Phytopathologia Mediterranea

The international journal of the Mediterranean Phytopathological Union

Citation: K. Elfar, M.I. Bustamante, M. Arreguin, M.T. Nouri, A. Eskalen (2023) Identification and pathogenicity of *Alternaria* species causing leaf blotch and fruit spot of apple in California. *Phytopathologia Mediterranea* 62(3): 467-479. doi: 10.36253/phyto-14559

Accepted: November 24, 2023

Published: December 30, 2023

Copyright: © 2023 K. Elfar, M.I. Bustamante, M. Arreguin, M.T. Nouri, A. Eskalen. This is an open access, peer-reviewed article published by Firenze University Press (http://www. fupress.com/pm) and distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

Editor: Tito Caffi, Università Cattolica del Sacro Cuore, Piacenza, Italy.

ORCID:

KE: 0000-0003-3078-5091 MIB : 0000-0001-7887-7230 MA: 0000-0001-9458-4390 MTN: 0000-0003-4862-0105 AE: 0000-0002-8829-7413 **Research Papers**

Identification and pathogenicity of *Alternaria* species causing leaf blotch and fruit spot of apple in California

Karina ELFAR¹, Marcelo I. BUSTAMANTE¹, Molly ARREGUIN¹, Mohamed T. NOURI², Akif ESKALEN^{1,*}

¹ Department of Plant Pathology, University of California, Davis, CA 95616, United States of America

² University of California Cooperative Extension San Joaquin County, Stockton, CA 95206, United States of America

*Corresponding author: aeskalen@ucdavis.edu

Summary. In late summer 2020, symptoms of leaf blotch and fruit spot were observed in two different commercial apple orchards (cultivars 'Pink Lady' and 'Modi') in San Joaquin County, California, USA. Ninety *Alternaria* isolates were obtained from symptomatic leaves and fruits collected from the orchards. Based on morphological characteristics of the colonies, sporulation patterns, and conidia, the isolates were preliminarily separated into three morphogroups, tentatively identified as *A. alternata, A. tenuissima* and *A. arborescens*. Multi-locus phylogenetic analyses, using nucleotide sequences of plasma membrane ATPase, calmodulin, and Alternaria major allergen genes, showed that the isolates initially identified as *A. tenuissima* clustered with strains of *A. alternata*, following the current taxonomical arrangement of the genus. Pathogenicity tests on detached wounded apple leaves and fruits, using representative isolates of the three morphogroups, fulfilled Koch's postulates. This is the first report of *A. alternata* and *A. arborescens* as causal agents of leaf blotch and fruit spot of apple in California.

Keywords. Etiology, foliar, apple diseases, Malus domestica.

INTRODUCTION

Apple (*Malus domestica* Borkh.) production in California covered 4,654 ha in 2021, as the sixth largest apple-producing state in the United States of America (USA) (CDFA, 2022). California produces four main apple cultivars: 'Gala', 'Fuji', 'Granny Smith', and 'Cripps Pink' ('Pink Lady^{®'}) (California Apple Commission, 2023). Several fungal diseases affect apple, including diseases of leaves and fruit (e.g. apple scab, powdery mildew, rusts), wood (e.g. European canker, Valsa canker), root and replant diseases (e.g. crown and root rots), and postharvest diseases (e.g. blue mold, gray mold and bull's-eye rot) (Sutton *et al.*, 2014).

Apple is susceptible to *Alternaria* species, which can cause different diseases, including leaf blotch, fruit spot, fruit rot, core rot, and moldy core

(Harteveld et al., 2013; Sutton et al., 2014; Gur et al., 2017; Elfar et al., 2018b). Alternaria leaf blotch is frequently observed in summer, and is characterized by the presence of small (3 to 5 mm diam.), circular gray to brown necrotic lesions on apple leaves and fruit, often with dark brown to purple margins (Elfar et al., 2018a). In severe cases, leaf defoliation of up to 50% can occur in susceptible cultivars (Sawamura, 2014). Symptoms on fruit are uncommon, except in highly susceptible cultivars, such as 'Golden Delicious', 'Starking Delicious', 'Indo', 'Gala', and 'Pink Lady'. Fruit spots are often small, corky, and dark, typically associated with fruit lenticels (Sawamura, 2014; Gur et al., 2017). Severe disease outbreaks have been reported on 'Pink Lady' apples in northern Israel, where large lesions and fruit rots have been observed. Multiple lesions on fruit, especially those adjacent to cracks around fruit calices, may coalesce to produce large dark rotted areas, with incidences up to 80% of fruit in some orchards (Gur et al., 2017). This disease was named Alternaria fruit rot to differentiate it from Alternaria fruit spot (Gur et al., 2018). The status of Alternaria diseases affecting apples in California is unknown. However, California is familiar with diseases caused by Alternaria species in other fruit and nut crops (Teviotdale et al., 2001; Pryor and Michailides, 2002; Zhu and Xiao, 2015; Luo et al., 2017; Wang et al., 2021).

Alternaria mali (syn. A. alternata f. sp. mali) is the main cited causal agent of Alternaria blotch of apple in the northern hemisphere and Australia (Filajdić and Sutton, 1991; Ozgonen and Karaca, 2006; Soleinami and Esmaizadeh, 2007; Harteveld et al., 2013; Sawamura, 2014; Gur et al., 2017). In the USA, A. mali was identified in the late 1980s in North Carolina, causing apple leaf blotch (Filajdić and Sutton, 1991). However, studies in in Australia, Chile, France, Italy, and Spain, have shown that several small-spored Alternaria species were associated with Alternaria leaf blotch and fruit spot, where A. alternata, A. arborescens, A. infectoria, A. longipes, and A. tenuissima were identified (Rotondo et al., 2012; Harteveld et al., 2013; Elfar et al., 2018a; Toome-Heller et al., 2018; Fontaine et al., 2021; Cabrefiga et al., 2023). Differences in virulence among Alternaria isolates were also detected (Harteveld et al., 2014b; Elfar et al., 2018a).

