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Summary. Black foot is a serious soilborne fungal disease causing decline of young 
grapevines. Affected plants show brown to dark streaks developing from the rootstock 
bases, wood necroses at trunk bases, sunken necrotic lesions on roots, and reduced 
root biomass. Several fungi, commonly known as Cylindrocarpon-like asexual morphs, 
have been associated with black foot. Nursery vines are infected during rooting in 
propagation processes, which is important for dissemination of the pathogens. Species 
associated with black foot in nursery vines produced in Uruguay were characterized 
by molecular, phenotypical and pathogenicity studies. From 2017 to 2019, 181 rooted 
vines grafted onto ‘1103P’, ‘SO4’, ‘101-14’, ‘3309C’ or ‘Gravesac’ rootstocks were sam-
pled, and 71 Cylindrocarpon-like fungal isolates were recovered from rootstock tissues 
(basal ends and roots). Based on multi-gene phylogenetic analyses of HIS3, TEF and 
TUB2, and supported by phenotypical characterization, five species of Dactylonectria 
and Ilyonoectria were identified, with D. macrodidyma being the most prevalent fol-
lowed by D. novozelandica, D. torresensis, D. palmicola and I. liriodendri. Four Ilyonec-
tria isolates could not be identified to species level. Isolate pathogenicity was assessed 
using healthy rooted ‘Gravesac’ plants. After three months, isolates of all species infect-
ed the plants, causing necrotic lesions on roots and reducing root biomass. On average, 
39% of ready-to-plant nursery vines were affected by black foot, emphasizing the need 
to develop integrated management to reduce black foot incidence in Uruguayan grape-
vine nurseries, based on studies under local conditions.
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INTRODUCTION

Black foot is a serious soilborne fungal disease affecting nursery grape-
vine plants and young vineyards (Halleen et al., 2006a; Alaniz et al., 2007; 
Gramaje and Armengol, 2011; Agustí-Brisach and Armengol, 2013). This dis-
ease, considered a major cause of young vine decline (Gramaje and Armengol, 
2011), occurs in the main grape-growing countries worldwide, including Por-
tugal (Rego et al., 2000), South Africa (Fourie and Halleen, 2001), New Zea-
land (Halleen et al., 2004), France (Halleen et al., 2004), United States (Petit 
and Gubler, 2005), Spain (Alaniz et al., 2007), Australia (Whitelaw-Weckert et 
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al., 2007), Uruguay (Abreo et al., 2010), Canada (Petit et 
al., 2011), Turkey (Özben et al., 2012), Iran (Mohammadi 
et al., 2013), Brazil (dos Santos et al., 2014), Italy (Carlucci 
et al., 2017), Czech Republic (Pečenka et al., 2018), Alge-
ria (Aigoun-Mouhous et al., 2019), China (Ye et al., 2021), 
and Argentina (Longone et al., 2022).

Grapevines affected by black foot pathogens show 
reduced root biomass, sunken necrotic root lesions, dark 
brown to black streaks that develop from rootstock bas-
es, and wood necroses at trunk bases (Rego et al., 2000; 
Halleen et al., 2006a; Alaniz et al., 2007; Agustí-Brisach 
and Armengol, 2013). Foliar symptoms usually appear 
during the first 3 to 5 years after planting, and involve 
delayed and failed bud-break, reduced vigour, short-
ened internodes, chlorotic foliage with necrotic margins, 
wilting and usually plant death (Halleen et al., 2006a; 
Agustí-Brisach and Armengol, 2013). Death occurs 
quickly when young vines are infected, while as vines 
age, a more gradual decline occurs (Gubler et al., 2004).

Black foot was first known to be caused by “Cylin-
drocarpon” species, but in the last decade, this genus 
has undergone extensive taxonomic revision (Chaverri 
et al., 2011; Cabral et al., 2012a, 2012b; Lombard et al., 
2014). Currently, more than 30 fungal species of Campy-
locarpon, Cylindrocladiella, Dactylonectria, Ilyonectria, 
Neonectria, Pleiocarpon, and Thelonectria, commonly 
known as Cylindrocarpon-like asexual morphs, are asso-
ciated with black foot (Agustí-Brisach and Armengol, 
2013; Lombard et al., 2014; Carlucci et al., 2017; Aigoun-
Mouhous et al., 2019). Among these, D. torresensis has 
been reported as the prevalent species in several coun-
tries (Reis et al., 2013; Berlanas et al., 2017; Carlucci et al., 
2017; Aigoun-Mouhous et al., 2019; Akgül et al., 2022).

