustainable alternatives, including microbial bio-
control agents (e.g., Ampelomyces quisqualis, Bacillus spp., Trichoderma spp.) and sub-
stances of plant or animal origin (e.g., Equisetum arvense, orange oil, chitosan, whey). 
Physical methods, (e.g. UV-C, ozone) are also promising alternatives to fungicides. 
All of these strategies should be combined with appropriate agronomic practices (e.g., 
overhead irrigation, canopy management) to create unfavourable environments for the 
pathogen. However, agronomic practices have never been assessed for P. aphanis. Dis-
ease forecasting models and DSSs, though available, are underutilized due to their com-
plexity and lack of validation across locations. This review presents the current state of 
knowledge on P. aphanis the available methods for control of strawberry powdery mil-
dew, and highlights knowledge gaps relating to this host/pathogen relationship.

Keywords. Podosphaera aphanis, natural substances, biocontrol, agronomic practices, 
disease forecasting models.

INTRODUCTION

Strawberry powdery mildew (SPM), caused by Podosphaera aphanis 
(Wallr.) U. Braun and S. Takamatsu is a common disease, particularly in sub-
tropical and tropical regions where strawberry (Fragaria × ananassa Duch) 
is grown (Nakzawa and Uchida, 1998; Amsalem et al., 2006; Gadoury et al., 
2010; Carisse and Fall, 2021; Kasiamdari et al., 2021; Palmer and Holmes, 
2021). Most strawberry cultivars are highly susceptible to the disease, and 
only very few are tolerant (Menzel, 2022). Strawberry powdery mildew is 
mostly managed by synthetic fungicides that are sprayed regularly from emer-
gence of the first leaves to the end of the harvest season (Carisse et al., 2013a). 
This high use of fungicides fosters the build-up of resistant P. aphanis popula-
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tions and has potentially negative impacts on animal and 
human health and the environment (Muñoz-Leoz et al., 
2011; Rjiba-Touati et al., 2023). Due to increasing con-
cerns relating to pesticides, consumers preferences have 
changed, and are increasingly opting for food products 
free of pesticide residues (Rimal et al., 2001). As a result, 
agrarian systems are moving to sustainable and eco-
friendly phytosanitary solutions, which fosters research 
and development of innovative approaches to disease 
management (Deresa and Diriba, 2023).

Significant progress has been made to develop alter-
natives for management of SPM, and many publications 
confirm this strong scientific commitment. However, 
strawberry producers still lack effective methods for 
managing SPM that can be considered as viable substi-
tutes for chemical fungicides (Deresa and Diriba, 2023).

The aim of this review is to summarize cur-
rent knowledge on SPM, and to highlight gaps in 
understanding which, if clarified, could contribute to 
increased effectiveness of SPM management.

METHODOLOGY

This review is structured into the following sections: 
classification and morphology of P. aphanis, and the 
symptoms of SPM; epidemiology and the most signifi-
cant stages of the disease cycle; conventional and alter-
native control methods for SPM; agronomic practices 
that must be integrated for effective disease control; and 
the most relevant predictive models, decision support 
systems (DSSs) and early detection systems for SPM. 
The review concludes by suggesting future research to 
improve SPM management.

The relevant literature was reviewed using Goog-
le Scholar, Scopus, and Web of Science searches, for 
reports published from 1962 to 2023. The following 
keywords were used alone and in combinations in the 
searches: Ampelomyces quisqualis, airborne inoculum, 
Bacillus, basic substances, bioassay, biochar, biological 
agent, biostimulants, chasmothecia, classification, cleis-
tothecia, conidia, conidiophores, control, cultural prac-
tices, decision support system, detection, disease, distri-
bution, environmental conditions, epidemiology, essen-
tial oils, field, fungicide, inorganic salts, irrigation, life 
cycle, low-toxicity compounds, machine learning, model, 
morphology, mycophagous mite, nutrition, overhead 
irrigation, overwintering inoculum, ozone treatment, 
plant extract, Podosphaera aphanis, predictive model, 
resistance, seaweed extract, Sphaerotheca macularis, 
symptoms, strawberry powdery mildew, Trichoderma, 
UV treatment, water stress.

The first search (46 papers) was carried out in order 
to select the first and the most cited records for the clas-
sification of P. aphanis (eight papers), its morphology 
(two papers), and the symptoms it causes (nine papers). 
A second search (27 papers) focused on the fungus life 
cycle (18 papers) and SPM epidemiology (11 papers). A 
third search (104 papers) aimed to identify the fungi-
cides (nine papers) and the alternative products assessed 
for SPM control (95 papers) by focusing on classical 
and advanced solutions such as biological control (11 
papers), inorganic salts (21 papers), plant extracts (16), 
seaweeds (10 papers), substances from animal origin (six 
papers), chitin and its derivatives (12 papers), UV-C (nine 
papers) and ozone technologies (six papers). The selected 
papers of the third search were analysed according to 
the research outcomes, carried out under field or labora-
tory conditions. When data on P. aphanis were lacking 
and alternatives for management of other powdery mil-
dews could be useful indicators for future research, those 
alternatives were included in the review. A fourth search 
was carried out to identify agronomic practices useful for 
management of SPM, such as canopy management (eight 
papers), plant nutrition (four papers), overhead irrigation 
(two papers), genetic resistance (seven papers) or spray 
equipment (eight papers). In this fourth search, in cases 
where there was no literature available on SPM, litera-
ture related to other powdery mildews was analysed. The 
fifth search included DSSs (17 papers), and early disease 
detection systems (six papers). Papers were not included 
when they showed low quality of experimental designs 
and data analyses, reported low powdery mildew severity 
in experimental controls (only for the efficacy trials), or 
were redundant due to other similar and previous results.

THE PATHOGEN AND THE DISEASE

Podosphaera aphanis (Erysiphaceae, Ascomycetes) 
was first reported (sexual stage) in the United States of 
America (Geneva, New York) in 1886 (Arthur, 1886). 
In Europe, this fungus was identified a few years lat-
er (Salmon, 1900), when its asexual stage was also 
described. The causal agent of SPM was initially thought 
to be the same as hop powdery mildew, Podosphaera 
macularis (Wallr.) U. Braun and S. Takamatsu [for-
merly Sphaerotheca macularis (Wallr.) Magnus] (Jhooty 
and McKeen, 1965). In 1976, Liyanage and Royle dis-
covered that powdery mildews of strawberry and hop 
were caused by two different pathogens. Recent taxo-
nomic studies have described clear distinction between 
ascocarp appendages of Podosphaera and Sphaerotheca 
(Braun, 1982; Braun and Takamatsu 2000), which neces-
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sitated a change of the genus name of the agent of SPM 
to Podosphaera (Cook et al., 1997; Kirk et al., 2001). 

Morphological characteristics, originally described 
in 1987 (Braun, 1987), were recently displayed with digi-
tal light microscopy (Iwasaki et al., 2021). The hyaline 
conidia of P. aphanis are ellipsoid–ovoid to doliiform–
limoniform in shape, and contain oil and fibrosin bod-
ies. Their dimensions are 27–33 × 18–22 μm. The appres-
soria, which develop on germinated conidia, are 4 μm 
wide. Conidiophores (dimensions 84–129 × 8–11 µm) 
each produce six concatenated conidia. Chasmothecia 
(Figure 1) are dark brown (100–125 × 65–80 μm), and 
are firmly attached to the surrounding mycelium. Each 
chasmothecium (Figure 1) contains one ascus (dimen-
sions 60–94 × 55–76 μm), which contains eight ellipsoid 
to subglobose ascospores.

Symptoms of strawberry powdery mildew

The typical symptoms of SPM are white powdery 
patches of mycelium and conidia, spread across all aer-
ial parts (leaves, runners, flowers, fruit) of affected host 

plants (Figure 2, a to i). Host tissues can be affected at 
all stages of development, although young organs (e.g., 
not fully expanded leaves, flowers, green berries) are 
more susceptible than older tissues (Carisse and Boucha-
rd, 2010; Asalf et al., 2014). As the disease progresses, 
leaf edges curl upwards, and purple to reddish irregular 
blotches may develop on the leaf surfaces (Lambert et 
al., 2007) (Figure 2, c and d). Round black chasmothecia 
may be visible on abaxial leaf surfaces, in late summer/
autumn (Gadoury et al., 2010).

Severe infections can cause strawberry yield loss-
es of up to 30% (Carisse et al., 2013b), due to the white 
mycelium covering ripe and unripe fruit, fruit deforma-
tion (Figure 2, g, h and i), hardening and dehydration, 
achene exposure (Figure 2 g), and eventual fruit decay. 
Beside negative impacts on fruit quality, photosynthesis 
reduction, plant stunting and flower abortion are also 
associated with SPM (Peries, 1962a; Jhooty and McKeen, 
1965; Gooding et al., 1981; Maas, 1998; Amsalem et al., 
2006), although no data are available on the yield losses 
caused by these types of symptoms.