Morphological identification of the small-spored species of *Alternaria* is challenging, due to the diversity and scarcity of characteristics that allow unambiguous identification (Andrew *et al.*, 2009). Use of morphological characteristics in combination with phylogenetic analyses based on multiple gene loci are essential for identification of species within small-spored *Alternaria* (Woudenberg *et al.*, 2013; Lawrence *et al.*, 2016). Several loci have been used in phylogenetic studies of *Alternaria*, including nuclear ribosomal regions (ITS, LSU, and SSU), and protein-coding genes. Lawrence *et al.* (2013), assessed the phylogenetic utility of ten nuclear protein coding loci, and showed that the five most phylogenetically informative loci for *Alternaria* species were ATPase, followed by calmodulin, Alternaria major allergen Alt a1, glyceraldehyde-3-phosphate dehydrogenase, and actin. The least informative loci were beta-tubulin and translation elongation factor 1-alpha. Therefore, ATPase and calmodulin have been suggested as the most appropriate loci for identification of *Alternaria* species (Lawrence *et al.*, 2013, 2016).

During late summer of 2020, an outbreak of leaf blotch and fruit spot was observed in two commercial apple orchards in San Joaquin County, California. Up to 30% of leaves and less than 1% of apples were affected by the disease. The objectives of the present study were: (i) to identify and characterize the causal agents of both of these diseases; and (ii) to test the pathogenicity of the putative pathogens on two apple cultivars ('Pink Lady' and 'Fuji').

MATERIALS AND METHODS

Fungal isolations

Symptomatic apple leaf (n = 40) and fruit (n = 10)samples were collected from two orchards, one of the cultivar 'Pink Lady' and the other of 'Modi', located in San Joaquin County, California. The leaves and fruit were surface disinfected by submerging in a 70% ethanol solution for 1 min. Isolations were then carried out from small pieces (2 to 5 mm length) taken from margins between diseased and healthy tissues, which were plated onto potato dextrose agar (PDA; BD Difco) acidified with 92% lactic acid 0.5 mL L⁻¹ (APDA). The isolation plates were incubated for 7 to 10 d at room temperature (20 to 22°C). Fungal colonies were preliminarily identified as Alternaria species (Simmons, 2007), using colony morphology (colour and texture) and by conidiophore and conidium characteristics. Mycelium from Alternaria-like colonies was transferred to fresh APDA plates, and pure cultures of 90 isolates were then obtained by plating a 50 µL of conidial suspension of each isolate on water agar. After 18 h of incubation at room temperature, a single conidium was selected under a stereomicroscope and transferred to a fresh APDA plate. Isolates were then kept on APDA at 5°C for further analyses.

Morphological characteristics of isolates

Colony morphology was characterized in plastic Petri dishes (90 mm diam.) containing either APDA or potato carrot agar (PCA; HiMedia) (Simmons, 2007). The plates were incubated for 7 d at 20 to 22°C, with 8 h light 16 h darkness regimes. Light was provided by daylight fluorescent tubes placed 40 cm above the culture plates. Conidia and conidiophores from three PCA plates per isolate were each mounted on colourless adhesive tape and placed on top of a drop of Shear's mounting medium (10 g potassium acetate, 200 mL glycerin, 300 mL 95% ethanol, 500 mL distilled water), and were then observed under a light microscope at 400× of magnification. Based on their morphology, the isolates were preliminarily classified into three morphogroups (A, B, and C). Nine representative isolates (group A: UCD9582, UCD9584, UCD9600; group B: UCD9588, UCD9620; group C: UCD9590, UCD9593, UCD9603, UCD9643) were selected for further study of their conidiophore and conidium features. Conidiophore (n = 15 per isolate) length and width, cell numbers, and branching were determined. Conidium (n = 50) shape, length, width, and number of transepta were determined. These data were compared with published descriptions of Alternaria species (Simmons, 2007).

DNA extraction, PCR amplification and sequencing

Twenty-six Alternaria isolates representative of the three morphological groups were selected for molecular identification (Table 1). These groups were established according to similarities in colony morphology and characteristics of their conidiophores and conidia. Total genomic DNA was extracted from 7- to 10-d-old mycelium of each isolate grown on APDA and incubated at 20 to 22°C. Mycelium of each isolate was carefully separated from the agar medium using a sterile scalpel, and was then macerated (6.0 m sec⁻¹ for 40 sec) in a tube containing lysis buffer and 1.0 mm glass beads, using a FastPrep-24 (MP Biomedicals). Genomic DNA was extracted using a DNA extraction kit (NucleoSpin Plant II; Macherey-Nagel GmbH & Co. KG). The Alternaria major allergen Alt al gene (Alt al) was amplified using the primer pair Alt-for/Alt-rev (Hong et al., 2005), the plasma membrane ATPase gene (ATPase) using pair ATPDF1/ATPDR1, and the Calmodulin (CAL) gene using pair CALDF1/CALDR1 (Lawrence et al., 2013). Polymerase chain reactions (PCR) were carried out in a T100[™] thermocycler (Bio-Rad). Each reaction had a volume of 25 mL, containing 12.5 µL of GoTaq[®] Green MasterMix 2X (Promega), 9.3 µL of nuclease-free water, 0.6 μ L of a 10- μ M solution of each primer, and 2 μ L of template DNA. The amplification protocol included preheating for 2 min at 95°C, followed by 35 cycles of denaturation at 95°C for 30 s, annealing for 45 s at 57°C for Alt a1, 55°C for ATPase, or 54°C for CAL, and extension at 72°C for 90 s, with a final extension for 5 min at 72°C. PCR-amplified products were visualized by electrophoresis in 1% agarose gels with 100X SYBR® Green I nucleic acid gel stain (Sigma-Aldrich), and purified using Exonuclease I and Shrimp Alkaline Phosphatase (New England BioLab), following the manufacturer's instructions. PCR products were quantified using a Quantus™ fluorometer (Promega), and were submitted to Quintara Biosciences (Hayward, CA, USA) for Sanger sequencing. Both forward and reverse sequences were assembled using Sequencher v5.4.6 (Gene Codes). A BLASTn search analysis of the consensus sequences was carried out against reference sequences in the GenBank database (https:// www.ncbi.nlm.nih.gov).

