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Summary. Grapevines require pruning procedures to maintain plant morphology 
and ensure productivity, and these procedures cause wounds that induce physical and 
biological host defence mechanisms. Grapevine tissue reactions to wounding result-
ing from four different pruning methods were assessed. Rapid (immediate) defence 
reactions were detected in 1-year-old canes with preserved basal buds. Formation of 
tyloses (≈ 90% of xylem vessels) was observed 1 month later on canes where the bas-
al buds were maintained and no short stubs were left (i.e. the pruning cuts preserved 
the buds). At 2 months after pruning, lignin was slightly increased in cortical paren-
chyma after pruning of 3-year-old grapevine wood. Neither callose nor suberin pro-
duction was observed in healing wounds, as is known in other fruit or broadleaf trees. 
In 3-year-old canes, fungal hyphae were observed in the non-active wood below the 
pruning cut surfaces. Preliminary observations of desiccation cones within canes con-
firmed that the basal buds preserved the canes from desiccation, after comparing dif-
ferent pruning procedures on canes of the same age. After 9 months, the desiccation 
cones were greater in 3- than 1-year-old wounds.

Keywords.	 Pruning, wood anatomy, tyloses, early tissue defence reactions.

INTRODUCTION

High-quality grapevine production depends on the phytosanitary state 
of vineyards, which includes the management of pruning strategies (Pal-
liotti et al., 2014). Pruning is required to maintain the vine size and shape, 
through control of shoot numbers and positions (Deloire, 2012), and to 
remove necrotic plant parts. Reduction of excessive and tangled shoots leads 
to improved sunlight exposure and air circulation (Palliotti et al., 2014). 
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Adjusting bud numbers also regulates crop produc-
tion (Keller et al., 2005; Keller, 2020), creating a bal-
ance between vegetative growth and grape yields. When 
optimum balance is achieved, grape quality is enhanced 
(Kliewer and Dokoozlian, 2005).

Cane pruning and removal produces wounds, and 
the amount of exposed surface is related to the diam-
eter of the pruning cuts and the pruning method (Dal 
et al., 2008; Dal, 2013). The size of the wounds is related 
to the age of the cane; pruning an older cane (e.g., more 
than 2-years-old) creates larger wounds compared with a 
young cane cut at the same distance from the cane base. 
In canes of the same age, wound size depends on where 
the pruning cut is made relative to the shoot base (Sun 
et al., 2006); wound size is smaller if the cuts are made 
close to the cane apex compared to cuts near the cane 
base. Faúndez-López et al. (2021) and Henderson et al. 
(2021) demonstrated that cutting at distance from cane 
bases exposes wounds to potential airborne pathogens.

In the last 30 years reports of damage due to fungal 
wood pathogens in grapevines, i.e. Grapevine Trunk Dis-
eases (GTDs) (Bertsch et al., 2013; Guérin-Dubrana et al., 
2019; Mondello et al., 2018) have increased, and research 
has shown that wounds are their main infection sites for 
wood pathogens (Úrbez-Torres, 2011; Úrbez-Torres et al., 
2013; Travadon et al., 2015, 2016; Lecomte et al., 2018). 
This has raised concerns about the roles of training sys-
tems and pruning methods, which may increase wood 
exposure to pathogen colonization, infection, and wood 
degradation by GTD pathogens (Sicavac, 2022).

There is little information on grapevine wood his-
tological reactions to pruning, but this could be import-
ant for understanding wound colonization by pathogens. 
Wound sealing reactions in grapevines consist of tyloses 
development in xylem vessels. During each growing sea-
son, tyloses are early tissue responses near the cut sur-
faces, but when plants are dormant, wounds induce gel 
formation that will partially occlude vessels (Sun et al., 
2006, 2008). Tyloses observed in 1-year-old canes pruned 
on active vines appeared under the cut surfaces 1 day 
after pruning, and developed rapidly, occluding the ves-
sels up to 10 mm from the cuts (Sun et al., 2006). Fol-
lowing tyloses occlusion, the regions below the cut sur-
faces showed reduced water flow in vessels, and sap flow 
rate was negatively correlated with increased tyloses that 
limited pathogen entrance and impaired xylem function 
(Zhao et al., 2014). As a result, dehydration from reduced 
water translocation induced formation of necrotic dry 
areas just below the cut surfaces. These areas have been 
described as “desiccation cones” (Faúndez-López et al., 
2021), due to the tapered shapes of the dry wood from 
the cut surfaces to the inner central wood. The desicca-

tion area, with low tissue water content, is a physical bar-
rier discouraging proliferation of invading microorgan-
isms. The extent of the affected regions is variable (Faún-
dez-López et al., 2021), depending on the diameter, age 
or location of the removed part, or the grapevine cultivar 
(Bruez et al., 2022).