The disease cycle of Podosphaera aphanis

The disease cycle of strawberry powdery mildew 
(Figure 3) has been extensively investigated. The patho-
gen overwinters as mycelium on living infected leaves, 
and sporulation recommences in spring, leading to 
conidium dissemination and consequent polycyclic infec-
tions (Gadoury et al., 2010; Iwasaki et al., 2021) (Figure 
3). Nevertheless, P. aphanis can also overwinter as chas-
mothecia, which developed in late summer/autumn 
(Gadoury et al., 2010; Jin et al., 2012) on the infected host 
leaves, in commercial fields or in the nurseries (Peries, 
1962b). In spring, commonly from early March to late 
May in the northern hemisphere, mature chasmothecia 
release ascospores, which are responsible for the early 
infections on plants (Gadoury et al., 2010) (Figure 3). 

Asexual reproduction

Extensive research has been conducted on the pro-
cesses of asexual reproduction during host vegetative 
growth, including laboratory and field studies on conidi-
ation and polycyclic infections. These have provided 
insights into the dynamics of fungal development and 
dissemination. After infection, temperatures between 
18 and 25°C at 97–100% relative humidity (RH) favour 
enlargement of the lesions, leading to conidiation (Mill-
er et al., 2003; Amsalem et al., 2006). Conidiophores 
each develop from a generative cell that after a gradual 

Figure 1. a) Chasmothecia of Podosphaera aphanis on an abaxi-
al surface of a strawberry leaf. b) Open chasmothecium and with 
released ascus.
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upward elongation, produces conidium chains. Conidia 
are released when mature, following the individual order 
of development. Each time a conidium is released, the 
generative conidiophore cell starts to form a new conid-

ium. The lifetime of conidiophores, from generative cell 
formation until the first conidium release, is approx. 
125 to 150 h. At 22°C and 45–55% RH, with wind speed 
of 0.5 m s–1 (necessary for conidial detachment), each 

Figure 2. Strawberry powdery mildew symptoms. a-b) white patches on the abaxial and adaxial leaf surface, c) red blotches on the leaf sur-
face, c-d) leaf curling, e-f) white patches on leaf and flower petioles, g) fruit deformation, h-i) white mycelium and white patches on unripe 
and ripe fruits.
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conidiophore releases an average of 38 progeny conidia 
within 96 h (Iwasaki et al., 2021). Within a colony life-
time (35 d after inoculation) each colony can release an 
average of 6.7 × 104 conidia (Ayabe et al., 2022). 

Under laboratory conditions (22±1°C, 45–55% RH), 
conidia of P. aphanis germinate within 4–5 h after inoc-
ulation, with each conidium forming a germ tube that 
develops into an appressorium (Iwasaki et al., 2021). 
After successful host penetration, achieved by enzy-
matic and mechanical processes, a haustorium forms 
within the host epidermal cell, and typically invades 
the host plasma membrane 1 d after inoculation, and 
hyphal growth commences. Conidiophores develop 3–5 
d after inoculation, and conidiation usually commences 
6 d after inoculation (Peries, 1962a; Jhooty and McKeen, 
1965; Iwasaki et al., 2021).

Conidia can germinate between 3 and 32–38°C 
(Jhooty and McKeen, 1965; Sombardier et al., 2009), and 

temperature influences the rate and speed of germination. 
For example, between 15 and 25°C germination of conidia 
varies between 85 to 88% (Amsalem et al., 2006), while 
only 1% germination was recorded at 5 or 35°C (Amsa-
lem et al., 2006). At 5, 10, and 15°C, minima of, respec-
tively, 25, 15 and 12 h were required for conidium germi-
nation, while between 18 and 30°C only 5 h were neces-
sary (Peries, 1962a). Conidium germination rates are also 
influenced by different leaf surfaces, with is 20% greater 
germination on abaxial than adaxial surface (Maas, 1998; 
Sombardier et al., 2009). As for many powdery mildews, 
free water is detrimental to conidia and mycelium of P. 
aphanis (Peries, 1962a; Sombardier et al., 2009).

Sexual reproduction

Podosphaera aphanis is heterothallic, so initiation 
of chasmothecia begins when antheridium and ascogo-

Figure 3. Disease cycle of strawberry powdery mildew.
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nium are formed from the mycelium of different mat-
ing types. Myceloid appendages extended from the outer 
chasmothecia wall are directed downward to the myce-
lium and tenaciously attached (Asalf et al., 2013). Initia-
tion of ascocarps is regulated by temperature. The most 
favourable temperature for chasmothecium development 
is approx. 13°C, that occurs 10 to 14 days after inocula-
tion (Asalf et al., 2013). Up to 400 chasmothecia per cm2 
of leaf form after 14 d incubation at this temperature. 
However, chasmothecium development is largely sup-
pressed at temperatures >13°C. For example, at 20°C the 
mean number of chasmothecia per cm2 was up to 21, 
and the incidences of leaves bearing chasmothecia at 9 
or 12°C were much greater (respectively, 92 and 93%) 
than at 15, or 18°C, (respectively, 7 and 6%) (Asalf et al., 
2013). Chasmothecia have different developmental stag-
es: white, brown, and black when mature. Rupture of the 
ascus and ascospore release generally occurs within 5 
min at 22 to 25°C provided that the ascocarp remains in 
contact with a film of water (Gadoury et al., 2013). 

EPIDEMIOLOGY OF STRAWBERRY 
POWDERY MILDEW

Environmental factors influencing the disease

Primary infections

The role and quantitative contribution of chasmoth-
ecia in initiation of SPM epidemics is not clear, and in 
some regions the asexual stage prevails over the chasmo-
thecia, which are rare or absent (Howard and Albregts, 
1982). This indicates a secondary role of chasmothecia in 
the SPM epidemiology. One possible reason is that geo-
graphically discontinuous distributions of mating types 
may prevent/reduce sexual reproduction (Gadoury et al., 
2010). A second reason could be unsuitable temperatures 
for the ascocarp initiation (Gadoury et al., 2013). Tem-
perature is a key environmental factor influencing asco-
carp formation. 

While the most favourable temperatures for the 
development of chasmothecia are well-documented, the 
conditions for chasmothecium survival during winter, 
and the related viability of ascospores, have been lit-
tle studied. In a 4-year survey carried out in New York 
State and Norway, proportions of chasmothecia contain-
ing viable ascospores (i.e. positively reacting to fluores-
cein diacetate stain) consistently exceeded 80%. In con-
trast, ascospore germination on glass, investigated in 
the last two years of the same experiment, was highly 
variable, ranging from 42% to 98% (Gadoury et al., 2010). 
This variability underscores the need to explore the fac-

tors affecting ascospore germination and infection rates. 
Integration of such data into powdery mildew predictive 
models could increase prediction precision to assist com-
mencement of disease control treatments at the beginning 
of strawberry production seasons. However, quantitative 
estimation of initial inoculum is a challenge for all fore-
casting models that have been developed in other pow-
dery pathosystems (Gubler et al., 1999; Caffi et al., 2011).

Secondary infections

As with the majority of Erysiphales, P. aphanis 
releases conidia mainly during daytime (Blanco et al., 
2004), and conidium release is affected by temperature 
and RH fluctuations. The release of conidia is directly 
correlated with increase in temperature and decrease 
in RH (Blanco et al., 2004). For example, Blanco et al. 
(2004) showed, in a 2-year experiment, that in the first 
year minimum conidium release occurred at 12°C and 
86% RH, and maximum release was at 14°C and 73% 
RH. In the second year release was at 13°C and 82% RH, 
and maximum release was at 18°C and 54% RH.

The quantity of conidia and the timing of their 
release are key for development of SPM epidemics (Wil-
locquet et al., 1998; Van Maanen and Xu, 2003). As for 
other Erysiphales, populations of airborne SPM conidia 
depend on the quantity of infected organs in a crop. For 
example, there is a close correlation between the weekly 
average aerial concentration of conidia (conidia/m3) and 
the weekly average number of diseased leaves and ber-
ries (Blanco et al., 2004; Van der Heyden et al., 2014). As 
the number of conidia in the air and the infected organs 
in a field are closely related, the number of conidia in 
the air and the first visible symptoms on plants are 
also closely related. If promptly recognized, the criti-
cal conidium concentration threshold at which crops 
must be treated could be crucial to avoid field disease 
outbreaks. First SPM symptoms likely to become visible 
after 7-14 d, when the airborne conidium concentration 
captured with an air sampler has recorded more than 
500 conidia m–3 d–1 (Carisse and Bouchard, 2010). 

Because SPM is a wind-borne disease, understand-
ing patterns of conidium dispersal under field conditions 
is important for implementing disease control strategies. 
However, accurate models of pathogen spread over time 
from specific inoculum sources have not been developed, 
although there have been attempts to measure conidium 
dispersal. For example, after 3 d of exposure, the disper-
sal radius from infected plants used as inoculum sources 
was 1.2-1.5 m (Peries, 1962b). The dispersal of conidia 
from an infected source changes according to the envi-
ronment. For example, dispersal is greater under plastic 
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tunnels than in greenhouses (Willocquet et al., 2008), 
and is greater in open fields than in plastic tunnels 
(Carisse et al., 2013a). The hypothesis for these effects is 
that wind is less in greenhouses than in plastic tunnels, 
and less in tunnels than in open fields (Willocquet et al., 
2008; Carisse et al., 2013a). In addition, this may explain 
why SPM dispersal in an open field is difficult to deter-
mine, because dispersal has heterogeneous patterns (Van 
der Heyden et al., 2014).