Phylogenetic analyses

Maximum parsimony (MP) phylogenetic analyses were carried out using MEGA v.11 (Tamura et al., 2021). Gaps were treated as missing data. The MP trees were obtained using the tree-bisection-reconnection branch swapping algorithm and 1,000 random sequence additions. Branch stability was estimated using bootstrap with 1,000 replicates. The alignments included sequences of Alt a1, ATPase, and CAL, from the 26 Alternaria isolates obtained from apple leaf blotch and fruit spot symptoms in California (Table 1) and sequences from 18 Alternaria isolates obtained from GenBank (Table 2). Sequences of Stemphylium botryosum, S. callistephi, and S. vesicarium were included as outgroups (Table 2). The phylogenetic analyses were carried out independently for each gene, and concatenated. Topology of the resulting trees was compared, and a consensus tree was selected. This tree was edited in TreeGraph v2, and visual edits were carried out in InkScape.

Pathogenicity tests

Six representative isolates were selected to test their pathogenicity, two from each of the three morphological groups: group A (isolates UCD9582 and UCD9600), B (UCD9588 and UCD9620), and C (UCD9590 and UCD9593). To stimulate sporulation, isolates were cultivated in 0.05× PDA (Pryor and Michailides, 2002) for 7 d at 20 to 22°C with cycles of 10 h of light and 14 h of darkness. Conidial suspensions were prepared from 10-

Table 1. Sources of isolates of *Alternaria* species from apple obtained in two commercial orchards in Stockton, California, and GenBank accession numbers for sequences of three genes (*Alternaria* major allergen Alt a1, plasma membrane ATPase, and Calmodulin) of the *Alternaria* isolates examined in this study.

Isolate	Group	Species	Symptom ^a		GenBank accession number ^b				
				Apple Cultivar	Alt a1	ATPase	Calmodulin		
UCD9582 ^{cd}	А	Alternaria alternata	FS	P. Lady	MW685776	MW685792	MW685808		
UCD9584 ^d	А	A. alternata	FS	P. Lady	MW685775	MW685791	MW685807		
UCD9598	А	A. alternata	LB	P. Lady	MW685777	MW685793	MW685809		
UCD9598.2	А	A. alternata	LB	P. Lady	MW685778	MW685794	MW685810		
UCD9600 ^{cd}	А	A. alternata	LB	P. Lady	MW685774	MW685790	MW685806		
UCD10530	А	A. alternata	LB	Modi	OQ803488	OQ803499	OQ803510		
UCD10533	А	A. alternata	LB	Modi	OQ803489	OQ803500	OQ803511		
UCD10536	А	A. alternata	LB	Modi	OQ803490	OQ803501	OQ803512		
UCD10539	А	A. alternata	LB	Modi	OQ803491	OQ803502	OQ803513		
UCD10529	В	A. alternata	LB	Modi	OQ803492	OQ803503	OQ803514		
UCD9588 ^{cd}	В	A. alternata	FS	P. Lady	MW685789	MW685805	MW685821		
UCD9620 ^{cd}	В	A. alternata	LB	P. Lady	MW685788	MW685804	MW685820		
UCD9590 ^{cd}	С	A. arborescens	FS	P. Lady	MW685782	MW685798	MW685814		
UCD9591	С	A. arborescens	FS	P. Lady	MW685783	MW685799	MW685815		
UCD9593 ^{cd}	С	A. arborescens	LB	P. Lady	MW685781	MW685797	MW685813		
UCD9603 ^d	С	A. arborescens	LB	P. Lady	MW685780	MW685796	MW685812		
UCD9643 ^d	С	A. arborescens	LB	P. Lady	MW685779	MW685795	MW685811		
UCD9643.2	С	A. arborescens	LB	P. Lady	MW685784	MW685800	MW685816		
UCD9644	С	A. arborescens	LB	P. Lady	MW685785	MW685801	MW685817		
UCD9645	С	A. arborescens	LB	P. Lady	MW685786	MW685802	MW685818		
UCD10531	С	A. arborescens	LB	Modi	OQ803493	OQ803504	OQ803515		
UCD10532	С	A. arborescens	LB	Modi	OQ803494	OQ803505	OQ803516		
UCD10534	С	A. arborescens	LB	Modi	OQ803495	OQ803506	OQ803517		
UCD10535	С	A. arborescens	LB	Modi	OQ803496	OQ803507	OQ803518		
UCD10537	С	A. arborescens	LB	Modi	OQ803497	OQ803508	OQ803519		
UCD10538	С	A. arborescens	LB	Modi	OQ803498	OQ803509	OQ803520		

^a FS = fruit spot, LB = leaf blotch.

^b Genes: Alt a1 = Alternaria major allergen Alt a1, ATPase = plasma membrane ATPase.

^c Isolates used for pathogenicity tests on apple fruit and leaves.

^d Isolates used for morphological characterization.

to 14-d-old cultures. Plates were flooded with approx. 20 mL of 0.05% Tween 80 and the medium surface in each plate was scraped with a sterile scalpel. The resulting conidial suspension was filtered through four layers of gauze and the concentration was adjusted to 1×10^5 conidia mL⁻¹, using a haemocytometer for conidia counting.

Apple leaves. Detached fully expanded mature leaves from 'Pink Lady' and 'Fuji' apple (n = 10 from each cultivar) were surface disinfected in 1% NaOCl for 1 min, followed by sterile distilled water for 1 min, and were then air dried inside a laminar flow hood. Nine punctures were made on each leaf, three punctures were made on the apical, basal, and middle regions, using a sterile hypodermic needle (31G). Leaves were inoculated by placing 15 μ L of conidial suspension on top of each wound site. The leaves were then incubated at 20°C in humid chambers for 7 d until symptoms development. Evaluations were carried out by measuring the lesion diameters using a digital caliper. An equal number of wounded leaves treated with sterile water were included as negative controls. Re-isolations from resulting necrotic lesions were made onto APDA, and obtained colonies were identified based on the conidia morphology. The experiment was conducted twice.