In summary, grapevines display specific reactions 
to wounds made during the growing season, consisting 
of tyloses occlusions in xylem vessels and formation of 
‘desiccation cones’, as consequences of natural dehydra-
tion due to vessel deactivation (Faúndez-López et al., 
2021). As well, “summer pruning wounds” (in actively 
growing grapevines) do not induce callus production or 
resin secretion to seal the cut surfaces, as occurs in fruit 
trees (Brown, 1995).

Considerable research and a recent metadata study 
(Rosace et al., 2023) on effects of winter pruning have 
focused on factors that most affect the period of grape-
vine pruning wound susceptibility to fungal colonization, 
especially timing to reduce wound infections. Late prun-
ing may reduce susceptibility to colonization by increas-
ing defence response in relation to pathogen activity 
in spring, based on the occurrence of rain, as has been 
reported in Italy, Spain, and California (Larignon and 
Dubos, 2000; Serra et al., 2008; Rolshausen et al., 2010; 
Úrbez‐Torres and Gubler, 2011; Elena and Luque, 2016).

Histological research is required to investigate 
grapevine reactions in woody tissues to different prun-
ing practices. This could assist selection of effica-
cious techniques for reducing pathogen infections and 
increase host defence reactions, and, therefore, wound 
protection efficacy (Martínez-Diz et al., 2021; Di Mar-
co et al., 2022) to minimize damage and losses follow-
ing infections. As a practice to protect pruning wounds, 
up to now technical operators report that pruning cuts 
made over the basal buds on canes prevent wood necro-
ses, especially if a stub (“legno di rispetto” in Italian, or 
“chicot” in French) is left at each pruning site (Simonit, 
2013). However, no histological observations have been 
made on grapevine tissues react to produce physical bar-
riers or active defence substances (i.e., tannins and phe-
nols; Falsini et al., 2022), that potentially prevent patho-
gen entry and colonization.

The present study focused on the early response to 
pruning wounds in the V. vinifera L. ‘Trebbiano Tos-
cano’, a white grape variety that is widely planted in cen-
tral and southern Italy. This cultivar displays moderate 
to very high susceptibility to the Esca complex of dis-
eases (Mugnai et al., 1999; Andreini et al., 2013; Borgo 
et al., 2016). This study investigated how grapevine tis-
sues reacted during the 9 months after wounding in late 
pruning (March) on 1-year-old canes. The purpose was 
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to consider histological reactions within one host pheno-
logical cycle, without interfering with the possible inter-
fering carry-over eff ects into the following season. Th e 
main parameters compared were removal or retention of 
cane basal buds, and the basal portions of the canes (i.e. 
leaving cane stubs). A preliminary investigation was car-
ried out on the diff erent tissue reactions depending on 
cane age, comparing 1- and 3-year-old canes.

Th e aims of this study were: (i) to examine responses 
in grapevine vessels with tyloses within the fi rst month 
aft er pruning; (ii) to document synthesis of defence com-
pounds at the end of the second month aft er pruning; 
and (iii) to make preliminary observations of desiccation 
areas induced 9 months aft er pruning with four diff erent 
procedures. 

MATERIALS AND METHODS

Th e vineyard

An experiment was conducted between March and 
December 2019, in a vineyard of the Azienda Agrico-
la Montepaldi s.r.l., located in the northern part of the 
Chianti Classico production area of Tuscany (San Cas-
ciano in Val di Pesa, Florence, Italy) (43°39’46.8”N, 
11°09’16.0”E). Th e vineyard has a plant density of 5200 
plants ha-1, the soil is medium textured, and vineyard 
was managed under integrated agricultural practices 
with no artifi cial irrigation. Th e selected vines were V. 
vinifera ‘Trebbiano Toscano’, and were 18-years-old and 
trained to cordons with spur pruning.