Agronomic factors influencing the disease

Cropping systems and crop cultivars

In response to growing market demand for straw-
berries, cropping systems have evolved from classical 
field production to highly complex approaches. The need 
to provide high-quality product throughout the year has 
led to progressive replacement of short-day (June-bear-
ing) varieties with day-neutral (or everbearing) varieties, 
that produce fruit for the entire season. Both varieties 
June-bearing and everbearing are susceptible to pow-
dery mildew, but the latter are more exposed to patho-
gen infections during their life cycle in summer (Maas, 
1998). Whereas June-bearing varieties produce fruit 
until late spring, the growing season of day-neutral vari-
eties coincides with optimal conditions for disease devel-
opment in midsummer (Maas, 1998; Blanco et al., 2004; 
Carisse and Bouchard, 2010). Risk of infection is further 
enhanced where June-bearing and day-neutral varie-
ties coexist. There is an overlapping production at the 
beginning of the season of new transplanted day-neutral 
plants with overwintering infected June-bearing varie-
ties, which are sources of inoculum (Fall and Carisse, 
2022). In subtropical regions, to ensure high yields, 
June-bearing varieties are planted in mid-summer for 
the first harvest, in late summer, and, after overwinter-
ing in the field, these crops each produce a second har-
vest in the following late-spring. The day-neutral varie-
ties, on the other hand, are planted in mid-spring for a 
single growing season, that partially overlaps with the 
growing cycle of the June-bearing plants (Carisse and 
Fall, 2021).

As well as high susceptibility of everbearing straw-
berry varieties, the adoption of soilless production on 
raised beds in plastic tunnels or greenhouses gives envi-
ronmental conditions that are conducive to powdery 
mildew (Xiao et al., 2001). Under coverage, SPM is not 
inhibited by rain and/or prolonged leaf wetness, which 
can stop conidium germination and eventually kill 
conidia in open fields. In addition, polyethylene/glass 
shading decreases sunlight intensity, favouring powdery 

mildew development because these pathogens are strong-
ly photosensitive (Amsalem et al., 2006; Elad et al., 2007).

Plant water stress

Effects of plant water stress on P. aphanis infec-
tions has not been extensively studied, although for 
other powdery mildews host water stress reduces hyphal 
growth, slowing colonisation of new tissues, and also 
disrupts conidiation (Ayres and Woolacott, 1980; Caesar 
and Clerk, 1985). Xu et al. (2013) and Rossi et al (2020) 
showed positive correlations among plant hydration, dis-
ease susceptibility, and pathogen fitness. For example, 21 
d after inoculation, water stressed plants showed slight 
reductions in disease severity on abaxial leaf surfaces 
compared to the well-hydrated plants (Rossi et al., 2020). 
Host water stress also affects conidium germination. 
Germination rates differed for conidia collected from 
plants grown at different soil moisture levels. Germina-
tion, assessed on water agar, increased linearly from 0 
to 30% for conidia collected from plants grown in soil 
moisture levels ranging from 0 to approx. 53%.

CONTROL METHODS AND APPROACHES

Fungicides

In the European Union, synthetic fungicides author-
ised for the control of SPM and categorised based on 
their modes of action (Frac Code List, 2022) (Table 1), 
belong to the following groups: hydroxy-(2-amino-) pyri-
midines (A2), succinate dehydrogenase inhibitors (C2), 
quinone outside inhibitors (QoIs; C3), (C5), demethyla-
tion inhibitors (G1), and others with unknown modes of 
action (U). To reduce risks of selecting resistant patho-
gen populations, fungicides with different modes of 
action must be combined in appropriate disease manage-
ment strategies (Palmer and Holmes, 2021). The major-
ity of active substances authorised for the use against P. 
aphanis belong to few mode of action groups, resulting in 
recurrent use of a limited number of products with the 
same modes of action. Some of these fungicides, such 
as the triazoles (demethylation inhibitors) have favoured 
emergence of resistant P. aphanis populations (Sombar-
dier et al., 2010; Palmer and Holmes, 2021).

Among the authorised active ingredients, only sul-
phur has multisite mode of action, which can be used 
to mitigate emergence of fungicide resistant P. aphanis 
populations (Peres and Mertely, 1969). However, 
although sulphur has low mammalian toxicity and has 
a long use history, including in organic farming, this 
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chemical can negatively impact beneficial arthropods 
(Beers et al., 2009).

In addition to selection of resistant pathogen popu-
lations, some compounds, such as the triazoles (dem-
ethylation inhibitors; G1), are posing risks for animals 
and humans (Muñoz-Leoz et al., 2011; Rjiba-Touati et 
al., 2023). Also because of slow environmental degra-
dation of these chemicals (EFSA, 2010), they have been 
associated with detrimental human health consequences, 
including infertility and disruptions in neurobehaviour-
al functioning (Menegola et al., 2006; Zhang et al., 2016).

Bioprotection

There has been increased research to develop alter-
natives to synthesized fungicides. However, intrin-
sic bias often occurs, with tendency to publish posi-
tive results while ignoring the negative outcomes. This 
leaves an important gap in understanding of effective-
ness of these alternatives, which may result increased 
expectation for efficacious products. When applied in 
the field, these products fail to control target diseases, 
either due to overestimation of efficacy or to lack of 
knowledge of factors that may reduce their effects, such 
as optimal concentrations, and timing and frequency 
of applications. This underlines the importance con-
sidering negative results which could contribute real-
istic evaluations. There are also discrepancies between 
published research and results obtained by the indus-
try. While a range of commercial products have been 
officially authorised for the use in SPM control (and 

are therefore of proven efficacy), this often lacks robust 
confirmation in the scientific literature. Industry opera-
tors may not disclose efficacy data, which hinders the 
advancement of research efforts. This lack of informa-
tion impedes collective progress in SPM control and 
raises concerns about the “robustness” of the effective-
ness of these active substances.

Several categories of alternatives to fungicides have 
been defined. Although their analysis is beyond the 
scope of the present review, the suggestion of Stenberg 
et al. (2021) is relevant: “bioprotection can be used as an 
excellent umbrella term that encompasses protection pro-
vided by either living agents or non-living substances of 
biological origin […] with low impact on human health 
and the environment’. In the present review we divide 
the alternatives into groups based on their nature and/
or origins.

Inorganic salts

Several inorganic salts have been tested for efficacy 
in suppressing fungal pathogens, but when consider-
ing powdery mildews, potassium and sodium bicarbo-
nates (Homma et al., 1981; Crisp et al., 2006a), potas-
sium silicate (Menzies et al., 2019) and potassium phos-
phate (Reuveni et al., 1995; Reuveni and Reuveni, 1998) 
have been the most investigated. For SPM, there are 
fewer reports, and only potassium and sodium bicarbo-
nates and silicates have been sufficiently assessed. For 
example, potassium and sodium bicarbonates (4 g L–1) 
showed promising efficacy, in leaf bioassays, for control 
of P. aphanis, with, respectively, 87% and 84% reductions 
in hyphal biomass (Pertot et al., 2007). The promising 
laboratory results were not fully confirmed in the field, 
where prolonged applications of a combination of potas-
sium bicarbonate and potassium silicate at 6 g L–1 gave 
85% disease incidence compared to 88% for untreated 
controls (Gomez et al., 2017). A much greater rate of 
potassium bicarbonate (20 g L–1), if integrated with fun-
gicides, has given promising outcomes. Two applications 
of potassium bicarbonate were as effective as the sys-
temic fungicide myclobutanil, suggesting a potential role 
for potassium bicarbonate in integrated disease manage-
ment (Dodgson, 2007). Comparative studies assessing 
the effectiveness of inorganic salts versus conventional 
fungicides or their combinations, could improve their 
application strategies. Even if mode of action has yet 
to be fully defined (Deliopoulos et al., 2010), activity of 
bicarbonates likely occurs when the salts come into con-
tact with the pathogen. This interaction inhibits sporula-
tion and fungal development due to detrimental osmotic 
effects of K+ imbalance, spore dehydration and increases 

Table 1. Fungicides authorised for use against strawberry powdery 
mildew in at least one European Union Member State (EU pesticide 
database, April 2023). The active ingredients are grouped according 
to the FRAC Code list, 2022.

Active substance Target Code Group name

Bupirimate A2 Hydroxy- (2-amino-) pyrimidines
Boscalid C2 Succinatedehydrogenase inhibitors
Cyflufenamid U6 Phenylacetamides
Difenoconazole G1 Demethylation inhibitors
Fluopyram C2 Succinatedehydrogenase inhibitors
Fluxapyroxad C2 Succinatedehydrogenase inhibitor

Meptyldinocap C5 Uncouplers of oxidative 
phosphorylation

Penconazole G1 Demethylation inhibitors
Pyraclostrobin C3 Quinone outside inhibitors
Tetraconazole G1 Demethylation inhibitors
Trifloxystrobin C3 Quinone outside inhibitors
Sulphur M02 Inorganic
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in leaf surface pH (Ziv and Zitter, 1992; Kettlewell et al., 
2000; Pertot et al., 2007). Bicarbonates need frequent 
applications to be effective, as is emphasized in label 
guidelines of commercial products (e.g., Karma 85, Cer-
tis Europe), that suggest 7-10 d interval between treat-
ments. However, these repetitive treatments can possibly 
cause residual deposits and phytotoxicity.