Apple fruit. Mature fruit (mean total soluble solids 14.2%) of 'Pink Lady' and 'Fuji' apple (n = 10 of each cultivar) were surface disinfected in 70% ethanol for 5 min and air dried inside a laminar flow hood. Each fruit was then inoculated with 20 µL of a conidial sus-

0	T 1 c b		GenBank accession number	a	
Species	Isolate	Alt a1	ATPase	Calmodulin	
Alternaria alstroemeriae	CBS 118809	MH084526	MH101803	MH175185	
A. alternata	EGS 34-016	KP275691	JQ671874	JQ646208	
A. alternata (=A. angustiovoidea)	EGS 36-172	JQ646398	JQ671869	JQ646203	
A. alternata (=A. destruens)	EGS 46-069	JQ646402	JQ671873	JQ646207	
A. alternata (=A. dumosa)	EGS 45-007	AY563305	JQ671877	JQ646211	
A. alternata (=A. herbiphorbicola)	EGS 40-140	JQ646410	JQ671888	JQ646222	
A. alternata (=A. limoniasperae)	EGS 45-100	JQ646370	JQ671879	JQ646213	
A. alternata	ECC 24 015	KD275(00	10011000	10(4(200	
(=A. tenuissima)	EGS 34.015	KP2/5690	JQ811989	JQ646209	
A. arborescens	EGS 39-128	AY 563303	JQ671880	JQ646214	
A. arborescens	3.J24	KJ921023	KJ908244	KJ920979	
A. arborescens (=A_cerealis)	EGS 43-072	IO646405	IO671883	IO646217	
A. argyroxithii	EGS 35-122	IQ646434	JQ671926	IQ646260	
A. betae-kenvensis	CBS 118810	KP123966	MH101805	MH175189	
A. eichhorniae	CBS 489.92	KP123973	MH101806	MH175190	
A. gossypina	CBS 104.32	IO646395	IO671868	IQ646202	
A. grossulariae	CBS 100.23	IO646394	JO671867	IO646201	
A. jacinthicola	CBS 133751	KP123984	MH101793	MH175187	
A. tomato	CBS 114.35	IO646389	IO671861	IO646195	
Stemphylium botryosum	ATCC 42170	AY563274	IQ671767	IQ646101	
S. callistephi	EEB 1055	AY563276	IQ671769	IQ646103	
S. vesicarium	ATCC 18521	AY563275	IQ671768	IQ646102	

Table 2. Accession numbers for reference sequences of Alternaria isolates in GenBank used for phylogenetic analyses in this study.

^a Genes: Alt a1 = Alternaria major allergen Alt a1, ATPase = plasma membrane ATPase.

^b ATCC = American Type Culture Collection, Manassas, VA; CBS = Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands; EEB, E. E. Butler, Department of Plant Pathology, University of California, Davis, CA; EGS = E. G. Simmons, Mycological Services, Crawfordsville, IN.; 3.J = Pryor and Michailides 2002.

pension that was deposited on top of four punctures made with a sterile hypodermic needle (31G). Fruits were then incubated at 20°C inside humid chambers for 14 d until symptom development. Resulting necrotic lesions were measured using a digital caliper. An equal number of wounded fruits treated with sterile distilled water were included as negative controls. Prior to determining the necrotic lesions, each fruit was cut vertically through each wound with a sterile knife, and the necrotic lesion length inside the fruit from the wound was measured. Re-isolations from the necrotic lesions were carried out on APDA to determine fulfilment of Koch's postulates, and obtained colonies were identified based on the conidia morphology. This experiment was conducted twice.

Experimental designs and statistical analyses

Pathogenicity test experiments were carried out according to a 2 × 6 (apple cultivar × isolate) factorial design, with ten replicates, each of one fruit or one leaf as the experimental unit. Lesion diameters and lengths were subjected to analysis of variance (ANOVA) using generalized linear models with the corresponding R packages in InfoStat v 2008. Means were separated using Fisher's least significant difference test (P < 0.05).

RESULTS

Symptoms and fungal isolations

During the disease outbreak, symptoms were mainly observed on apple leaves, and were characterized by the presence of one or more circular brown necrotic lesions (each 2 to 15 mm diam.) per leaf, with each lesion enlarged in zonate circular or crescent-shaped rings, and often with a dark brown to purple margin. With time, the affected leaves turned yellow and fell prematurely. On fruits, rounded, dark-coloured, dry, corky lesions (each 2 to 30 mm diam.) were observed (Figure 1).

Colonies of isolated fungi on APDA were gray-green to dark olive green with whitish margins. All *Alternaria* isolates produced single conidiophores and catenulate brown to golden-brown conidia.

Figure 1. Alternaria leaf blotch and fruit spot on 'Pink Lady' apple. A and B, naturally infected leaves. C, A naturally infected fruit.

Morphological characteristics of isolates

Preliminary categorization of the isolates based on colony morphology and sporulation patterns (Simmons, 2007), placed 36% of the isolates in group A, 18% in group B, and 47% in group C.

Group A isolates were tentatively identified as *A. alternata*, with these isolates producing cottony, gray to green colonies with white margins on PDA. Conidia chains were observed along with numerous secondary chains branching on short conidiophores. Conidia were ovoid to ellipsoid, and had average dimensions of $26.8 \pm 4.63 \times 9.8 \pm 1.3 \,\mu\text{m}$ (Figure 2, A, D and G).

Group B isolates were morphologically identified as A. tenuissima, with these isolates producing cottony, gray olive brown colonies with slight concentric growth rings and white margins on PDA. Conidia chains had between six and 14 conidia, rarely with a lateral branch. Conidia were ovoid to obclavate, each with a narrow tapered upper half, and the conidia had average dimensions of $26.7 \pm 5.1 \times 9.5 \pm 1.2 \ \mu m$ (Figure 2, B, E and H).

Group C isolates were identified as *A. arborescens*. These isolates produced cottony, olive-brown colonies with concentric growth rings, often with wavy margins on PDA. The conidiophores were long and had extended secondary conidiophores. Conidia chains had two to seven conidia, and conidium development was concentrated near the apices of secondary, tertiary, and quaternary conidiophores. Conidia were ovoid to ellipsoid, and had average dimensions of $26.2 \pm 6.0 \times 9.0 \pm 1.3 \mu m$ (Figure 2, C, F and I).