Pruning methods, sampling and trial set-up

To obtain information about how wounds react to 
pruning, four diff erent pruning methods were applied to 
grapevines in the trial. Th ese were: i) cuts on 1-year-old 
canes preserving short stubs of lengths twice the their 
diameters, and therefore preserving the basal buds, (des-
ignated 1ySS+BB; Figure 1A); ii) cuts on 1-year-old canes 
taking off  the short stubs but leaving the basal buds 
(1yNoSS+BB; Figure 1B); iii) cuts on 1-year-old canes 
removing short stubs and basal buds (1yNoSS-NoBB; Fig-
ure 1C); and iv) cuts on 3-year-old spurs taking off  the 
short stubs but leaving the basal buds (3yNoSS+BB; Fig-
ure 2). Th e mean diameters of 1-year-old canes were 0.8 
± 0.2 cm (wound area ≈ 0.5 ± 0.2 cm2), and of 3-year-old 
canes were 2.1 ± 0.1 cm (wound area ≈ 3.5 ± 0.3 cm2).

Pruning was carried out in March 2019, at the end 
of the winter season, when the average temperature was 
10.5°C. Samplings were carried out either on the same 

day as pruning (experimental control, T0); or aft er 1 (T1), 
2 (T2), or 9 (T9) months aft er pruning. Th ree replicates 
from different plants (biologically independent) were 
examined at each sampling time (n = 3), following the 
methods described by Battiston et al. (2022). For each of 
the four pruning methods (described above), at T0 and 
T1 the percentages of stem vessels occluded by tyloses 
were recorded, at T2, light microscopy observations of 
histological responses were carried out, and at T9, the 
desiccation areas below the wounds were described.

Histological analyses: sample preparation, chemicals and 
data collection

Histological studies were carried out on transverse 
or longitudinal sections (thickness 30–40 µm) made 

Figure 1. A) Cut on a 1-year-old grapevine cane preserving a short 
stub (treatment designated 1ySS+BB; see text); B) cut on a 1-year-
old cane taking off  the short stub (designated 1yNoSS+BB); C) cut 
on a 1-year-old cane removing the basal bud (designated 1yNoSS-
NoBB).

Figure 2. Cut on a 3-year-old grapevine spur taking off  the short 
stub but leaving the basal bud (treatment designated 3yNoSS+BB).
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with a cryo-microtome (Cryo-cut, American Optical), 
from 1 cm long cane samples. The sections were then 
mounted on glass microscope slides and stained, fol-
lowing several protocols. Toluidine blue O 0.5% (w/v) 
in distilled water added sodium carbonate (to give pH = 
11.1; Feder and O’Brien, 1968) was used to resolve tissue 
sections into cell-type components by different colour 
gradations. Sudan III and IV (Backer, 1946) were used 
to detect the presence of suberin. Phloroglucinol-HCl 
(Johansen, 1940) was used to indicate presence of lignin. 
Tannic and phenolic compounds were stained with Van-
illin-HCl (Gardner, 1975). Cellulose and chitin of fungal 
hyphae were revealed using fluorescence of Calcofluor 
white staining (Hughes and McCully, 1975).

A Zeiss stereomicroscope equipped with an Opti-
ka digital camera and a Leitz D.M.-R.B. Fluo Optic 
microscope (Wetzler, Germany) equipped with a Nikon 
DS-Fi3 digital camera were used for qualitative and 
quantitative analyses of stained tissue samples. Percent-
age (%) of xylem vessels partially or totally occluded 
by tyloses (per mm2 of each tissue section) were deter-
mined. For this purpose, three 0.5 cm length grapevine 
canes were sampled from the different plants receiving 
each of the four pruning methods. The cut surfaces were 
observed using a Zeiss stereomicroscope equipped with 
an Optika digital camera.

Tyloses formation was measured at two different 
times, either immediately after pruning (T0) or 1 month 
after pruning (T1), and the data obtained were analyzed 
as indicated below. Histological observations of defence 
compounds in the tissues immediately under the cut 
surfaces were made 2 months after pruning (T2), using 
light microscopy.