Although the epidemiology of black foot has not 
been completely clarified, it is well known that black 
foot pathogens can produce abundant conidia which 
are dispersed by free water in the soil (Petit et al., 2011) 
and can infect grapevines through natural openings or 
wounds in trunk bases and roots (Agustí-Brisach and 
Armengol, 2013). Some species are also able to pro-
duce chlamydospores which allow long-term survival 
in soil (Halleen et al., 2004). In addition, several weeds 
are hosts of black foot pathogens, and these hosts can 
be inoculum sources for grapevine infections (Agustí-
Brisach et al., 2011).

Black foot pathogens have been frequently isolated 
from nursery grapevine plants, indicating that these 
plants play important roles in the spread of this disease 
(Halleen et al., 2006a; Abreo et al., 2010; Agustí-Brisach 
et al., 2013; Cardoso et al., 2013; Carlucci et al., 2017; 
Pintos et al., 2018; Aigoun-Mouhous et al., 2019; Berla-
nas et al., 2020; Akgül et al., 2022). Several studies have 

focused on determining when infection occurs dur-
ing propagation processes, and there is consensus that 
the nursery rooting phase is where black foot pathogen 
infections increase significantly (Halleen et al., 2003; 
Agustí-Brisach et al., 2013; Carbone et al., 2022). These 
pathogens can infect nursery plants from the incomplete 
callus zones or from wounds on roots during rooting in 
soil, as demonstrated by Probst et al. (2019).

A recent study in Uruguay revealed that many plants 
produced at a local nursery were infected with black 
foot pathogens (Carbone et al., 2022). The present study 
focused on molecular and phenotypic characterization of 
the pathogens associated with black foot in nursery vines 
and assessed the pathogenicity of identified species after 
inoculation of rooted grapevine rootstocks.

MATERIALS AND METHODS

Sampling material and fungal isolations

During 2017, 2018 and 2019, a total of 181 1-year-
old ready-to-plant grapevine plants, grafted onto root-
stocks of ‘1103P’ (Vitis berlandieri × V. rupestris), ‘SO4’ 
(V. riparia × V. berlandieri), ‘101-14’ (V. riparia × V. rup-
estris), ‘3309C’ (V. riparia × V. rupestris), or ‘Gravesac’ 
(‘161-49’ (V. berlandieri × V. riparia) × ‘3309C’), were 
randomly selected from the main commercial grape-
vine nursery in Uruguay. Fifty-two plants were sam-
pled in 2017, 83 in 2018, and 46 were sampled in 2019. 
The nursery is located in Canelones (34°34’48.45”S; 
56°17’50.17”W), the traditional grape-growing region of 
Uruguay. To isolate black foot pathogens, the basal part 
and roots of each plant were separated and then surface 
sterilized by soaking each portion in 95% ethanol for 1 
s followed by flaming (Delgado et al., 2016). Cross and 
longitudinal cuts were then made at the basal portion 
of the rootstock to reveal internal black foot symptoms. 
Seven pieces of wood, approx. 5 mm in length, were 
taken from the margin between necrotic and apparent-
ly healthy tissues, using a sterile scalpel, including the 
basal part of the rootstock and roots. In 2017 and 2019, 
the wood pieces were selected equally from the basal 
parts of the rootstocks and roots, while in 2018, the 
pieces were selected predominantly from the basal parts 
of the rootstocks. The small pieces of wood were plated 
onto potato dextrose agar (PDA) (Oxoid Ltd.) supple-
mented with 0.4 g L−1 of streptomycin sulphate (PDAS) 
(Sigma-Aldrich). The plates were incubated for 5 to 21 
d at 25°C in the dark and examined daily for fungal 
growth. Fungal colonies resembling black foot patho-
gens, i.e., with aerial and cottony mycelia ranging from 
white to yellow or light to dark brown, and with mac-
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roconidia and microconidia (Halleen et al., 2004; 2006b; 
Cabral et al., 2012a), were subculture onto fresh PDA 
plates to obtain pure cultures. Single conidium isolates 
were obtained (Carlucci et al., 2017), and were stored in 
colonized sterile filter papers at -20°C. Representative 
isolates were deposited in the fungal culture collection of 
the Department of Plant Protection, Faculty of Agrono-
my, University of the Republic, Uruguay.