Phylogenetic analyses

The consensus sequence length of Alt a1 was 472 bp, of ATPase, was 1,194 to 1,197 bp, and CAL was 718 to 723 bp. The maximum parsimony analyses of Alt a1 (346 character dataset after alignment), ATPase (1,220 character dataset after alignment), and CAL (770 character dataset after alignment) combined produced a consensus tree (Figure 3) from the 25 most parsimonious trees (tree length = 731, consistency index = 0.804, retention index = 0.880, rescaled consistency index = 0.708). All the 26 Alternaria isolates obtained clustered with isolates that belong to the section Alternaria. The phylogenetic tree showed that there was clear separation of group C isolates from those of groups A and B. Isolates from group C clustered (96% bootstrap support) with the ex-type strain of A. arborescens (EGS 39128) and other A. arborescens reference isolates (Figure 3). Isolates from groups

Figure 2. Morphological features of *Alternaria* species isolated from apple. **A** to **C**, Colony morphologies on PDA after 7 d incubation at 22°C under 8 h light/16 h dark regime; **D** to **F**, Sporulation patterns on PCA after 7 d incubation at 22°C under 8 h light/16 h dark regime; **G** to **I**, conidia; **J** to **L**, symptoms on inoculated 'Pink Lady' leaves; **M** to **O**, symptoms on inoculated 'Pink Lady' fruit cut vertically; **A**, **D**, **G**, **J**, and **M**, isolate of group A (UCD9582); **B**, **E**, **H**, **K**, **N**, isolate of group B (UCD9588); **C**, **F**, **I**, **L**, **O**, isolate of group C (UCD9593). White scale bars = 50 µm, black bars = 10 µm. Based on morphology and phylogeny, isolates in group A and B were identified as *A. alternata*, and isolates in group C were identified as *A. tenuissima*.

A and B, despite their morphological differences, were clustered with the *A. alternata* ex-type (EGS 40140) and other *A. alternata* reference isolates (Figure 3). Of the 26 *Alternaria* isolates obtained from apple fruits and leaves in California, 12 were identified as *A. alternata* (46%), and 14 corresponded to *A. arborescens* (54%).

Figure 3. Phylogenetic tree obtained from maximum-parsimony analysis of the Alternaria major allergen Alt a1, plasma membrane ATPase, and calmodulin gene sequences of *Alternaria* species from Californian apple and sequences of ex-types in GenBank. The consensus tree shown is inferred from the 25 most parsimonious trees and bootstrap values obtained. The tree was rooted with *Stemphylium botryosum*, *S. callistephi*, and *S. vesicarium*. Tree length = 731, consistency index = 0.804, retention index = 0.880, and rescaled consistency index = 0.708. UCD and numbers (in bold) are *Alternaria* isolates from apple in California; other codes are isolates from GenBank.

Pathogenicity tests

All the tested isolates of *A. alternata* and *A. arborescens* were pathogenic on detached apple leaves, which developed brown necrotic lesions of 3.8 to 8.8 mm diam-

eters after 7 d at 20 to 22°C, with the lesions developing concentric rings as they grew (Figure 2, J to L). Differences in disease severity caused by the *Alternaria* isolates were statistically significant (P < 0.001) for lesion diameter, but cultivar did not affect this parameter (P =

Group	Species	Isolate	Leaves, mean necrotic lesion dimensions (mm) ^{ab}				Fruit, mean dry rot lesion dimensions (mm) ^{ac}					
			'Pink Lady'	'Fuji'	Mean		'Pink Lady'		'Fuji'		Mean	
A	A. alternata	UCD9600	6.6	8.8	7.7	a	3.9		9.1		6.5	a
		UCD9582	7.5	6.7	7.1	а	4.2		7.3		5.7	ab
В	A. alternata	UCD9620	6.5	6.5	6.5	а	5.2		5.3		5.2	ab
		UCD9588	7.6	5.4	6.5	а	4.7		4.7		4.7	ab
С	A. arborescens	UCD9593	3.8	4.3	4.0	b	4.1		4.2		4.1	b
		UCD9590	5.4	6.5	5.9	а	3.2		4.6		3.9	b
	Mean		6.2	6.4			4.2	В	5.8	А		
Analysis	of variance											
			df	F	Р	SED	di	f	1	F	Р	SED
Isolate (I)		5	5.13	< 0.001	0.926	5 2		2.	37	0.044	0.849	
Cultivar (C)		1	0.02	0.889	0.552	1		9.54		0.003	0.509	
I × C interaction		5	1.32	0.259	1.308	5 1.77		77	0.125	1.089		

Table 3. Pathogenicity of *Alternaria* isolates studied on leaves and fruits of apple cultivars 'Pink Lady' and 'Fuji', assessed from dimensions of necrotic lesions and dry rots developed after controlled inoculations.

^a Non-inoculated controls remained symptomless, and these data were excluded from statistical analyses. Means (each of ten replicates) followed by the same letter in each column are not different (Fisher LSD test, P = 0.05). SED = standard error of the difference (standard error of the mean × $\sqrt{2}$).

^b Leaves were inoculated with conidial suspensions (10⁵ conidia mL⁻¹), and lesion diameters were determined after 7 days at 20°C in humid chambers.

^c Fruit were each inoculated with 20 μL of conidial suspension (10⁵ conidia mL⁻¹), then incubated in humid chambers at 20°C for 14 d.

0.889). The isolate \times cultivar interaction was also nonsignificant (P = 0.259). The different *Alternaria* isolates had similar virulence (mean lesion diameter = 6.7 mm), except for *A. arborescens* isolate UCD9593, which was the least virulent isolate, causing the smallest lesions (mean = 4.0 mm) (Table 3).

Regardless of the *Alternaria* species, all the isolates caused dry rot on the epidermis and pulp of mature apple fruits after conidia inoculations. Symptoms consisted of dark-coloured, dry, corky lesions of lengths 3.9 to 6.5 mm (Figure 2, M to O). Significant differences (P < 0.05) in virulence were observed among the *Alternaria* isolates. The most virulent isolate was *A. alternata* isolate UCD9600 (mean lesion length = 6.5 mm), whereas *A. arborescens* isolate UCD9590 was the least virulent (mean = 3.9 mm). Apple cultivar had significant effects (P < 0.01) on lengths of the dry rot lesions, with 'Fuji' being more susceptible (mean = 5.8 mm) than 'Pink Lady' (mean = 4.2 mm). The interaction isolate × cultivar was non-significant (P = 0.125) (Table 3).

Re-isolations from the margins of the necrotic lesions and dry rots were accomplished from all of the inoculated leaves and fruits. Identifications of the reisolated fungi was confirmed morphologically as those of the inoculated fungi. Non-inoculated leaves and fruits remained symptomless. These results fulfilled Koch's postulates for all the inoculated isolates.

DISCUSSION

This study is the first to demonstrate that Alternaria leaf blotch and fruit spot are two diseases occurring in California apple orchards, and that both diseases are caused by two small-spored *Alternaria* species, *A. alternata* and *A. arborescens*. The fungi were identified by their morphological features and nucleotide sequences of three DNA barcodes (Lawrence *et al.*, 2013; Pryor and Michailides, 2002; Simmons, 2007; Woudenberg *et al.*, 2015).