To evaluate the morphological features of the desic-
cation areas resulting from each pruning method, three 
2.5 cm long cane cuttings were sampled at T9. The lon-
gitudinal section of each short cutting was photographed 
using a Canon Power Shot SX100 IS camera.

Trial design and statistical analyses

A completely randomized design was used for the 
field experiment. For each histological observation, three 
biologically independent replicates were considered (n = 
3). Data distributions were checked using the Kolmogor-
ov-Smirnov test, and homoscedasticity was determined 
using the Brown-Forsythe test. The percentages of xylem 
vessels occluded with tyloses were analyzed using one-
way ANOVA followed by Tukey’s multiple-comparison 
test (P < 0.05) to separate groups of means. Diameters 
of xylem vessels (occluded and non-occluded) under-
went Kruskal-Wallis nonparametric analyses, followed 

by Dunn’s multiple-comparison test (P < 0.05) to sep-
arate mean ranks. The nonparametric test was chosen 
because the data distribution was not normal (Kolmog-
orov-Smirnov test, P ≤ 0.05). Statistical analyses were 
carried out using Prism8 (GraphPad Software).

RESULTS

Histological analyses

The overall anatomical regions under the wounded 
tissue were investigated to describe tissue reaction at dif-
ferent times (T0, T1, T2 and T9) after pruning. 

In general, tyloses appeared rapidly within 1 month 
after pruning cuts had been made, and the tyloses 
extended up to several mm from the cuts, but there were 
differences among the pruning methods. Other common 
responses to multiple stresses such as callose production 
and cell wall suberification were not detected.

Figure 3 shows transverse sections of the four cut 
types immediately after cutting (T0) and 1 month later 
(T1), stained with Toluidine blue O. At T0, in all types 
of pruning cuts, some vessels already had tyloses at dif-
ferent stages of development. Most of the vessels were 
partially occluded, and only a small number were total-
ly occluded (Figure 3, A, C, and G). Only vessels from 
treatment 1yNoSS-NoBB were mostly free from tyloses 
(Figure 3E).

Plant defence responses included differences in 
tyloses formation among the four treatments after 1 
month. Tyloses development increased particularly from 
treatment 1yNoSS+BB, where this was increased at T1 
(Figure 3D) compared to T0 (Figure 3C). In the 1ySS+BB 
(Figure 3B) and 3yNoSS+BB (Figure 3H) treatments, 
the increases in tyloses were less evident compared to 
1yNoSS+BB. At T1 from 1yNoSS-NoBB, no apprecia-
ble differences were detected compared to T0 (Figure 
3F). To support the histological observations, a statisti-
cal analysis regarding the numbers of xylem vessels that 
were partially and totally occluded by tyloses were also 
assessed, as described below.

Observations of histological responses carried out 
after 2 months (T2) showed that thin necrotized layers 
had started to develop below the stem cut surfaces in all 
the four pruning methods. At the edges of these areas, 
the host defence responses were investigated using dif-
ferent staining procedures, as shown in Table 1 and in 
the representative images in Figure 4. Sudan III-IV 
positive stained tissues were observed in all samples 
(Figure 4 A), showing suberin deposition only on the 
cell walls of the cork tissues, but never on the wound 
surfaces, to protect the living tissues from the exter-
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Figure 3. Micrographs of pruned grapevine cane cross sections observed after different pruning methods at different times (T, months) after 
pruning. (A) is for the pruning method designated (see text) as 1ySS+BB at T0, (C) designated 1yNoSS+BB, (E) designated 1yNoSS-NoBB, and 
(G) designated 3yNoSS+BB; at T1: (B) is from treatment 1ySS+BB, (D) from treatment 1yNoSS+BB, (F) from treatment 1yNoSS-NoBB, and 
(H) from treatment 3yNoSS+BB at T1. Sections were stained with Toluidine blue. Scale bars: (A, B, D, E, F, G, H) = 250 μm; (C) = 200 μm. 
White arrows indicate vessels, t trachea, sx secondary xylem, pt pith, ph phloem, and pr parenchyma rays.
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nal stress factors. Although suberin deposition was not 
detected, other protection mechanisms were observed as 
physical barriers (Danti et al., 2018). For example, lignin 
deposition was observed onto the cellulose frameworks 
of the primary walls in the cortical parenchyma. This, 
in addition to tyloses, produced physical obstacles to 
pathogen penetration (Sun et al., 2006), and is an ear-
ly response that appears soon after the pruning cuts are 
made (at T0 and T1). At the boundaries of necrotized 
regions, lignification (shown from Phloroglucinol-HCl 
staining), involved longitudinal, continuous layers of 
parenchyma cells in the cortical cylinders. Thickness 
of the lignified tissues differed for the different prun-
ing methods (Figure 4, B and C). The most extend-
ed and deepest parenchymatic lignified tissues close 
to the necrotic areas were those formed in treatment 
3yNoSS+BB (Figure 4B), and a representative exam-
ple of a pruning wound in a 1-year-old cane is shown 
in Figure 4C. The treatment 3yNoSS+BB gave cellular 
walls modified by lignin deposition in parenchyma, 
but this thickening process was also observed in tylosis 
walls (Figure 4D).