Molecular identification of isolates

Total genomic DNA was extracted from 1-week old 
pure cultures grown on PDA at 25°C in the dark, using 
the commercial Quick-DNATM Fungal/Bacterial Mini-
prep Kit (ZymoResearch), following the manufactureŕ s 
instructions. Primary identification of black foot patho-
gens was conducted by sequencing part of the histone 
H3 gene (HIS3) and comparing the sequences with those 
deposited in the GenBank, using the BLAST source 
(https://blast.ncbi.nlm.nih.gov/Blast.cgihttps://blast.
ncbi.nlm.nih.gov/Blast.cgihttps://blast.ncbi.nlm.nih.gov/
Blast.cgi). To confirm the isolate identity, partial regions 
of the translation elongation factor 1-α (TEF) and the 
beta-tubulin (TUB2) genes were also sequenced, and a 
multilocus phylogenetic analysis was performed on the 
three combined gene regions (Cabral et al., 2012a; 2012b; 
Berlanas et al., 2020). The primers used were CYLH3F 
and CYLH3R for HIS3 (Crous et al., 2004), CylEF-1 
(5’-ATGGGTAAGGAVGAVAAG AC-3’; J. Z. Groe-
newald, unpublished) and CylEF-R2 (Crous et al., 2004) 
for TEF, and T1 (O’Donnell and Cigelnik, 1997) and 
BT2b (Glass and Donaldson, 1995) for TUB2.

Polymerase chain reaction (PCR) amplifications 
were performed on a MultiGene™ Mini (Labnet Interna-
tional Inc.). Each PCR reaction contained 1× PCR buffer, 
2.5 mM MgCl2, 0.4 mM of each dNTP, 0.4 μM of each 
primer, 1 U of DNA polymerase (Bioron), and 1 μL of 
template DNA. The PCR reaction was adjusted to a final 
volume of 20 μL with MQ water. The PCR conditions 
consist of an initial step at 94°C for 3 min followed by 
34 cycles for TUB2 and TEF regions, and 40 cycles for 
HIS3 gene, of denaturation at 94°C for 30 s, anneal-
ing at 58°C for TUB2 and TEF and 55°C for HIS3, for 
30 s, and elongation at 72°C for 45 s. A final extension 
was performed at 72°C for 10 min. PCR products were 
visualized in 1.5% agarose gels stained with GelRedTM, 
through a transilluminator under UV light. A GeneR-
uler 100-bp DNA ladder plus (Thermo) was used as a 
molecular weight marker. PCR products were purified 
and sequenced by Macrogen Inc., Seoul, Korea.

For each fungus genus, sequences of each gene region 
were aligned using the ClustalW program, available with-

in MEGA 11.0.11 (https://www.megasoftware.net/), and 
were manually edited when necessary. Related sequenc-
es and sequences of the phylogenetically closest species 
obtained from GenBank, including ex-type isolates, were 
incorporated to the alignments (Supplementary Table 1). 
Multilocus alignments were carried out using Sequence 
Matrix v.1.8 (http://www.ggvaidya.com/taxondna/). Mul-
tilocus phylogenetic analyses were constructed using 
Bayesian inference (BI) and Maximum likelihood (ML) 
methods. BI and ML analyses were inferred with, respec-
tively, MrBayes v3.2.7a and RAxML v8.2.12 programs, 
implemented in CIPRES Science Gateway v3.3 (http://
www.phylo.org/). For BI analysis, best-fit models of nucle-
otide substitution were selected for each gene according to 
the Akaike information criterion (AIC), using the jMod-
elTest2 v2.1.6 tool (Darriba et al., 2012) implemented in 
CIPRES Science Gateway v3.3. Four Markov chain Monte 
Carlo (MCMC) chains were run simultaneously, starting 
from a random tree to 10 million of generations. Trees 
were sampled every 1000 generations, and the first 2500 
were discarded as the burn-in phase of each analysis. 
Posterior probabilities were determined from a majority-
rule consensus tree generated from the remaining 7500 
trees. For the ML analysis, the Generalized Time Revers-
ible (GTR) model, with gamma correction (G) nucleotide 
substitution, and 1000 bootstrap iterations, were indi-
cated. The other parameters were used as default settings. 
Sequences obtained in this study were submitted to the 
GenBank database (Supplementary Table 2).