There is consensus that identification of smallspored *Alternaria* species is difficult due the few morphological or molecular characteristics that allow species discrimination. Previous studies have demonstrated that host-specificity and geographic associations are not useful characters for *Alternaria* classification, and that morphological classifications are poor predictors of phylogenetic relationships among small-spored *Alternaria* taxa, especially due to high levels of morphological plasticity between and within *Alternaria* sections (Serdani *et al.*, 2002; Andrew *et al.*, 2009; Lawrence *et al.*, 2016).

Based on morphological characteristics of the colonies, sporulation patterns, and conidia, the isolates obtained in the present study from symptomatic apple leaves and fruit were grouped into three morphotypes (A, B and C). These groups were preliminarily identified, respectively, as A. alternata, A. tenuissima and A. arborescens. However, the multi-locus phylogenetic analyses using Alt a1, ATPase, and CAL sequences revealed that the isolates of group C formed a clear separate cluster with reference strains of A. arborescens. This is unlike the A. alternata isolates (group A) and A. tenuissima isolates (group B), which grouped together, despite their morphological difference in conidia chains that allow distinction between these two species (Simmons, 2007). Isolates of group B had long unbranched conidia chains, which is a key morphological characteristic for the identification of A. tenuissima. Similarly, in previous studies (Andrew et al., 2009; Wang et al., 2021), isolates morphologically classified as A. alternata and A. tenuissima were genetically indistinguishable using multiple molecular markers (endoPG, OPA1-3, and OPA10-2, or ATPase, CAL, and rpb2 genes), and many other isolates were assigned as intermediates between the two groups. Based on genome and transcriptome comparisons and molecular phylogenies, Woudenberg et al. (2015) synonymized 35 morphospecies, which cannot be distinguished based on their multi-gene phylogenies, under A. alternata, including A. tenuissima. Alternaria mali was also synonymized with A. alternata, but A. alternata f. sp. mali is currently recognized for isolates which produce the host-specific AM-toxin. Consequently, in the present study, the isolates from group B (preliminarily as A. tenuissima) were then identified as A. alternata, along with the isolates from group A. However, there is still room for further investigation to determine presence of the AM-toxin gene and to verify their ability to produce AM-toxin.

In the last ten years, only small-spore Alternaria species have been described causing Alternaria leaf blotch and fruit spot of apple. Alternaria alternata and A. arborescens have been the most prevalent in different growing regions, including Australia (Harteveld et al., 2013), Chile (Elfar et al., 2018a), France (Fontaine et al., 2021), Italy (Rotondo et al., 2012), New Zealand (Toome-Heller et al., 2018), and Spain (Cabrefiga et al., 2023). These studies indicate that A. alternata and A. arborescens are the main causal agents of Alternaria leaf blotch and fruit spot in these regions, and that both species coexist in the same orchards (Fontaine et al., 2021). Additionally, these fungi are known to be well distributed on flowers and fruits from early season to harvest, serving as potential inoculum sources (Niem et al., 2007; Elfar et al., 2019). In the San Joaquin Valley of California, A. alternata and A. arborescens have been reported as the most prevalent species associated with Alternaria diseases in other fruit and nut crops, including Alternaria leaf spot of almond (Teviotdale et al., 2001), fruit rot of blueberry (Zhu and Xiao, 2015), fruit rot of mandarin (Wang et al., 2021), heart rot of pomegranate (Luo et al., 2017), and Alternaria late blight of pistachio (Pryor and Michailides, 2002). Therefore, the present study corroborates that both of these species are well adapted to the environmental conditions of the Central Valley, and that susceptible crops constitute inoculum sources of Alternaria species. Additionally, in the USA, specifically on the East Coast, there are reports of Alternaria leaf spots in field crops (Filajdić and Sutton, 1991) and postharvest fruit spots caused by Alternaria species (Jurick II et al., 2014; Kou et al., 2014).

Pathogenicity tests on detached leaves and fruits are common and efficient practices to fulfill Koch's postulates for Alternaria species on apples (Harterveld et al., 2014b; Gur et al., 2017; Elfar et al., 2018a; Toome-Heller et al., 2018; Fontaine et al., 2021). Rotondo et al. (2012) concluded that bioassays on detached leaf tissues were reproducible with unambiguous symptoms. Furthermore, greater proportions of lesions developed on wounded than on nonwounded leaves (Rotondo et al., 2012). Similar results have been observed on different crops. Examples include pistachios, where unwounded inoculated leaves did not develop substantial lesions (Pryor and Michailides, 2002), and on Amaranthus hybridus, where nonwounded inoculated leaves remained asymptomatic (Blodgett and Swart, 2002). However, Alternaria species are capable of infecting and colonizing healthy leaves, and these infections generally remain latent until leaf defenses are compromised, making them more susceptible due to injury, stress, or senescence (Blodgett and Swart, 2002; Pryor and Michailides, 2002; Rotondo et al., 2012).

Harteveld *et al.* (2014b) determined that regardless of the *Alternaria* species and the symptom they were originally obtained from (leaf blotch or fruit spot), all isolates were pathogenic on detached nonwounded leaves. However, not all the tested isolates caused fruit spots on attached nonwounded fruits, regardless of the symptom they were recovered from. None of the *A. arborescens* isolates they studied were pathogenic on fruits. Therefore, differential tissue specificity probably occurs across isolates. Similarly, Elfar *et al.* (2018b) found that *Alternaria* isolates obtained from leaf blotch symptoms were incapable to produce symptoms on fruits. In the present study, all the isolates of *A. alternata* and *A. arborescens* were pathogenic on leaves and fruits, regardless of the isolate or the symptom it was obtained from. Statistically significant differences (P < 0.001) were detected between isolates for lesion diameters, indicating differences in virulence. Similar results have been described in previous studies, which suggest that pathogenicity is isolate-dependent rather than species-dependent (Rotondo *et al.*, 2012; Harteveld *et al.*, 2014b; Fontaine *et al.*, 2021).