Potassium silicate is another inorganic salt that has 
been extensively tested against SPM. Silicon (Si) is asso-
ciated with beneficial effects on mechanical and physi-
ological characteristics of plants, depending on whether 
it is applied to roots or to canopies. For example, potas-
sium silicate 100 mg L-1 applied once to strawberry roots 
in hydroponics decreased disease severity by 17% (Kanto 
et al., 2004). This compound at 500 mg L-1, applied at 
an average of 0.86 g m−2 d−1 during cultivation (Kanto 
et al., 2006) also suppressed SPM in soil by up to 15%. 
Kanto et al. (2007) demonstrated that hydroponic Si fer-
tilization decreased disease severity and reduced fungal 
fitness. This was shown by reductions in germination 
of conidia collected from Si-treated plants compared to 
the controls. Germination rates were 49.7% for Si-treated 
plants and 67.2% for the controls. This protective role of 
root Si fertilization was attributed to Si accumulation 
in leaves, which hinders cuticle penetration by patho-
gens (Seal et al., 2018). This theory was supported by 
identification of Si transporters in strawberries, provid-
ing genetic evidence that strawberry is receptive for Si 
fertilisation (Ouellette et al., 2017). However, silicic acid 
is the only soluble form that plants can absorb to suc-
cessfully store Si in leaves and decrease disease severity 
(Ouellette et al., 2017). Under a daily potassium silicate 
fertilization (1.7 mM Si) leaf accumulation can reach up 
to 3% Si on a dry weight basis (Ouellette et al., 2017). Sil-
icon is also as an elicitor of plant resistance, and induces 
several defence-related reactions, such as the over-pro-
duction of enzymes (e.g., polyphenoloxidase and per-
oxidase) and antifungal compounds (e.g., flavonoids and 
phytoalexins) (Wang et al., 2017).

Elicitation of resistance to SPM in strawberry has 
yet to be assessed. Although potassium silicate is prom-
ising when applied to plant roots, when applied to leaves 
this compound was less effective (Palmer et al., 2006; 
Jin, 2015; Gomez et al., 2017). Root applications influ-
ence various aspects of plant physiology and defence 
mechanisms, which may have greater disease suppres-
sion effects than foliar applications. The mode of action 
of foliar-applied potassium silicate for reducing powdery 
mildew has not been determined, but formation of phys-
ical barriers and osmotic effects on leaf surfaces may 
contribute to disease suppression (Bowen et al., 1992; 
Rodrigues et al., 2009).

Plant extracts

Plant extracts are complex mixtures containing bio-
active compounds, that are obtained by physical pro-
cesses such as distillation and extractions of/from leaves, 
stems, of fruit (SANCO, 2012). In the EU, plant extracts 
used as plant protection products are authorised accord-
ing to Regulation (EC) No 1107/2009 (EU, 2009). Several 
plant extracts have shown promising results for sup-
pressing powdery mildews, with various mechanisms 
including inhibition of spore germination and myce-
lium growth, and disrupting fungal reproductive struc-
tures (Marei et al., 2012; Silva et al., 2020). Among plant 
extracts, essential oils and aqueous extracts are promis-
ing groups for disease management.

Essential oils are concentrated hydrophobic liq-
uids extracted from plants, by distillation with water or 
steam, mechanical processes (e.g., pressing or grinding), 
or dry distillation (ISO 9235, 2021). These oils contain 
volatile compounds (ISO 9235, 2021) that have diverse 
biological activities, including antifungal properties 
(Cavanagh, 2007; Ferraz et al., 2022). Among these, oils 
from Thymus spp. L., Mentha spp. L., Melaleuca alterni-
folia (Maiden and Betche) Cheel (tea tree oil) and Citrus 
sinensis (L.) Osbeck (orange oil) have been tested against 
several powdery mildew species (Reuveni et al., 2020; 
Mostafa et al., 2021; Frem et al., 2022), but limited infor-
mation is available for SPM.

Orange oil is the only essential oil authorized in the 
EU and in at least one European Union Member State 
for control of SPM (European Pesticide Database, 2023). 
However, only a few papers report efficacy of orange 
oil against SPM (Prodorutti et al., 2019). For example, 
orange oil, if applied weekly, was as effective against 
SPM as most conventional fungicides. Disease sever-
ity was reduced from 81% (untreated control) to 14% by 
penconazole and 19% by orange oil (Prodorutti et al., 
2019). The active component of orange oil is limonene, a 
volatile compound that disrupts fungal cell membranes 
and inhibits spore germination (Marei et al., 2012; Sil-
va et al., 2020). Beside antifungal properties, orange oil 
has insecticidal properties, as is common with essential 
oils in general (Isman, 2020), possibly affecting ben-
eficial insects and disrupting ecosystem balance. This 
highlights the importance of holistic pest management 
strategies that target pathogens but also do not generally 
impact the field environment.

Aqueous plant extracts may include secondary 
metabolites, phenolic compounds and enzymes that can 
directly affect pathogen physiology and growth (Tavar-
es et al., 2021). For example, Equisetum arvense L., and 
Salix spp. L. cortex extracts can control some powdery 
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mildew species, although with slight efficacy (March-
and et al., 2014; Frem et al., 2022). Among plant aqueous 
extracts, those from E. arvense are authorised in the EU 
as basic substances and in at least one European Union 
Member State for control of SPM (EU Pesticide Data-
base, 2023). Although the mode of action is unknown, 
silicon as a major component of E. arvense reduces 
effects of excessive moisture on leaves and inhibits fun-
gal growth. This involves creation of physical barriers of 
Si on leaf surfaces combined with osmotic effects that 
absorb excessive moisture favouring fungal proliferation 
(Bowen et al., 1992; Rodrigues et al., 2009).

Seaweed extracts

The first report of seaweed against powdery mil-
dews was that of Stephenson (1966), and research on 
these extracts has expanded (Li et al., 2020; Elagamey et 
al., 2023). Abundant and common brown seaweeds such 
as Ascophyllum nodosum (L.) Le Jolis, Ecklonia maxima 
(Osbeck) Papenfuss and Laminaria digitata (Hudson) J.V. 
Lamouroux, are the most frequently used for their plant 
growth promoting activities (Khan et al., 2009). In the EU, 
most seaweed extracts used in agriculture are considered 
as fertilizers (EU, 2019). However, seaweeds have also been 
acknowledged as potential alternatives for plant protec-
tion products, due to their capacity to enhance plant dis-
ease resistance by interacting with secondary metabolism 
and defence-related processes (EIBC, 2012; OECD, 2017). 
For example, laminarin, a storage glucan extracted from L. 
digitata, is an authorised active substance for SPM in the 
EU, with demonstrated positive results in laboratory and 
field tests. In leaf assays, laminarin decreased P. aphanis 
conidium germination by 75% (Bajpai et al., 2019), while 
in greenhouse tests laminarin with a reduced chemical 
dosage, gave 1.7% SPM infestation, which was similar to 
the complete chemical scheme (Melis et al., 2017).

The laminarin mode of action against SPM not been 
investigated. However, its plant protection activity has 
been studied for several plant species and involves sev-
eral key elements. The compound elicits production of 
defence compounds, such as phytoalexins (Aziz et al., 
2003), and synthesis of pathogenesis-related proteins 
(Tziros et al., 2021). It may also directly interact with the 
pathogen, reducing conidium germination and fungal 
growth (Hu et al., 2012; de Borba et al., 2022).

Substances from animal origins

Cow’s milk and whey have been studied for their 
plant growth-promoting activity (Sharratt et al., 1959; 

Ahmed Hashim, 2019), and as alternatives to synthetic 
fungicides. Fresh cow’s milk, at concentrations greater 
than 10% in water, applied twice a week, was as effective 
(10% severity) as fenarimol and benomyl (9%) for reduce 
powdery mildew of zucchini squash, compared to the 
water control (56% severity), after 1 month since treat-
ment (Bettiol, 1999). Similarly, 10% whey applied twice 
a week powdery mildew severity (caused by Podosphaera 
xanthii (Castagne) U. Braun and Shishkoff) by 71-94% in 
cucumber and 81-90% in zucchini, compared to experi-
mental controls (Bettiol et al., 2008). Cow’s milk and 
whey are already authorized in the EU as basic substanc-
es and in at least one European Union Member State 
for use against several powdery mildews (EU Pesticide 
Database, 2023).

Effects of milk and whey against powdery mildews 
may involve more than one mode of action. Electron spin 
resonance and scanning electron microscopy showed that 
fresh milk and whey applied to grape leaves infected by 
Erysiphe necator Schwein. led to the collapse of fungal 
hyphae and conidia within 24 h after treatments, likely 
because of release of free radicals, fatty acids, and lacto-
ferrin by the milk microbial community (Crisp et al., 
2006b). Despite high efficacy, the European Food Safety 
Authority has raised concerns about potential food aller-
gies associated with lactose and milk proteins derived 
from the use of whey for plant protection (SANTE, 2021). 
Consequently, its application is restricted in the EU only 
to approved crops during plant growth stages devoid of 
fruit (EU Pesticides Database, 2023). Without additional 
safety data, milk/whey for SPM control could be author-
ized only in the EU at the beginning of crop growth, 
when disease outbreaks are commonly rare, making the 
alternative of little use for growers.