In the cortical regions at the borders between dead 
and living tissues, another defence response was repre-
sented by tannin biosynthesis, as a biochemical mech-
anism for host cell protection in addition to physical 
barriers created through lignification. Vanillin stain-
ing (Figure 4E) showed that tannin accumulation 
regions were more extended than the lignified areas in 
parenchyma. Tannin compounds accumulated either 
in the cell walls or in the vacuoles. Similar tannin pro-
duction was detected from all the four pruning tech-
niques applied.

Calcof luor reactions confirmed what was shown 
from Phloroglucinol-HCl treatment, since these are 

complementary stains. The cellulose components (e.g. 
in the tylosis walls) were detected in the living cell 
whereas chitin of fungal hyphae was found in living 
and dead tissues (Table 1). The experimental treatment 
3yNoSS+BB showed dead wood colonized by fungal 
hyphae (Figure 4F). Thus, in large pruning cuts, the 
superficial wound tissues (> 2-years-old) underwent 
dehydration to form large dead areas.

Descriptions of wood anatomy traits

The numbers of partially and totally occluded ves-
sels after the four different pruning cut treatments at 
T0 were compared to the numbers at T1 (Figure 5). In 
general, the proportions of occluded vessels increased 
within 1 month after treatment, for all the types of cuts 
(Figure 5). Presence of basal buds influenced the plant 
defence reactions, as these were activated more effi-
ciently in 1yNoSS+BB treatment compared to 1yNoSS-
NoBB. The proportions of xylem vessels with tyloses at 
T1 was close to 93% for 1yNoSS+BB compared to 5% for 
1yNoSS-NoBB, which was similar to the proportion (2 
%) recorded at T0.

Regardless of time after application of treatments 
(T0 and T1), 3-year-old grapevine cane samples receiv-
ing the 3yNoSS+BB pruning method always had xylem 
vessels with the greatest diameters (Figure 6).

At T0, mean diameters of occluded and non-oc-
cluded vessels followed similar trends, i.e. the vessels 
showed large diameters in the 3yNoSS+BB treatment, 
but these were smaller for 1yNoSS-NoBB, where the cuts 
were at the cane nodes and the basal bud were removed. 
At T1, influence of the different cane cutting methods 
was apparent. Among all the 1-year-old canes, more 
occluded vessels were of bigger sizes. Only in treatment 
3yNoSS+BB were the non-occluded (mean = 104 μm) 
and occluded (mean = 93 μm) vessel diameters closely 
similar (Figure 6).

Desiccation cones 

The stem desiccation cones were evaluated at the 
end of the experiment (T9), as indicated by necro-
tized dry zones at the edges of the cut surfaces of the 
sampled grapevine canes. The means cone sizes were 
not significantly different (P > 0.05), but these indicat-
ed deeper necrotic zones were formed in larger than 
smaller wounds (3yNoSS+BB), and in wounds with no 
basal buds and no short stubs. Differences were detect-
ed in the sizes and morphologies of the desiccation 
areas, depending on the pruning method. The necrot-

Table 1. Results from different staining methods to show defence mech-
anisms of defence observed in the four pruning techniques, including 
(see text) 1ySS+BB, 1yNoSS+BB, 1yNoSS-NoBB or 3yNoSS+BB, and 
presence of living fungal hyphae in the wounded tissues.