Morphological characterization of isolates

A sub-sample of nine representative isolates belong-
ing to Dactylonectria and Ilyonectria, identified in this 
study using molecular analyses, was selected for phe-
notypical characterization (Supplementary Table 2). 
Cultures were grown on PDA and incubated at 25°C in 
darkness. Ten days later, colony morphological char-
acteristics were observed, and colony colour (Rayner, 
1970) was determined. Lengths and widths of 50 conidia 
per isolate, including macro- and microconidia, were 
measured at 400× magnification, using a digital cam-
era (Microscope eye-piece camera, AM-4023X, Taiwan) 
incorporated into the microscope. Conidium colour, 
shape, and number of septate, and presence of chlamyd-
ospores, were recorded.

Pathogenicity tests

The nine isolates selected for morphological charac-
terization were used to determine their pathogenicity on 
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rooted grapevine plants. Dormant cuttings (0.3 m long) 
of ‘Gravesac’ rootstock were surface disinfected according 
to Akgül et al. (2022), placed in a plastic box containing 
sterilized growth substrate, irrigated, and kept in an accli-
matized room (25°C, 85% relative humidity, 12 h photo-
period) for 1 month to induce root formation. The isolates 
were grown on PDA at 25°C in the dark for 2 weeks and 
were then liquefied in distilled water (one plate in 150 mL 
of distilled water). Root tips of the rooted cuttings were 
slightly cut and were then inoculated by immersing the 
roots in the culture suspension for 30 s (one liquified plate 
of one isolate per plant). The inoculated plants were then 
individually planted in a 2 L capacity pot containing com-
mercial plant growth substrate. Six plants per isolate were 
inoculated, and six plants were treated with distilled water 
as controls. The plants were irrigated with tap water and 
maintained in greenhouse conditions (at 20±2ºC), in a 
completely randomized experimental design.

Three months after inoculation the plants were 
uprooted, and their roots were carefully washed with 
tap water and dried in an air-circulated oven at 65°C 
for 48 h to constant weight, and root dry weights were 
recorded. Root dry weight data were analysed for nor-
mality using the Shapiro-Wilk test and for homogene-
ity of variance using Levene’s test. Data were subjected 

to statistical analyses by performing analysis of variance 
(ANOVA) and means comparison by Duncan test at P = 
0.05, using InfoStat/E version 2020 (http://www.infostat.
com.ar). In addition, Koch ś postulates were completed 
by re-isolation of the inoculated fungi. For this, roots 
were separated, washed with tap water, and surface steri-
lized (as above). Small pieces of the roots were then cut, 
plated onto PDAS, and incubated in the same conditions 
as indicated above. Isolates identity was determined by 
morphological characteristics.

RESULTS

Fungal isolations

A total of 71 isolates resembling Cylindrocarpon-
like asexual morphs were obtained from ready-to-plant 
grafted vines with characteristic black foot vascular 
symptoms. The symptoms consisted of wood necroses at 
the trunk bases, dark brown streaks developing from the 
bases of the plants, and sunken necrotic lesions on the 
roots (Figure 1). Based on the isolation frequency, inci-
dence of black foot was 60% in 2017, 15% in 2018 and 
61% in 2019.

Figure 1. Internal symptoms of black foot in ready-to-plant nursery grapevine plants. Wood necrosis and dark brown streaks developing 
from the base of the plant (a) and necrosis in roots (b).
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Molecular identifi cation of isolates

BLAST search of the partial HIS3 gene region placed 
58 isolates in Dactylonectria and 13 within Ilyonectria.
Subsequently, phylogeny of the individual data sets from 
the HIS3, TUB2 and TEF gene regions showed no sig-
nifi cant confl icts in tree topology, so the trees were com-
bined. Th e Dactylonectria dataset contained 96 taxa (58 
from this study and two outgroups) and 1856 characters 
including gaps (TUB2 = 1-579; TEF = 580-1387; HIS3 = 
1388-1856), of which 564 were parsimony informative. 
Th e Ilyonectria dataset consisted of 52 taxa (13 from this 
study and two outgroups) and 1882 characters includ-
ing gaps (TUB2 = 1-567; HIS3 = 568-1038; TEF = 1039-
1882), of which 526 were parsimony informative.

Th e AIC best-fi t evolutionary models of nucleotide 
substitution used for the Bayesian Inference analysis for 
the Dactylonectria dataset were GTR with gamma dis-
tributed with invariant sites rates (G+I) for HIS3, and 
GTR+G for TUB2 and TEF. For Ilyonectria, the best-fi t 
nucleotide substitution models were GTR+G+I for HIS3, 
Hasegawa-Kishino-Yano (HKY) model +G for TUB2, 
and GTR+G for TEF. In both genera, the topologies of 
the BI and ML consensus trees were similar, so only the 
BI trees with posterior probability values and bootstrap 
support values are presented.