Chitin and chitin derivatives

Chitin, an amino polysaccharide, is a structural sup-
porting components of fungal cell walls, and insect, nem-
atode, and crustacean exoskeletons (Latgè, 2007). Chitin 
and chitin oligosaccharides have been assessed as plant 
protection agents (Li et al., 2020), because they are envi-
ronmentally friendly and highly degradable (Yeul and 
Rayalu, 2013). These compounds have antimicrobial activ-
ities and elicit host defence mechanisms. When recog-
nized by plant cells, they trigger several immune respons-
es (Xing et al., 2015; Li et al., 2020), including lignification 
and cytoplasmic acidification (Barber et al., 1989).

Chitosan, the N-deacetylated derivative of chitin, 
is the most extensively studied among chitin fragments. 
Chitosan is a family of molecules with different sizes 
and compositions, so it has ductile chemical and physi-
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cal properties (Aranaz et al., 2021). Chitosan stimulates 
plant defences and growth (Chakraborty et al., 2020), 
but also has filmogenic and fungicide properties against 
spore and mycelium growth (Martínez-Camacho et al., 
2010; Meng et al., 2010). Chitosan is effective against sev-
eral powdery mildew pathogens. Sphaerotheca fuliginea 
(Schltdl.) Pollacci on cucumber cotyledons in Petri dishes 
was inhibited by one preventive treatment of 2.5% chi-
tosan (Moret and Muñoz, 2009). Similarly, a weekly foliar 
treatment of 0.5% chitosan on cutting roses decreased 
infections by Podosphaera pannosa (Wallr.) de Bary 
(Wulf et al., 2023). However, field studies with chitosan 
suggest it should be applied when pathogen levels are low 
(Wulf et al., 2023). Although chitosan has been author-
ised in the EU as a basic substance and in at least one 
European Union member state for SPM control, there are 
no reports of efficacy in scientific literature.

Chitosan fragments known as chitooligosaccharides 
(COS) have been tested in combination with pectin (oli-
gogalacturonides, OGA) as elicitors of plant resistance 
in a formulation referred to as COS-OGA (Ferrari et al., 
2013). Because of proven efficacy (van Aubel et al., 2014), 
COS-OGA has been authorised in the EU for the use 
against several powdery mildews, including SPM. Howev-
er, no efficacy data are available for chitosan against SPM.

Microbial biocontrol agents

Microbial biocontrol agents (BCAs) are microor-
ganisms that act against phytopathogens with vari-
ous mechanisms (e.g., competition for resources, anti-
biosis, hyperparasitism, and induced resistance), and 
can control plant diseases (Köhl, et al., 2019). Several 
BCAs with different modes of action have been studied 
against SPM: Ampelomyces quisqualis Ces., T. harzi-
anum Rifai, and Bacillus spp. Cohn are the most investi-
gated. Ampelomyces quisqualis is a hyperparasite of sev-
eral powdery mildew fungi (Sundheim, 1982; Falk et al., 
1995). Trichoderma spp. strains are mycoparasites that 
can produce antifungal metabolites, and can induce host 
resistance (Vinale et al., 2008). Bacillus spp. produce 
many antimicrobial compounds and can induce resist-
ance on plants (Pérez-García et al., 2011). The microbes 
commonly have good efficacy when applied under con-
trolled laboratory/greenhouse conditions, but their effi-
cacy decreases under commercial field conditions. For 
example, in vitro, A. quisqualis AQ10 and T. harzianum 
T39 decreased SPM hyphal biomass by, respectively, 
46 and 74%, compared to untreated controls, but these 
organisms were not as effective as B. amyloliquefa-
ciens (formerly B. subtilis) QST 713 Cohn that achieved 
results that were similar to those from to chemical pes-

ticides (99% inhibition of hyphal biomass) (Pertot et al., 
2007). However, under field conditions, the exclusive 
use of these microorganisms throughout crop growing 
seasons without integrating fungicides has been proven 
insufficient. Contrary to bioassay results, T. harzianum 
T39, in an integrated programme, had the greater activ-
ity than A. quisqualis. The average fruit incidence in the 
two locations was 25% for T. harzianum and 44% for A. 
quisqualis (Pertot et al., 2008). In contrast, their efficacy 
against leaf severity was variable across locations. Cur-
rently, A. quisqualis AQ10 and B. amyloliquefaciens QST 
713 are authorized in the EU and in at least one Euro-
pean Union Member State for SPM control (EU Pesticide 
Database, 2023).

Inhibition of SPM conidiation (80.7% reduction) 
on leaf discs was also obtained combining B. subti-
lis ABiTEP GmbH FZB24 and Metarhizium anisopliae 
(Metschn.) Sorokīn (Sylla et al., 2013). However, no 
studies have reported assessments under field condi-
tions. Bacillus pumilus Meyer and Gottheil QST2808 is 
also authorized in the EU and in at least one European 
Union Member State for SPM control (EU Pesticide 
Database, 2023). This microorganism, under field condi-
tions, demonstrated high consistency against SPM com-
pared to other tested BCAs. It showed better efficacy 
compared to a 14 d fungicide application regime, but not 
in comparison with a 7 d fungicide application schedule 
(Berrie and Xu, 2021). No data are available for efficacy 
of B. pumilus QST 2808 against P. aphanis under con-
trolled conditions.

Understanding the epidemiology of SPM disease 
and the environmental conditions for survival and/or 
optimal growth of BCAs in the field are considered key 
factors for successful control strategies (Pertot et al., 
2008). Variability in BCA efficacy under field condi-
tions often stems from misuse of these living organisms, 
treating them as if they were synthetic fungicides, so 
use of BCAs is more complex than for chemical agents 
(Legein et al., 2020). Applying BCAs at specific stages of 
the pathogen cycle could be more strategic than frequent 
treatments during crop growth seasons, when envi-
ronmental conditions may not be favourable for BCA 
growth. For example, A. quisqualis AQ10, when applied 
at the end of a crop growth season under suitable tem-
perature and RH conditions can reduce inoculum for 
the following growing season. Ensuring BCA efficacy 
also includes assessing compatibility with conventional 
fungicides when developing integrated pest management 
programmes. For example, A. quisqualis is incompatible 
with commonly used chemicals against SPM, including 
penconazole, pyrimethanil, tebuconazole, cyprodinil, 
fosetyl-aluminium, azoxystrobin, and metalaxyl (Roberti 
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et al., 2002). Research on biocontrol agents has a long 
history, but there has been little recent research focus-
ing on SPM. The research community may have recog-
nized that the previous approaches are not productive 
for addressing this issue.

Fungivorous biocontrol agents

While microbial BCAs have predominantly domi-
nated biocontrol efforts against powdery mildews, fun-
givorous insect biocontrol agents, have recently emerged 
as potential contenders (IBMA, 2022). Pijnakker et al, 
(2022) reported that the mycophagous mite Pronema-
tus ubiquitus McGregor gave promising results against 
tomato powdery mildew (Oidium neolycopersici L. Kiss), 
by decreasing disease severity to 4%, compared to 32% 
for untreated controls, 8 weeks after mite release. The 
mites were in greater numbers where powdery mildew 
was severe. In addition, Pijnakker et al. (2022) sug-
gested that for effective disease control this mite must 
be released preventatively. For SPM control, P. ubiqui-
tous has not been assessed scientifically, but is currently 
being investigated by the industry, and is at first stages 
of market development (IBMA, 2022). Although the 
precise contribution of conidium nutrition and plant-
mediated effects on powdery mildew resistance, remain 
unclear, there is potential for determining these interac-
tions. It is also important to develop understanding of 
whether P. ubiquitus is present in each territory of inves-
tigation, as potential field releases of alien mites may not 
be permitted (Heimpel and Cock, 2018).

Other control means

Crop canopy management

Plant canopies have important roles in the develop-
ment of powdery mildew diseases, which are favoured 
by host vigour and high plant density in many host spe-
cies (Jarvis et al., 2002). Dense canopies create micro-
climates (i.e., high humidity, low ventilation, low light 
penetration) that favour pathogen growth (Aust and 
Hoyningen-Huene, 1986; Keller et al., 2003), and suitable 
canopy management can reduce infection risks. Direct 
effects of canopy management on SPM control have not 
been validated in robust research. However, some stud-
ies indicate positive correlations between SPM sever-
ity and canopy density. For example, breeding for SPM 
resistance is leading to the selection of cultivars with 
reduced canopy densities due to consistent genetic cor-
relations observed between host susceptibility and high 

canopy density (Kennedy et al., 2014). Although research 
on SPM is lacking, studies on other powdery mildews 
suggest practices that can be also tested for strawberry. 
For powdery mildew of hop (P. macularis) removal of 
highly susceptible climbing shoots and reductions in 
canopy density improved disease management and fun-
gicide distribution (Gent et al., 2012; Gent et al., 2016). 
In grapevine, vertical trellis system and spring prun-
ing reduced powdery mildew by up to 32% (Austin and 
Wilcox, 2011). Canopy thinning in strawberry crops has 
been assessed for yield optimization (Sønsteby et al., 
2021), but has not been comprehensively investigated for 
SPM management. Similarly, removal of highly suscepti-
ble strawberry runners could reduce risks of SPM (Eccel 
et al., 2010), but this is yet to be precisely quantified.