This study is the first to identify Alternaria species causing leaf blotch and fruit spot of apple in California, although a larger scale survey is required to establish the importance and extent of these pathogens. Based on the our results, prevalence of leaf blotch was up to 30%, which is greater than that in compared to Chile, where the observed prevalence was from 0.1 to 4.0% (Elfar et al., 2018a). However, the prevalence of fruit spot in the present study was less than 1%, which is similar to that reported in Australia (< 2%) (Harteveld et al., 2014a). In Israel, high prevalence levels have been recorded after severe outbreaks of Alternaria leaf blotch and fruit spot in 'Pink Lady' orchards, with up to 80 % of the fruit affected (Gur et al., 2017). Therefore, Californian isolates may be less virulent than the Israeli isolates, or the environmental conditions in California are less conducive for the development of these diseases. Epidemiological studies have shown that the diseases develop when temperatures range between 12 and 28°C, and the severity of Alternaria leaf spot increases with increasing duration of moisture (Filajdić and Sutton, 1992). These conditions coincide with the conidia release, which commences when median temperatures exceed 12.5 °C in association with precipitation events (Cabrefiga et al., 2023). At the optimum temperature (23.5°C) only 5.1 h of wetness were required for light infections, and 12.7 h for severe infections (Filajdić and Sutton, 1992). In the San Joaquin Valley, springs (April and May) are characterized by high rainfall and moderate temperatures (15 to 19°C), and these are followed by dry summers (June and August) with temperatures between 25 and 33°C (Mila et al., 2005). Therefore, the risks of severe Alternaria leaf blotch and fruit spot outbreaks are likely to be low, due to the absence of rainy days during summer. However, the presence of overhead sprinklers used by growers during the summer could be a predisposing factor for the development of Alternaria leaf blotch and fruit spot of apple.

The present study is the first to report *A. alternata* and *A. arborescens* associated with apple leaf blotch and fruit spot in California. Currently, these are considered as minor apple diseases in this state. However, the present results do not exclude the possibility that other *Alternaria* species may be associated with leaf spot and

fruit spot of apple in California. Furthermore, these results serve as a starting point for understanding etiology of these diseases, and establishing disease management strategies in case outbreaks occur when predisposing conditions are present.

ACKNOWLEDGEMENTS

The authors thank cooperating apple growers for allowing use their orchards for sampling.

LITERATURE CITED

- Andrew M., Peever T.L., Pryor B.M., 2009. An expanded multilocus phylogeny does not resolve morphological species within the small-spored *Alternaria* species complex. *Mycologia* 101: 95–109. https://doi. org/10.3852/08-135
- Blodgett J. T., Swart W. J. 2002. Infection, colonization, and disease of *Amaranthus hybridus* leaves by the *Alternaria tenuissima* group. *Plant Disease* 86: 1199– 1205. https://doi.org/10.1094/PDIS.2002.86.11.1199
- Cabrefiga J., Salomon M.V., Vilardell P., 2023. Improvement of Alternaria Leaf Blotch and Fruit Spot of Apple Control through the Management of Primary Inoculum. *Microorganisms* 11: 101. https://doi. org/10.3390/microorganisms11010101
- California Apple Commission, 2023. California Apple Statistics. Available at: http://www.calapple.org/caapple-statistics.html Accessed September 14, 2023.
- CDFA, 2022. California Agricultural Statistics Review 2021-2022. California Department of Food & Agriculture. Available at:https://www.cdfa.ca.gov/Statistics/PDFs/2022_Ag_Stats_Review.pdf Accessed May 4, 2023.
- Elfar K., Zoffoli J.P., Latorre B.A., 2018a. Occurrence of Alternaria blotch associated with *Alternaria alternata*, *A. arborescens*, *A. infectoria* and *A. tenuissima* on apples in Chile. *Plant Disease* 102: 1668. https://doi. org/10.1094/PDIS-01-18-0156-PDN
- Elfar K., Zoffoli J.P., Latorre B.A., 2018b. Identification and characterization of *Alternaria* species associated with moldy core of apple in Chile. *Plant Disease* 102: 2158– 2169. https://doi.org/10.1094/PDIS-02-18-0282-RE
- Elfar K., Zoffoli J.P., Latorre B.A., 2019. *Alternaria* spp. on apparently healthy apples as a potential inoculum source for moldy core development and the effect of resistant and susceptible apple cultivars. *European Journal of Plant Pathology* 155: 743–754. https://doi. org/10.1007/s10658-019-01802-2

- Filajdić N., Sutton T., 1991. Identification and distribution of *Alternaria mali* on apples in North Carolina and susceptibility of different varieties of apples to Alternaria blotch. *Plant Disease* 75: 1045–1048. https://doi.org/10.1094/PD-75-1045.
- Filajdić N., Sutton T.B., 1992. Influence of temperature and wetness duration on infection of apple leaves and virulence of different isolates of *Alternaria mali. Phytopathology* 82: 1279–1283. https://doi.org/10.1094/ Phyto-82-1279
- Fontaine K., Fourrier-Jeandel C., Armitage A.D., Boutigny A.L., Crépet M., ... Aguayo J., 2021. Identification and pathogenicity of *Alternaria* species associated with leaf blotch disease and premature defoliation in French apple orchards. *PeerJ*: e12496. https:// doi.org/10.7717/peerj.12496
- Gur L., Reuveni M., Cohen Y., 2017. Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by *Alternaria alternata* f. sp. *mali* on cv. Pink Lady in Israel. *European Journal of Plant Pathology* 147: 695–708. https://doi.org/10.1007/s10658-016-1037-0
- Gur L., Reuveni M., Cohen Y., 2018. Phenology-Based Management of Alternaria Fruit Rot in Pink Lady Apples. *Plant Disease* 102: 1072-1080. https://doi. org/10.1094/PDIS-05-17-0735-RE
- Harteveld D.O.C., Akinsanmi O.A., Drenth A., 2013. Multiple *Alternaria* species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. *Plant Pathology* 62: 289–297. https://doi. org/10.1111/j.1365-3059.2012.02637.x
- Harteveld D.O.C., Akinsanmi O.A., Chandra K., Drenth A., 2014a. Timing of infection and development of Alternaria diseases in the canopy of apple trees. *Plant Disease* 98: 401–408. https://doi.org/10.1094/PDIS-06-13-0676-RE
- Harteveld D.O.C., Akinsanmi O.A., Drenth A., 2014b. Pathogenic variation of *Alternaria* species associated with leaf blotch and fruit spot of apple in Australia. *European Journal of Plant Pathology* 139: 789–799. https://doi.org/10.1007/s10658-014-0433-6
- Hong S.G., Cramer R.A., Lawrence C.B., Pryor B.M., 2005. Alt al allergen homologs from *Alternaria* and related taxa: Analysis of phylogenetic content and secondary structure. *Fungal Genetics and Biology* 42: 119–129. https://doi.org/10.1016/j.fgb.2004.10.009
- Jurick II W. M., Kou L.P., Gaskins V.L., Luo Y.G. 2014. First Report of Alternaria alternata Causing Postharvest Decay on Apple Fruit During Cold Storage in Pennsylvania. Plant Disease 98: 690. https://doi. org/10.1094/PDIS-08-13-0817-PDN
- Kou L.P., Gaskins V.L., Luo Y.G., Jurick II W.M. 2014. First Report of *Alternaria tenuissima* Causing post-