Phylogenetic analyses allowed identifi cation of four 
species among the 58 Dactylonectria isolates, with D. 
macrodidyma being the prevalent species (n = 31), fol-
lowed by D. novozelandica (n = 14), D. torresensis (n = 
10), and D. palmicola (n = 3) (Figure 2). Within the 
Ilyonectria group, the analyses identifi ed nine isolates 
as I. liriodendri, and the remaining four isolates were 
grouped in a separate clade with the unidentifi ed Ily-
onectria strain STEU 8918 from South Africa. Th e node 
support value for this clade was 0.75 according to the 
BI method, while with ML method this node was not 
formed (Figure 3).

Figure 2. Bayesian inference phylogenetic tree built using the con-
catenated sequences of the HIS3, TEF and TUB2 genomic regions 
of 58 Dactylonectria isolates from Uruguayan nursery grapevines, 
and sequences retrieved from the GenBank (ex-type indicated in 
bold font). Campylocarpon fasciculare CBS 112613 and Campylo-
carpon pseudofasciculare CBS 112679 were used as the outgroups. 
Posterior probability and maximum likelihood bootstrap support 
values greater than, respectively, 0.70 and 70 are shown at the 
nodes before and aft er each branch. Th e scripts indicate that the 
nodes do not exist in the maximum likelihood tree. Double hash 
marks indicate branch lengths shortened at least 2-fold to facili-
tate visualization. Th e scale bar represents the estimated number of 
substitutions per site.
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Morphological characterization of isolates

All the Dactylonectria and Ilyonectria isolates had 
aerial and cottony mycelia, and their colonies were white 
to yellow or light to dark brown on PDA. Conidiophores 
were simple or complex, sporodochial, and produced 
microconidia and macroconidia (Figure 4, Table 1). 
Macroconidia were predominantly straight, occasion-
ally slightly curved and typically cylindrical, for the D. 
macrodidyma, D. novozelandica, D. torresensis, D. palmi-
cola, and I. liriodendri isolates. Microconidia were gen-
erally ellipsoidal to ovoidal and straight. In addition, the 
isolates URU-VD-80 and URU-VD-242 produced chla-
mydospores, which is consistent with the characteristics 
expected for D. macrodidyma and I. liriodendri (Halleen 
et al., 2006b). The isolate URU-VD-84, identified as Ily-
onectria sp., also had simple or complex conidiophores, 
produced sporodochia, and microconidia that were 0-1 
septate, ellipsoidal to ovoidal and slightly curved, and 
macroconidia that were 1-3 septate (predominantly 
1-septate), cylindrical and usually slightly curved, and 
produced chlamydospores (Figure 4, Table 1).

Pathogenicity tests

All the evaluated isolates were pathogenic on 
‘Gravesac’ rootstock cuttings. At 3 months after inocu-
lation, significant reductions (P = 0.0193) of mean root 
biomass were recorded from the inoculation treat-
ments compared with the control treatment (Table 2). 
The inoculated plants had sunken necrotic lesions on 
roots and more brownish roots than the non-inocu-
lated plants. Mean root dry weights ranged from 1.14 
g to 1.76 g in inoculated plants and was 2.03 g for the 
non-inoculated controls. According to root dry weight 
reduction, both D. macrodidyma isolates, URU-VD-80 
and URU-VD-231, were the most virulent, causing, 
respectively, 44% and 42% reductions compared with 
the non-inoculated control. The isolates of I. lirioden-
dri (URU-VD-242), D. torresensis (URU-VD-234) and 
D. novozelandica (URU-VD-71) were the least viru-
lent (causing, respectively, 20%, 18% and 13% reduc-
tions in root dry weight), but the mean root weights 
from these isolates were not significantly different (P > 
0.05) from the control treatment. The other evaluated 
isolates showed intermediate behaviour. In addition, 
all the inoculated fungi were re-isolated from inocu-
lated plants, with re-isolation rates ranging from 22% to 
100%, whereas no pathogens were re-isolated from the 
non-inoculated controls (Table 2).