Host nutrition

Balanced mineral nutrition is important for plant 
self defense, and when specific elements are either 
deficient or over-abundant, plants can become vulner-
able to particular pathogens (Huber and Haneklaus, 
2007). High nitrogen inputs have been associated 
with increased risk of fungal diseases. For SPM under 
experimental conditions, Xu et al. (2013) reported a 
54% increase of nitrogen above fertigation standard 
(from 128 to 197 mg L−1) applied from the beginning 
of bloom resulted in an 8% increase in disease sever-
ity. For deficiencies in the other macro- and micro-ele-
ments, there are no published reports relating to SPM 
susceptibility.

Some soil amendments may enhance plant defence 
against biotic stresses. For example, biochar can induce 
plant resistance by improving chemical and physical soil 
properties (e.g., water holding capacity, nutrient avail-
ability, soil texture), and by enhancing soil microbial 
activity such as plant growth promoting rhizobacteria 
(Schmidt et al., 2021). For strawberry, incorporation of 
3% biochar into potting mixture resulted in high expres-
sion of defence-related genes and a related decrease of 
SMP (Harel et al., 2012).

Overhead irrigation

Although P. aphanis develops well under high RH 
(Amsalem et al., 2006), free water prevents conidium 
germination (Peries, 1962a). Water sprays on plant cano-
pies can control SPM but could also promote pathogenic 
fungi that are favoured by a wet canopy, such as Botry-
tis cinerea Pers. and Colletotrichum spp. Corda. However, 
since micro-sprinklers are commonly used to spray water 
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to reduce high temperature stress during summer (Liu et 
al., 2021), well-balanced overhead irrigation can be used 
to reduce SPM. For example, application of pulsed water 
mist has shown promising results: applications of 660 
mL min-1 for 1 min four times a day was as effective as 
standard fungicide treatments, in high tunnel and open 
field conditions (Asalf et al., 2021). Overhead irrigation 
also reduces SPM severity when applied for long periods. 
For example, after 67 d of mist treatments, severity of 
powdery mildew decreased from 80 to 17% in high tun-
nels and from 73 to 22% in the open field, compared to 
untreated controls. Application of pulsed misting for 1 
min four times a day did not increase in B. cinerea infec-
tions, indicating that if water was correctly applied, grey 
mould could be reduced (Asalf et al., 2021). Although 
overhead irrigation reduced the disease, procedures (i.e., 
frequency, volume, application methods) were not fully 
explored for maximizing efficacy.

Fungicide spray equipment

Spray equipment can also affect pest control (Ebert 
and Downer, 2006), and this is particularly the case for 
SPM because applied fungicide must reach the under-
sides of leaves, lower leaves and the fruit. This is par-
ticularly difficult when strawberry plants develop dense 
canopies. Low technology devices ( i.e. hand-held and 
cannon sprayers) may not provide adequate and even 
fungicide distribution (Balsari et al., 2008; Bondesan et 
al., 2015). These devices are widely used in strawberry 
high-tunnels in Mediterranean regions (e.g., Italy and 
Spain) (Sánchez-Hermosilla et al., 2012; Cerruto et al., 
2018), because they are inexpensive and easily adaptable 
to horticultural crops. Cannon sprayers also distribute 
plant protection agents at high pressure (>20 bar) and 
rates (1500–2500 L ha-1), producing spray drift that can 
contaminate soil and may increase operator exposure 
(Sánchez-Hermosilla et al., 2011, 2012; Cerruto et al., 
2018). In technologically advanced greenhouses, sprayers 
with increased efficiency, such as vertical booms (Braek-
man et al., 2010), or autonomous pesticide spraying 
robots (Abanay et al., 2022), have been associated with 
improved better canopy coverage and reduced applica-
tion volumes compared with cannon and hand-held 
sprayers (Braekman et al., 2010).

Ultraviolet light

Light is an important factor for minimising fungal 
development and stress responses in plants, and ultravi-
olet light (UV) can suppress powdery mildews in several 

crop plant hosts (Gadoury et al., 1992; Suthaparan et al., 
2012; Pate et al., 2020). For strawberry, the application of 
UV once or twice per week during night-time (60 s fol-
lowed by 4 h dark period) resulted in up to 90% reduc-
tion of SPM incidence and severity compared to the 
controls (Janisiewicz et al., 2016). However, UV-based 
methodology is still at early commercial development, 
and has various challenges. For example, UV technology 
is not adaptable to diverse rural growing systems, such 
as high-tunnels and open fields. In some cases, machines 
may not be able to access tunnels and/or move between 
benchtop rows. Application parameters (UV dose, light 
exposure durations, treatment frequencies) are not yet 
optimised and standardised. A range of doses spanning 
from 30 to 200 J m2, administered once or twice per 
week, or at 10 d intervals, have been assessed (Van Delm 
et al., 2014; Janisiewicz et al., 2016; Suthaparan et al., 
2012; Ledermann et al., 2021), without determining the 
best application schedule. Antifungal effects also only 
occur only irradiated host surfaces and UV light poorly 
penetrates crop canopies, and uniform light distribution 
is difficult in multi-layered crop canopies, giving lim-
ited SPM control on abaxial leaf surfaces (Delorme et 
al., 2020). Implementing UV light technologies is expen-
sive: beside the initial costs that include purchase of UV 
equipment, installation, and the necessary modifications 
to the existing infrastructure, there are extra costs for 
electricity and frequent replacement of UV lamps (Rea 
et al., 2022). For these reasons, growers must carry out 
careful cost/benefit analyses when evaluating the feasi-
bility of UV light for SPM control.

Ozone

Ozone (O3) has antimicrobial activity and is rapidly 
decomposed in the environment. In the food industry 
O3 is used to safely disinfect food, and as postharvest 
treatments to increase shelf-life of fruit and vegetables 
(Tzortzakis and Chrysargyris, 2017). For plant protec-
tion, O3 has been tested against powdery mildews of sev-
eral horticultural crops under controlled conditions, both 
as fumigant and as ozonated water (Hibben and Taylor, 
1975; Rusch and Laurence, 1993; Khan and Khan, 1999; 
Fujiwara and Fujii, 2002; He et al., 2015). Effects of O3 on 
powdery mildews and plants depends on concentration: 
at too low levels powdery mildews may be not harmed, 
while at too high levels host phytotoxicity may occur. For 
example, increasing concentrations of gaseous O3 (from 
50 to 200 ppb) applied intermittently (7 h d-1 for 7 d) on 
cucumber plants in closed-top chambers, decreased pow-
dery mildew colonization from 70 to 23%. In addition, 
50 ppb of O3 increased the germination conidia collect-
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ed from treated plants, while conidia exposed to greater 
concentrations (100 and 200 ppb) were smaller and had 
reduced germination compared to untreated controls. 
High O3 concentrations (i.e., 200 ppb) can cause foliar 
necroses (Khan and Khan, 1999). Ozonated water gives 
similar results (Fujiwara and Fujii, 2002). Although some 
growers currently use ozonated water, its efficacy against 
SPM has not yet been assessed (Fujiwara and Fujii, 2004). 
Devices to spray ozonated water are available (e.g., MM-
Biozono, MMSpray, Italy; Mowat, Gr Gamberini, Italy), 
and are also tailored for strawberry production (e.g., 
GZO-D, ZonoSistem, Spain), but no definitive data are 
available (e.g. minimum exposure times, effective dosage) 
(Fujiwara and Fujii, 2004).

Genetic resistance to strawberry powdery mildew

Breeding for resistant varieties is an effective dis-
ease management strategy, provided that plants bear 
high-quality fruit, are well-suited to local cultivation 
regions and have adequate and long-lasting tolerance or 
resistance to pathogens. Resistance in strawberry to P. 
aphanis has low durability and is variable under differ-
ent environmental conditions (Menzel, 2022). Whether 
this behaviour is related to unstable resistance genes or 
different virulence of SPM strains is unknown (Nelson 
et al., 1995). Several genes may control levels of infec-
tion, and under natural conditions inoculum density 
varies leading to differential elicitation of systemic resist-
ance (Kennedy et al., 2013). In a plant breeding pro-
gramme, beside inoculum level, other variables (e.g., 
climatic conditions, growing systems, time of season) 
may influence strawberry responses to pathogens, mak-
ing comparison of results obtained in different breeding 
programmes challenging. Defining the optimum breed-
ing methodology and conditions for development of 
resistant strawberry cultivars could be helpful (Menzel, 
2022). Marker-assisted selection can accelerate cultivar 
improvement, but SPM resistance in strawberry is prob-
ably regulated by complex genetics with several additive 
genes involved. To date, several genes have been asso-
ciated with SPM resistance (Menzel, 2022), including 
nine QTL genes (Cockerton et al., 2018; Sargent et al., 
2019), seven TGA genes (Feng et al., 2020a) and 68 MLO 
sequences (Tapia et al., 2021).