Pruning 
techniques 
(see text)

Sudan 
III-IV 

for 
suberin

Phloroglucinol HCl 
for lignin Vanillin 

for 
tannin

Calcofluor for 
cellulose and 

chitin

Cortical 
parenchyma Tyloses

Plant 
cell 

walls

Fungal 
hyphae

1ySS+BB -* ++ - + +++ +
1yNoSS+BB - ++ - + +++ +
1yNoSS-NoBB - ++ - + +++ +
3yNoSS+BB - +++ + + ++ +

* - = not detected; +, ++, +++ = presence at different levels.
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Figure 4. Wound tissues of the pruned grapevine canes, from the cork to the depth of vascular cambium at T2 (see text), as representative 
images of the four different pruning techniques used in this study. The sections were stained with: (A) Sudan III-IV for suberin; (B) Phloro-
glucinol-HCl for lignin observed after experimental treatment (see text) in 3yNoSS+BB, and (C) in a 1-year-old cane; (D) Phloroglucinol-
HCl staining for lignified cell walls of tyloses; (E) Vanillin staining for tannins as a representative image for all four pruning techniques; (F) 
Calcofluor staining for cellulose and chitin after treatment 3yNoSS+BB; c = cork tissue; p = parenchymatic tissue; lp = lignified parenchym-
atic tissue; t = trachea; ws = wound surface; white or black arrows = lignified tyloses; h = fungal hyphae.
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ic areas from treatment 3yNoSS+BB had overall mean 
depth of 4.1 mm, while treatment 1yNoSS-NoBB gave 
mean depth of 1.2 mm. In contrast in the 1-year-old 
canes where the basal buds were maintained (treatments 
1ySS+BB and 1yNoSS+BB), the necrotized zones devel-
oped a few millimeters below the cut surfaces without 
producing deep desiccation regions in the tissues around 
the pith, as was observed from treatments 3yNoSS+BB 
and 1yNoSS-NoBB. 

DISCUSSION AND CONCLUSIONS

In V. vinifera, a species with creeping habit, prun-
ing wounds do not heal as in fruit trees, where the stem 
cambium usually develops new tissues such as callose 
(Nakashima et al., 2003; Câmpu, 2009; Grünwald et 
al., 2002; Battiston et al., 2022). Neither does the plant 
produce suberin in comparison to other trees (Rittinger 
et al., 1987; Hawkins and Boudet, 1996) to protect the 
internal living tissues against the external environment.

Figure 5. Mean percentages of partially and totally occluded grapevine stem vessels found aft er four diff erent pruning techniques: 1ySS+BB, 
1yNoSS-NoBB, 1yNoSS+BB or 3yNoSS+BB at T0 and T1 (see text). Th e values are means + standard deviations (n = 3). Results for each 
time point were analyzed using one-way ANOVA, and groups of means were separated by Tukey’s multiple comparison test. Diff erent letters 
indicate diff erences (P < 0.05) indicated by post-hoc tests.

Figure 6. Boxplots (A, B, C and D), and respective mean rank analyses (barchart external panels) of mean diameters (µm) of non-occluded 
and occluded grapevine xylem vessels. Analyses were conducted before (T0) and one month aft er pruning (T1), using four diff erent pruning 
techniques: 1ySS+BB, 1yNoSS-NoBB, 1yNoSS+BB or 3yNoSS+BB. In each boxplot, the Tukey whiskers represent maximum and minimum 
values (n = 3) excluding outliers (represented by dots). Horizontal black lines inside the boxes are the median values, while the crosses 
represent the treatment means. Results for each time point for both conditions (occluded and non-occluded vessels) were analyzed using 
Kruskal-Wallis tests, and mean ranks were separated according to Dunn’s multiple comparison tests (P < 0.05). Results of mean ranks are 
plotted on the barchart external panels. Diff erent letters indicate diff erences (P < 0.05) indicated by post-hoc tests.
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Different defence mechanisms were adopted by 
grapevines to seal wounds to prevent the entry of patho-
gens. The grapevine survival strategy is based on pro-
ducing new substitution basal shoots, rather than allo-
cating energy to wound healing. The histochemical 
analysis carried out in the present study has shown the 
formation of physical barriers to external stressors, con-
sisting of tylosis development in xylem vessels and lignin 
deposition in living tissues immediately below cut sur-
faces in grapevine canes. 