Figure 3. Bayesian inference phylogenetic tree built using the con-
catenated sequences of the HIS3, TEF and TUB2 genomic regions 
of 13 Ilyonectria isolates obtained from Uruguayan nursery grape-
vines, and sequences retrieved from the GenBank (ex-type indi-
cated in bold font). Campylocarpon fasciculare CBS 112613 and 
Campylocarpon pseudofasciculare CBS 112679 were used as out-
groups. Posterior probability and maximum likelihood bootstrap 
support values greater than 0.70 and 70 are shown at the nodes, 
respectively, before and after each bar. The scripts indicate that the 
nodes do not exist in the maximum likelihood tree. Double hash 
marks indicate branch lengths shortened at least 2-fold to facilitate 
visualization. The scale bar represents the estimated number of sub-
stitutions per site.
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Figure 4. Morphological characteristics of Dactylonectria and Ilyonectria species isolated from grapevine nursery plants in Uruguay. Ten-
d-old colonies on PDA at 25°C, of D. macrodidyma (a), D. novozelandica (e), D. palmicola (i), D. torresensis (l), I. liriodendri (p), and Ily-
onectria sp. (t). Macro- and microconidia (b), simple conidiophore (c) and a chain of chlamydospores (d) of D. macrodidyma. Macro- and 
microconidia (f) and simple conidiophores (g and h) of D. novozelandica. Macroconidia (j) and a complex sporodochial conidiophore (k) 
of D. palmicola. Macro- and microconidia (m) and simple conidiophores (n and o) of D. torresensis. Macro- and microconidia (q), simple 
conidiophore (r) and a chain of chlamydospores (s) of I. liriodendri. Macro- and microconidia (u), simple conidiophore (v) and chain of 
chlamydospores (w) of Ilyonectria sp. Bars = 10 µm.
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DISCUSSION

Based on phylogenetic analyses, morphological stud-
ies and pathogenicity tests, the present study has identi-
fied five species of Dactylonectria and Ilyonectria caus-
ing black foot in locally produced nursery grapevines in 
Uruguay. The species identified were D. macrodidyma 
(31 isolates), D. novozelandica (14 isolates), D. torresensis 
(ten isolates), I. liriodendri (nine isolates) and D. palmi-
cola (three isolates), while four Ilyonectria isolates could 
not be identified to species level.

All isolates were recovered from nursery grape-
vine plants showing typical black foot symptoms (wood 
necrosis at the trunk bases, dark brown streaks develop-
ing from the bases of plants, and sunken necrotic lesions 
on roots), as previously described by Halleen et al. 
(2006a) and Agustí-Brisach and Armengol (2013). Inci-
dence of black foot based on proportions of pathogen 
isolations, was approx. 60% in 2017 and 2019, but sub-
stantially less (15%) in 2018. This difference was probably 
because isolations in 2018 were predominantly from the 
basal parts of the rootstocks. Probst et al. (2019) demon-
strated that both D. macrodidyma and I. liriodendri can 
infect grapevines through wounded roots and callused 
basal ends. Results obtained in the present study indi-
cate that under Uruguayan nursery production condi-
tions, wounded roots are the main pathway of infection 
for these pathogens, rather than the basal callus tissues 
of the plants.

The multilocus phylogenetic approach allowed identi-
fication of black foot pathogens at species level, and mor-
phological characterization supported these results. Col-

Table 2. Mean root dry weights and proportions of inoculated fun-
gus re-isolations for selected Dactylonectria and Ilyonectria isolates 
inoculated on rooted grapevine cuttings of ‘Gravesac’ rootstock.

Fungal species Isolate Dry root 
weights (g)a

Re-isolation 
(%)

Dactylonectria macrodidyma URU-VD-80 1.14 a 80
D. macrodidyma URU-VD-231 1.17 a 100
D. torresensis URU-VD-79 1.21 ab 86
Ilyonectria sp. URU-VD-84 1.32 ab 22
D. palmicola URU-VD-54 1.37 ab 57
D. novozelandica URU-VD-64 1.47 ab 100
I. liriodendri URU-VD-242 1.62 abc 83
D. torresensis URU-VD-234 1.66 abc 25
D. novozelandica URU-VD-71 1.76 bc 83
Non-inoculated control 2.03 c 0

a Data are the mean of six replicates for each isolate. Means with 
same letter are not significantly different (P = 0.05) according to 
Duncan test.
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ony morphology and characteristics (shape and size) of 
macro- and microconidia, as well as production of chla-
mydospores by some isolates, were consistent with those 
expected for the identified species (Halleen et al., 2004; 
2006b; Cabral et al., 2012a; Gordillo and Decock, 2017).