Predictive models and Decision Support Systems

Reductions of fungicide use can also be achieved by 
optimizing, and thus reducing, numbers of spray appli-
cations, and predictive models and Decision Support 

Systems (DSSs) can help growers identify optimum tim-
ing of pesticide applications. Predictive models are based 
on empirical data collected from the field and/or under 
controlled conditions, and forecast disease development 
(Van Maanen and Xu, 2003). DSSs are interactive com-
puter-based systems, which use predictive models, data 
analysis techniques, and recommend/support actions 
for farmers to manage diseases (Sprague and Carlson, 
1982). Both of these tools are useful to schedule fungi-
cide treatments, thereby avoiding unnecessary applica-
tions (Lázaro et al., 2021). For SPM, several predictive 
models (Carisse et al., 2013a, 2013b) and DSSs (Table 
2) have been developed (Gubler et al., 1999; Eccel et 
al., 2010; Bardet and Vibert, 2011; Dodgson et al., 2021; 
Carisse and Fall, 2021; Fall and Carisse, 2022). How-
ever, the developed models, excepting that of Gubler et 
al. (1999), have not been validated in different locations. 
This decreases the reliability of the models, as agricul-
tural conditions can vary widely from one region to 
another. Without validation it is therefore difficult to 
assess model robustness and accuracy in different envi-
ronmental contexts.

Predictive models

Several models, as mentioned in the epidemiologi-
cal section of this review, have been developed in Can-
ada. For example, Carisse et al. (2013a) characterized a 
close relationship between SPM incidence and sever-
ity to define an economic loss threshold for fungicide 
interventions. In another model, Carisse et al. (2013b) 
described a strong positive linear relationship between 
seasonal crop losses, disease severity and daily mean 
airborne conidium concentration, to potentially define a 
severity and airborne conidium concentration threshold 
for fungicide interventions. Carisse and Bouchard (2010) 
defined windows of high leaf and berry susceptibility for 
June-bearing and everbearing strawberry cultivars. 

DSS developed by Carisse and Fall

From these models, Carisse and Fall in 2021, mod-
elled a DSS based on a decision tree forecast (the out-
come of several algorithms that offered a model, follow-
ing a subset of classification rules visualised and exempli-
fied as a tree) (De Ville, 2013). This model forecasts risk 
of infection, firstly from airborne inoculum concentra-
tion and number of susceptible leaves, and then using 
mean RH, mean daily number of hours at temperature 
between 18 and 30°C, and mean daily number of hours 
at saturation vapour pressure between 10 and 25 mmHg 
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during the previous 6 d. Carisse and Fall (2021) noted 
that the main characteristic of their prediction system 
was understanding that groups of variables can affect 
SPM e development, and that different combinations of 
these variables can result in similar disease severities. For 
example, low inoculum amounts and a limited number 
of susceptible leaves, but conducive weather, may yield 
the similar severities as scenarios of high inoculum, few 
susceptible leaves and less favourable weather conditions. 
The factor potentially hindering use of the model could 
be detection of airborne conidium concentrations, that 
Carisse and Fall (2021) suggested analysing manually, 
twice weekly using microscopy, for each strawberry field. 

DSS developed by Fall and Carisse

Fall and Carisse (2022) developed a DSS according 
to a dynamic simulation model, which simulates the 
asexual life cycle of P. aphanis and its related severity. 
This model considers at which rate P. aphanis changes 
growth stage with time, according to weather condi-
tions, simulating daily conidium production and result-
ing disease severity. In the model P. aphanis stages (ini-
tial inoculum, conidium germination dropout popula-
tion, germinated conidia, cumulative proportion of dis-
eased leaf area, secondary inoculum) are regulated and 
influenced by rate variables, such as sporulation rate, 

Table 2. Decision support systems developed for management of strawberry powdery mildew.

Reference Aim Input drivers Output Validation  Treatment reduction Commercial 
application

Dodgson et al. 
(2021) 

Disease 
development 
forecast based on 
the number of hours 
with favourable 
conditions

T°, RH%

Daily risk predicted 
on cumulative 
h of conducive 
conditions, 
recommendation of 
action

2009-2020, under 
tunnels, UK

30% fungicide 
reduction Agri-tech

Bardet and 
Vibert (2011) 

Disease 
development 
forecast based 
on favourable 
conditions for 
fungal stages

T°, RH% and  
rainfall

Graphical 
representation of 
disease progression 
and infection risk in 
4 d period

2006-2007 under 
tunnels and 
glasshouse, 2010 
under tunnels, France

Not available Inoki

Eccel et al. 
(2010) 

Disease 
development 
forecast based 
on weather data, 
growing system, 
agronomic practices, 
host susceptibility. 

T°, RH%, daily 
disease incidence, 
type of sprayer, 
tunnel height, 
overhead 
irrigation, cultivar 
susceptibility, time 
of disease onset, 
time since last 
treatment, presence 
of runners

Daily risk of 
disease outbreak 
and risk forecast 
in the next 3 d, 
recommendation of 
action

2007 under tunnels, 
Italy

60% fungicide 
reduction Not available

Hoffman and 
Gubler (2002)

Ascosporic infection 
and disease 
development 
forecast based on 
whether data

T° and leaf wetness
Treatment interval 
threshold according 
to risk index

2002 in open field, 
California, in 2008 in 
open field, Quebec

40% fungicide 
reduction in 

California, 0% in 
Quebec

Not available

Fall and 
Carisse (2022)

Dynamic simulation 
of inoculum 
load and fungal 
development based 
on weather data

T°, rainfall, RH%, 
plant density, initial 
airborne inoculum 
concentration

Daily SPM severity, 
warning and action 
threshold and 
related crop loss

2006, 2007, 2008, 
2015, 2016 and 2018 
in raised beds open 
field, Quebec 

Not available Not available

Carisse and 
Fall (2021) 

Decision tree 
forecast of infection 
based on weather 
data

Airborne inoculum 
concentration, 
susceptible leaves, 
RH%, T°, vapour 
pressure

Daily infection risk, 
warning 

2015, 2016, 2018 in 
raised beds open field, 
Quebec

Not available Not available
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germination rate, lesion increase rate (defined by alge-
braic equations), that in turn are influenced by interme-
diate variables such as daily temperature, rainfall, RH 
and the number of leaves per plant (35,000 plant ha-1 in 
a 0.91 m row spacing field), estimated on a daily basis. 
The model is based on evidence that in May at least one 
lesion m-2 of strawberry field is sporulating, and the ini-
tial inoculum load in 1 ha of strawberry is assumed to 
be 1,000,000 conidia (Blanco et al., 2004; Carisse et al., 
2013a, 2013b). According to the initial inoculum value, 
the model starts running each day, estimating inocu-
lum load based on weather data and fungal develop-
ment, thus predicting powdery mildew severity and 
related crop loss. According to disease severity, warning 
and action thresholds are simulated on a daily basis. For 
cost-effective management of SPM, crop managers in 
Quebec may tolerate 1% yield losses (warning) but not 
more than 5% losses (action).

UC Davis DSS

In California, a DSS developed by UC Davis (Gubler 
et al., 1999) was another attempt to forecast SPM epi-
demics, assessing risks and action thresholds. This 
model was developed for grape powdery mildew (caused 
by E. necator) and then applied for SPM (Hoffman 
and Gubler, 2002). The model focuses on forecasting 
ascospore infection to refine fungicide application tim-
ing at the start of each cropping season (Gubler et al., 
1999; Hoffman and Gubler, 2002). This model assesses 
ascospore release according to leaf wetness and tem-
perature, considering that at least 12–15 h of continuous 
leaf wetness at 10-15°C average temperatures are neces-
sary for release. After the ascospore infection occurs, the 
model changes into the risk assessment phase, relying 
solely on temperature impacts on pathogen reproductive 
rate. To start an epidemic, the pathogen requires three 
consecutive days with at least 6 h between 21 and 30°C. 
If these conditions are not met, the index resets to zero; 
otherwise, the model initiates estimation of an infec-
tion index (from 0 to 100). Thresholds of action and fre-
quency of intervention depends on risk. If the risk index 
remains low (<30), interval between treatments decreases 
(between 14 and 21 d). If risk index is increases (>60), 
shorter intervals between applications are recommended 
(maximum, 7 d interval). The model was validated in 
2002 under open field conditions, reducing 40% of fun-
gicide treatments, compared to a calendar-based pro-
gramme. However, after several tests in Quebec, the 
model did not accurately predict SPM at the beginning 
of the season, probably due to the wide range of favour-
ing conditions, This resulted in similar numbers of fun-

gicide applications prescribed as for calendar-based 
schedules (Bouchard, 2008).

Safeberry DSS

In Italy, Eccel et al. (2010) modelled the SafeBerry 
DSS, based on forecasted daytime temperatures over 3 
d, and risk factors including daily disease incidence in 
a tunnel, type of sprayer, tunnel height, overhead irriga-
tion, cultivar susceptibility, time of disease onset, time 
since last treatment, and presence of runners. Suitability 
of weather conditions for disease development was cat-
egorised according to day-time temperature as follows: 
low suitability (≤18 or >26°C), medium suitability (18 < 
T° ≤ 20 or 25 < T° ≤ 26°C), and high suitability (20 < 
T° ≤ 25°C). Outputs of this model are daily assessment 
of disease outbreak risk at the daily time/temperature 
during the previous 6 d and forecasted in the next 3 d, 
the favourability of temperature for disease in the next 
3 d, and then a recommendation for action. The model 
includes two action possibilities: either ‘Do not spray 
today’ or ‘Apply as soon as possible’. In the second sce-
nario, a selection of recommended fungicides is provid-
ed, based on their modes of action, risks for pathogen 
resistance development, and timing restrictions prior to 
harvest. With this system in 2007, under tunnel condi-
tions, up to 60% reductions in fungicide treatments were 
obtained.