Biochemical responses of tannins and suberin have 
been studied as important factors in protecting living 
tissues (Danti et al., 2018; Falsini et al., 2022). In the 
present trials, tannins and suberin highlighted by specif-
ic staining reactions were found to be similar in the dif-
ferent pruning cut methods examined. The production 
of tannins was widely extended in living tissues under 
the necrotized regions as discussed by other authors also 
for histopathological studies (Al-Saadoon et al., 2012). 

The present study has demonstrated that, in ‘Treb-
biano Toscano’ grapevines, winter pruning, applied on 
1- or 3-year-old canes at the end of winter (in March) 
but close to commencement of vegetative growth, caused 
tissue activation and the rapid development of tyloses, 
as previously shown by Sun et al. (2006) in current year 
shoots during the growing season. The present study has 
shown that tylosis initiation was clearly visible 1 month 
after wounding, with the exception of canes where no 
basal buds were preserved (treatment 1yNoSS-NoBB). It 
was anticipated at the onset of this research that, under 
field conditions, some tyloses were already present at T0 
in each type of pruning method, but, at T1, tylosis pres-
ence rapidly increased, especially in the samples where 
the basal buds were retained. Thus, this study allows 
development an hypothesis that the basal buds are 
involved in activating the processes of tylosis occlusion 
of xylem vessels. At T1, the occlusion process increased 
as from the 1yNoSS+BB treatment where up to 90% of 
the vessels contained tyloses. 

Results from the present study also support, with 
histological data, observations from previous stud-
ies. Faúndez-López et al. (2021) showed that pruning 
cuts over nodes can preserve the basal buds and dia-
phragms and prevent wood necrosis in the permanent 
wood structures. Bruez et al. (2022) demonstrated that 
leaving 2–3 cm pruning stubs stopped desiccation cone 
at the diaphragm, leaving unaffected sap flow. These 
results were confirmed also by preliminary observa-
tions from treatment 1yNoSS-NoBB, where the desicca-
tion areas were deeper than from the 1yNoSS+BB and 
1ySS+BB treatments, both of which retained the basal 
buds. In treatment 3yNoSS+BB, the desiccation cones 

were even deeper than for 1yNoSS-NoBB, confirming 
that wounds in older and larger diameter wood than 
in young canes produces large necrotic areas, as from 
treatment 1yNoSS+BB, as described by Faúndez-López 
et al. (2021). Thus, comparing 1-year-old samples, we 
hypothesize that the basal buds on grapevine canes pre-
vent extensive wood necroses. Moreover, comparing the 
1yNoSS+BB samples with those from the 3yNoSS+BB 
treatment (both with basal buds but with different cane 
ages), the necrotic area depths were influenced by cane 
age, and thus by wound size.

The light microscopy observations indicated that the 
more occluded vessels by tyloses were the larger vessels, 
but no gels were found. Gels entangled between tyloses 
may increase wound susceptibility to pathogens, by pro-
viding substrate for growth and routes to escape occlud-
ed vessels (Pouzoulet et al., 2017).

Grapevine pruning needs to start with appropriate 
management of pruning wounds. Even if wound protec-
tion reduces pathogen infections (Mounier et al., 2016; Di 
Marco et al., 2022), the cutting methods can also influ-
ence vine reactions to wounding, and these differences 
will influence the efficiency and amount of fungal coloni-
zation by wood pathogens (Pouzoulet et al., 2020, 2022).

Future research should include confirmation of the 
relationship between fungal colonization from artificial 
and natural infections in grapevine cuts, applied with 
different methods, and host histological defensive reac-
tions that impact pathogen colonization and activity. 
This information could then be used to provide specif-
ic guidelines to growers for reducing pathogen entry to, 
and infection of, their grapevine hosts.
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