Dactylonectria macrodidyma was the prevalent spe-
cies found causing black foot in the nursery plants ana-
lysed. This species was first described associated with 
grapevine in South Africa as C. macrodidyma by Halleen 
et al. (2004), and subsequently named as D. macrodidyma 
by Lombard et al. (2014). This species has been associ-
ated with black foot disease in several other countries, 
including New Zealand (Halleen et al., 2004; Probst et 
al., 2019), Chile (Auger et al., 2007), Spain (Alaniz et al., 
2007), Switzerland (Hofstetter et al., 2009), Canada (Petit 
et al., 2011; Úrbez-Torres et al., 2014), Portugal (Cabral et 
al., 2012a; Reis et al., 2013), Turkey (Özben et al., 2012; 
Akgül et al., 2022), Brazil (dos Santos et al., 2014), Alge-
ria (Aigoun-Mouhous et al., 2019), China (Ye et al., 2021) 
and Argentina (Longone et al., 2022). In a previous study 
in Uruguay, Abreo et al. (2010) found D. macrodidyma as 
the prevalent species causing black foot on symptomatic 
plants collected from commercial vineyards. 

The second most common pathogen found was D. 
novozelandica, which was first described in grapevine 
as I. novozelandica by Cabral et al. (2012a), and then re-
named D. novozelandica by Lombard et al. (2014). This 
species has been associated with black foot in New Zea-
land (Cabral et al., 2012a), Peru (Alvarez et al., 2012), 
South Africa (Cabral et al., 2012a), United States (Cabral 
et al., 2012a), Portugal (Reis et al., 2013), Spain (Agustí-
Brisach et al., 2013), Algeria (Aigoun-Mouhous et al., 
2019) and Turkey (Akgül et al., 2022). In Uruguay, D. 
novozelandica has been found causing crown and root 
necrosis on strawberry (Vigliecca et al., 2022).

Dactylonectria torresensis was first described by 
Cabral et al. (2012a) as I. torresensis in grapevine in 
Portugal and was then reclassified as D. torresensis by 
Lombard et al. (2014). This species has been reported as 
the prevalent cause of black foot in Portugal (Reis et al., 
2013), Italy (Carlucci et al., 2017), Spain (Berlanas et al., 
2017), Algeria (Aigoun-Mouhous et al., 2019) and Tur-
key (Akgül et al., 2022). In addition, the fungus has been 
associated with black foot in Australia, New Zealand, 
South Africa, United States (Cabral et al., 2012a), Cana-
da (Úrbez-Torres et al., 2014), and China (Ye et al., 2021).

Dactylonectria palmicola was the fourth Dacty-
lonectria species found associated with black foot in 
this study. This species was described by Gordillo and 
Decock (2017) in Euterpe precatoria in the Amazon 
rainforest of Ecuador. The present study is the first 
record of D. palmicola causing black foot on grapevine. 

The isolates URU-VD-52 and URU-VD-54 identified as 
D. palmicola in the present study, were previously misi-
dentified as D. pauciseptata when phylogenetic analysis 
was performed using only the HIS3 gene region (Car-
bone et al., 2022). Although the HIS3 region has been 
demonstrated to be the most robust locus for identifica-
tion of black foot pathogens (Cabral et al., 2012a), the 
present results suggest that multilocus sequence analysis, 
including HIS3, TUB2 and TEF, is essential to ensure 
correct identification of closely related fungi causing 
black foot.

Within Ilyonectria, I. liriodendri was the prevalent 
species found in the present study. This pathogen was 
first described in grapevine by Halleen et al. (2006b) 
as C. liriodendri, and subsequently classified as I. liri-
odendri by Chaverri et al. (2011). This species has been 
reported on grapevine in South Africa (Halleen et al., 
2006b), Australia (Whitelaw-Weckert et al., 2007), Spain 
(Alaniz et al., 2007), Switzerland (Casieri et al., 2009), 
Iran (Mohammadi et al., 2009), Brazil (Russi et al., 
2010), United States (Petit et al., 2011), Canada (Petit et 
al., 2011; Úrbez-Torres et al., 2014), Portugal (Reis et al., 
2013), New Zealand (Pathrose et al., 2014), Italy (Car-
lucci et al., 2017), Argentina (Longone et al., 2022) and 
Turkey (Akgül et al., 2022). In Uruguay, I. liriodendri 
was first reported affecting symptomatic plants in com-
mercial vineyards by Abreo et al. (2010). 