DSS developed by Bardet and Vibert

In France, Bardet and Vibert (2011) developed a 
DSS that modelled five stages of the P. aphanis life 
cycle (inoculum dispersal, infection, mycelium growth, 
sporulation, and disease progression), as inf luenced 
by meteorological variables of temperature, RH, and 
precipitation. The model was based on evidence that 
conidium germination occurs between 5 and 32°C, 
mycelium growth is interrupted above 35°C, sporula-
tion occurs between 7 and 28°C. and conidium disper-
sal occurs in low humidity conditions. The maximum 
threshold accepted by the model is set at RH <65% over 
a minimum duration of 8 h. At RH >85% for at least 5 
h, germination occurs rapidly. The index risk separately 
considers the conditions favourable for infection, myce-
lium establishment with sporulation, and lesion develop-
ment, and each stage has a 0 to 5 value. For example, 5 
is assigned to infection under favourable conditions for 
the fungus (temperature between 20 and 26°C, and 85% 
< RH < 99%). For strawberry cultivars that are particu-
larly susceptible, the model allows additional risk to be 
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set. The model gives graphical representation of periods 
suitable for pathogen dissemination, infection and myce-
lium growth for a 4 d period. Fungicide treatments can 
appear on the graph provided their application dates 
and effectiveness duration are entered. The model was 
validated with experiments conducted in 2006 and 2007 
under tunnel and glasshouse conditions, and in 2010 
under tunnel conditions. This DSS is available for grow-
ers through the web platform Inoki (Ctifl, 2023).

Strawberry Powdery Mildew Forecasting Model DSS

In the United Kingdom, a DSS implementing 15 
years of historical data was developed by Dodgson et al., 
(2021). The model is based on laboratory and field evi-
dence that P. aphanis, under optimum conditions (>15.5 
and <30°C, 60% RH), takes 144 h (disease conducive 
hours) to complete a cycle from conidium germination 
(6 h) to growth of elongating secondary hyphae and 
sporulation (138 h). The system then extends accord-
ing to weather conditions (15.5°C, the minimum tem-
perature for spore germination; 18°C, the minimum 
temperature for sporulation, at 60% RH). According to 
sensitivity analysis under field conditions, temperature 
is the main factor influencing fungal development and 
sporulation. Other secondary weather parameters with 
lower impacts on the prediction system, such as leaf wet-
ness, were removed to simplify the rules of the forecast. 
Once one cycle is completed, a daily risk is predicted 
and used for guiding fungicide applications. The predic-
tion system uses a ‘traffic light’ colour scheme indication 
to represent the progression of accumulated hours of 
conducive conditions. When 125 accumulated hours are 
reached, the line changes from yellow to red, indicating 
high risk of conidium production. A fungicide should 
normally be applied before the elapsed time reaches 
144 accumulated hours, to prevent P. aphanis sporula-
tion. When a fungicide application is made, the growers 
record this manually in the software, and reset the sys-
tem to zero and the process repeats. Unlike the Carisse 
and Fall (2021) decision tree, the Dodgson et al. (2021) 
model does not essentially require accurate estimation of 
susceptible leaves and airborne inoculum, and these var-
iables are deemed to be limiting. Instead, the Dodgson 
et al. (2021) forecast always assumes a standard presence 
of inoculum, and susceptibility for all crops. To effec-
tively manage powdery mildew, growers are required to 
start each growing season with a clean-up spray treat-
ment, as this was also confirmed by greater infection 
in crop where clean-up spray was neglected. Relying 
on these assumptions and the risk forecast, control of 
powdery mildew was demonstrated with 30% fungicide 

reduction. The model has been validated from 2009 to 
2020 under tunnel conditions. To date, the Dodgson et 
al. (2021) online real-time web-based prediction system 
is used and sold with commercial licencing (Strawberry 
Powdery Mildew Forecasting Model, Agri-tech Service, 
United Kingdom).

New tools for early detection

Early disease detection is often complex and time-
consuming, and for SPM, prompt recognition of the dis-
ease in the field is difficult (Carisse et al., 2013a). Howev-
er, rapid development of advanced agricultural technolo-
gies, such as machine learning and vision, has helped 
capture of disease images, and, therefore, detection of 
pathogen presence and abundance in the field (Liu and 
Wang, 2021). Machine vision-based recognition may 
replace traditional naked eye identification with comput-
ing science. Robust models have recently been developed 
to detect SPM on strawberry leaves with high accuracy 
(>94%) (Shin et al., 2020, 2021).

At research level, analyses of volatile organic com-
pounds released by diseased crops is another poten-
tial machine learning technique for disease detection. 
These compounds are potential biomarkers for warn-
ing and forecasting disease spreading in fields (Li et 
al., 2019). The approach is based on plant emission of 
unique profiles of Volatile Organic Compounds (VOCs) 
when attacked by a pathogen, which differ from profiles 
from undamaged plants, allowing interactive signalling 
with neighbouring plants and release of danger signals. 
Nearby undamaged plants may recognise this novel 
profile and activate physiological changes that enhance 
their readiness to future pathogen attacks (Effah et al., 
2019). For powdery mildew detection, this has only been 
studied for B. graminis, where sensitivity and specificity 
of six wheat VOCs have been identified as possible bio-
markers for disease detection (Hamow et al., 2021). SPM 
identification and detection by VOC analyses has not 
been assessed, although greenhouse-grown strawberry 
plants could be excellent candidates for VOC analyses.

CONCLUSIONS

This review has critically considered the extensive 
research on SPM, attempting to identify knowledge 
gaps that warrant further investigation. Given the simi-
larities of SPM with the other powdery mildews, the 
available data on other species could be used to inspire 
future research. In addition, factors related to grow-
ers’ approaches to plant protection strategies could be 
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considered. For example, natural substances are used as 
supplementary and marginal tools in disease manage-
ment spray programmes, which are still largely based on 
synthetic fungicides. To overcome this problem, data on 
natural substance efficacy under various environmental 
conditions should be generated and made available in 
the public domain. Exploring new more effective appli-
cation methods may also increase farmer confidence on 
alternative products. Natural substances and antagonis-
tic microorganism often have limited field persistence, 
and frequent and/or appropriate timing of applications 
are required. Exploration of solid set spraying systems, 
especially in greenhouses and tunnels, could provide 
valuable new direction for SPM management. Assess-
ment of the impacts of agronomic practices on SPM, 
and validation of SPM forecasting models across diverse 
strawberry-producing regions also deserve research 
effort.

Genomic, transcriptomic, and metabolomic tech-
nologies could provide powerful tools for development 
of innovative plant protection strategies. Although 
promising, biotechnological tools remain underexplored 
for SPM control. These technologies could be useful for 
assisting the breeding for resistant host varieties. For 
example, naturally occurring or experimentally induced 
inactivation and/or mutation of MLO genes (e.g., by 
gene silencing and genome editing) may provide strong 
and long-lasting immunity/resistance to the fungus 
(Wan et al., 2020). 

Transcriptomics and metabolomics can offer unique 
approaches for identifying host resistance traits (Castro-
Moretti et al., 2020). When transcriptomic information 
is coupled with metabolomic analyses, plant defence 
mechanisms can be better understood (Wink, 1988), and 
this knowledge could guide targeted interventions. For 
example, metabolomics can guide selection or breeding 
of plant cultivars with increased levels of defence mole-
cules. For example, SPM infections influence strawberry 
plant metabolism (Duan et al., 2022): alongside phenols, 
ten chitinases are upregulated in infected plants, indicat-
ing the role of chitinase in reaction to P. aphanis (Duan 
et al., 2022). For example, determining substances that 
can mimic pathogen effects on strawberry chitinase 
overexpression, or identifying cultivars that are can 
further overexpress these enzymes, could result in new 
tools for disease management, as has been demonstrated 
by some reported attempts (Feng et al., 2020b; Zhang 
et al., 2021; Yin et al., 2022). Alongside overexpres-
sion of plant defence related pathways, gene silencing 
with expression of RNAi constructs against host and/or 
pathogen target genes could be assessed (Capriotti et al., 
2020). Through the utilization of host and/or pathogen 

RNA interference (RNAi), specific pathogen genes could 
be silenced by degrading their messenger RNAs. This 
process can hinder translation of the RNA into proteins, 
thereby disrupting pathogen ability to carry out normal 
biological processes (Zotti et al., 2018). RNAi-based fun-
gicides are at early stages of development, but they have 
already been assessed against grape powdery mildew (E. 
necator), giving up to 64% reduction in conidium pro-
duction compared to experimental controls (McRae et 
al., 2023).

These new biotechnologies, although powerful, may 
be of limited use due to high costs (both for research 
and implementation), and because of existing restric-
tive regulations. Therefore, innovative investments and 
policy interventions are necessary to guarantee sufficient 
knowledge advancements from research on SPM.
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