harvest decay on apple fruit from cold storage in the United States. *Plant Disease* 98: 690. https://doi. org/10.1094/PDIS-07-13-0802-PDN

- Lawrence D.P., Gannibal P.B., Peever T.L., Pryor B.M., 2013. The sections of *Alternaria*: Formalizing speciesgroups concepts. *Mycologia* 105: 530–546. https://doi. org/10.3852/12-249
- Lawrence D.P., Rotondo F., Gannibal P.B., 2016. Biodiversity and taxonomy of the pleomorphic genus *Alternaria. Mycological Progress* 15: 3–25. https://doi. org/10.1007/s11557-015-1144-x
- Luo Y., Hou L., Forster H., Pryor B., Adaskaveg J.E., 2017. Identification of *Alternaria* species causing heart rot of pomegranates in California. *Plant Disease* 101: 421-427. https://doi.org/10.1094/PDIS-08-16-1176-RE
- Mila A.L., Driever G.F., Morgan D.P., Michailides T.J., 2005. Effects of latent infection, temperature, precipitation, and irrigation on panicle and shoot blight of pistachio in California. *Phytopathology* 95: 926-932. https://doi.org/10.1094/PHYTO-95-0926
- Niem J., Miyara I., Ettedgui Y., Reuveni M., Flaishman M., Prusky D., 2007. Core rot development in red delicious apples is affected by susceptibility of the seed locule to *Alternaria alternata* colonization. *Phytopathology* 97: 1415–1421. https://doi.org/10.1094/PHY-TO-97-11-1415
- Ozgonen H., Karaca G., 2006. First report of *Alternaria mali* causing necrotic leaf spot of apples in Turkey. *Plant Pathology* 55: 578. https://doi.org/10.1111/j.1365-3059.2006.01372.x
- Pryor B.M., Michailides T.J., 2002. Morphological, pathogenic, and molecular characterization of *Alternaria* isolates associated with Alternaria late blight of pistachio. *Phytopathology* 92: 406–416. https://doi. org/10.1094/PHYTO.2002.92.4.406
- Rotondo F., Collina M., Brunelli A., Pryor B.M., 2012. Comparison of *Alternaria* spp. collected in Italy from apple with *A. mali* and other AM-toxin producing strains. *Phytopathology* 102: 1130–1142. https://doi. org/10.1094/PHYTO-04-12-0076-R
- Sawamura K., 2014. Alternaria Blotch. In: Compendium of Apple and Pear Diseases and Pests (2nd ed.) (T.B. Sutton, H.S. Aldwinckle, A.M. Agnello, J.F. Walgenbach., ed.). APS Press, The American Phytopathological Society, St Paul, Minnesota United States of America, 32–33.
- Serdani M., Kang J.C., Peever T.L., Andersen B., Crous P.W. 2002. Characterization of *Alternaria* species groups associated with core rot of apples in South Africa. *Mycological Research* 106: 561–569. https:// doi.org/10.1017/S0953756202005993

- Simmons E.G., 2007. Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 780 pp.
- Soleimani M.J., Esmailzadeh M., 2007. First report of Alternaria mali causing apple leaf blotch disease in Iran. Australasian Plant Disease Notes 2: 57–58. https://doi.org/10.1071/DN07023
- Sutton T.B. Aldwinckle H.S., Agnello A.M., Walgenbach J.F. (eds.)., 2014. Compendium of Apple and Pear Diseases and Pests. 2nd ed. APS Press, The American Phytopathological Society. St Paul, Minnesota, United States of America, 218 pp
- Tamura K. Stecher G., Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Molecular Biology and Evolution* 38: 3022–3027. https://doi.org/10.1093/molbev/msab120
- Teviotdale B.L., Viveros M., Pryor B., Adaskaveg J.E., 2001. First report of Alternaria leaf spot of almond caused by species in the Alternaria alternata complex in California. Plant Disease 85: 558. https://doi. org/10.1094/PDIS.2001.85.5.558B
- Toome-Heller M., Baskarathevan J., Burnip G., Alexander B., 2018. First Report of apple leaf blotch caused by Alternaria arborescens complex in New Zealand. New Zealand Journal of Crop and Horticultural Science 46: 354–359. https://doi.org/10.1080/01140671.2 018.1427117
- Wang F., Saito S., Michailides T.J., Xiao C.L., 2021. Phylogenetic, morphological, and pathogenic characterization of *Alternaria* species associated with fruit rot of mandarin in California. *Plant Disease* 105: 2606– 2617. https://doi.org/10.1094/PDIS-10-20-2145-RE
- Woudenberg J.H.C., Groenewald J.Z., Binder M., Crous P.W., 2013. Alternaria redefined. Studies in Mycology 75: 171–212. https://doi.org/10.3114/sim0015
- Woudenberg J.H.C., Seidl M.F., Groenewald J.Z., de Vries M., Stielow J.B., Thomma B.P.H.J., Crous P.W. 2015. *Alternaria* section *Alternaria*: species, formae speciales or pathotypes? *Studies in Mycology* 82: 1–21. https://doi.org/ 10.1016/j.simyco.2015.07.001
- Zhu X. Q. and Xiao C. L., 2015. Phylogenetic, morphological and pathogenic characterization of *Alternaria* species associated with fruit rot of blueberry in California. *Phytopathology* 105: 1555–1567. https://doi. org/ 10.1094/PHYTO-05-15-0122-R