Isolates classified as Ilyonectria sp. in the present 
study were grouped with the unidentified South Afri-
can Ilyonectria strain STEU 8918, but with a low support 
value (0.75) in the BI analysis, and absence of this clade 
in the ML analysis. For this South African isolate, which 
was obtained by van der Merwe (2019) from the crown 
of a nectarine nursery tree, only the HIS3 gene region 
is available on the GenBank database. This probably 
explains the low support of the clade in the BI phyloge-
netic tree and absence of this clade in the ML tree. The 
pathogenicity tests conducted in the present study con-
firmed pathogenicity of this species to grapevine, which 
emphasizes the importance of prescriptive description of 
this new species. 

Results obtained here have shown that all inoculated 
Dactylonectria and Ilyonectria isolates infected rooted 
‘Gravesac’ rootstocks, but virulence varied among spe-
cies and between isolates within species, which is in 
accordance with previous studies (Probst et al., 2019; 
Aigoun-Mouhous et al., 2019; Berlanas et al., 2020; 
Akgül et al., 2022). After 3 months from inoculation, the 
maximum reduction in root dry weight was 44%, and 
no plant death was recorded. A longer post inoculation 
period may have resulted in greater reductions of root 
biomass, because development of black foot symptoms 
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is usually slow (Whitelaw-Weckert, et al. 2007), and may 
have allowed all isolates to significantly reduce root dry 
weights compared to the control treatment. Whitelaw-
Weckert et al. (2007) were unable to detect consistent 
black foot symptoms after 18 months from inoculation 
with C. liriodendri of 1-year-old rooted V. vinifera plants, 
although they confirmed pathogenicity by re-isolation of 
this fungus, as occurred in the present study.

Dactylonectria macrodidyma was the most aggres-
sive species in the present study. Both isolates of this 
fungus caused the lowest root dry weights. This result 
agrees with those of Ye et al. (2021) in China, where D. 
macrodidyma was the most aggressive pathogen com-
pared with D. torresensis, D. alcacerensis, Cylindrocla-
diella lageniformis and Neonectria sp. In contrast, in 
research conducted in Algeria by Aigoun-Mouhous et 
al. (2019), an isolate of D. torresensis was the most vir-
ulent, followed by isolates of D. novozelandica and D. 
macrodidyma. Pathogenicity tests recently conducted 
in Turkey on ‘1103P’ rootstock cuttings showed that D. 
novozelandica was the most virulent species compared 
with Cylindrodendrum alicantinum, Cylindrocladiella 
peruviana, D. macrodidyma, D. torresensis, I. lirioden-
dri and I. robusta (Akgül et al., 2022). This is in accord-
ance with the study by Berlanas et al. (2020) in Spain, 
where a strain of D. novozelandica was found to be the 
most virulent compared with several black foot fungi, 
including D. macrodidyma, D. torresensis and I. lirioden-
dri, inoculated on V. vinifera ‘Tempranillo’. In contrast, 
Probst et al. (2019) testing different inoculation methods 
and propagule types in New Zealand, observed that I. 
liriodendri was generally more pathogenic than D. mac-
rodidyma.

In conclusion, the present study has shown that 
about 39% of analysed ready-to-plant nursery vines were 
infected by black foot pathogens. This high proportion 
is likely to compromise the longevity of new vineyards. 
This result emphasizes the need to implement integrated 
management strategies to reduce black foot incidence in 
Uruguayan grapevine nurseries. Physical practices such 
as hot-water treatments have shown promising results 
for controlling black foot in several countries, but with 
unacceptable levels of disease control (Gramaje and 
Armengol, 2011). Nevertheless, this technology should 
be evaluated in each grapevine region. Use of antago-
nist microorganisms is currently a major objective of 
the research to prevent grapevine trunk diseases, but 
the results remain unconvincing (Martínez-Diz et al., 
2021). Other practices, such as biofumigation with Bras-
sica spp., have been shown to reduce soilborne patho-
gen inoculum levels and help prevent infection by black 
foot pathogens in young plants (Berlanas et al., 2018). 

Appropriate and environmentally-friendly chemical 
controls can also be considered, while local regulations 
allow the use of promising chemical active ingredients. 
Taking this into account, future studies should focus on 
evaluating different practices to avoid or reduce fungal 
infections by black foot pathogens in nursery grapevines 
under local conditions.
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