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Summary. Grapevine trunk diseases (GTDs) can cause large losses in vineyards. Dip-
lodia seriata is an important GTD pathogen in Chile. Development and use of biopro-
tectors is a complementary alternative to the use of agrochemicals for disease man-
agement. To produce bioformulations for management of D. seriata, additives could 
be used to maintain viability and survival of biocontrol agents, such as Trichoderma 
harzianum and Clonostachys rosea. Effects of drying supports (inulin, maltodextrin, 
lactose, or talc) and adhesive polymers (carboxymethylcellulose, Aloe vera gel, or chi-
tosan) were assessed on D. seriata conidium viability and mycelium development of T. 
harzianum and C. rosea, and for their biocontrol capacity against D. seriata. T. harzi-
anum and C. rosea cultured in Potato Dextrose Agar containing inulin (at 10% w/v) 
maltodextrin (10% w/v), lactose (6% w/v), or talc (4% w/v), or the adhesive polymers 
carboxymethylcellulose (0.5% w/v), Aloe vera gel (0.5% w/v), or chitosan (1.5% w/v), 
maintained their biocontrol activity against D. seriata. These additives did not enhance 
D. seriata development. Therefore, these preparations, at the respective indicated con-
centrations, can be included in bioformulations for management of disease caused by 
this pathogen.

Keywords.	 Adjuvants, bioformulation, Botryosphaeria, drying supports, sticky poly-
mers.

INTRODUCTION

Grapevine trunk diseases (GTDs) can cause severe damage to grapevine 
productivity (OIV, 2016). These diseases are caused by a complex of patho-
genic fungi, and there are no satisfactory methods for their management 
(Matei et al., 2017; Besoain, 2018). Botryosphaeria dieback, an important 
GTD, causes yield losses between 36 to 48% in Chilean ‘Cabernet Sauvignon’ 
vineyards located in O’Higgins and Maule regions, with average yield losses 
estimated to be 5,800 kg ha-1 (Torres et al., 2017; Larach et al., 2020). Dip-



228 Katherina Aguirre et alii

lodia seriata has the greatest prevalence as the cause of 
Botryosphaeria dieback in Chile (Morales et al., 2012; 
Díaz et al., 2013; Torres et al., 2017).

Botryosphaeria dieback pathogens enter grapevine 
plants mainly through pruning wounds, in the absence 
of any chemical and/or biological control organisms 
(Gramaje et al., 2018; Mondello et al., 2018). Chemical 
fungicides may induce occurrence of resistant pathogen 
strains and may cause environmental damage. Biological 
controls can be alternatives to prevent plant infections 
by these pathogens, due to the different mechanisms of 
the biocontrol agents (BCAs). In addition, BCAs could 
be included in rotations with chemical pesticides (Fravel, 
2005; Khamna and Yokota, 2008; Gramaje et al., 2018).

Trichoderma spp. and Clonostachys rosea (Link: 
Fr.) could be BCAs against several pathogens, such as 
Rhizoctonia solani (Kühn) (Kakvan et al., 2013), Phy-
tophthora spp. (Bae et al., 2016), Alternaria spp. (Jens-
en et al., 2004), Sclerotinia sclerotiorum (Lib.) de Bary 
(Rodríguez et al., 2011), and others (Jensen et al., 2000; 
Morandi et al., 2003; Morandi et al., 2007). Trichoderma 
harzianum Rifai and C rosea have also been tested indi-
vidually and together, as conidium suspensions, for the 
control of Diplodia seriata and Neofusiccocum australe 
in greenhouse and field assays (Arriagada, 2015). 

To overcome instability of conidium suspensions, it 
is probably important to incorporate BCAs into appro-
priate formulations, that could be used alone or com-
bined with chemical pesticides to achieve effective path-
ogen control (Papavizas, 1985; Arriagada, 2015). Howev-
er, formulations can additionally contain adjuvants that 
are used to formulate, facilitate application, and main-
tain microbial viability in harmful field and/or storage 
conditions (Gašić and Tanović, 2013). These adjuvants 
may modify the biocontrol capacity of the active ingre-
dients or favor development of target pathogens (Bern-
hard et al., 1998). Thus, it is important that candidate 
adjuvants are assessed for effects on biocontrol capacity 
of the active principals before they are incorporated into 
formulations. It is also important to consider formula-
tion types and methods of field application (Chammem 
et al., 2022). Potential adjuvants include drying supports 
for the preparing powder formulations, and polymers to 
ensure adherence to host plants.

Drying supports are adjuvants used for microencap-
sulation of microorganisms, when spray drying technol-
ogy is used. These include compounds that do not affect 
the environment due to their short or null persistence, 
and include lactose, inulin, talc, or maltodextrin, among 
others (Wilkins, 1990). Use of lactose can improve sur-
vival of T. harzianum during storage (Kumar et al., 2016), 
and inulin protects T. harzianum viability against freez-

ing and freeze drying (Mensink et al., 2015; Nunes et al., 
2018). Maltodextrin has been used to extend bioformu-
lation shelf-life after production using the spray drying 
technology (Leslie et al., 1995; Agudelo et al., 2017), and 
talc has been used as a carrier additive for solid formula-
tions containing Trichoderma spp. (Kakvan et al., 2013).

Polymers have been used to promote adherence of 
bioformulations to plant tissues (Gašić and Tanović, 
2013). Carboxymethylcellulose (CMC) is commonly 
used for this purpose because in addition to its function 
as adherent (Bernhard et al., 1998), it provides a carbon 
source for microbial development. This compound has 
been tested in formulations containing C. rosea (Mus-
iet, 2015) and T. harzianum (Samolski, 2014). Chitosan 
could also trigger host defense mechanisms, and has 
been tested for control of D. seriata (Meng and Tian, 
2009; Cobos et al., 2015). Extracts from Aloe vera that 
contain a viscous gel with antimicrobial activity have 
also been tested against bacteria (Pereira et al., 2013) and 
fungi (Sitara et al., 2011; Navarro, 2013).

The mixture of T. harzianum and C. rosea that con-
trols D. seriata (UChile, 2021) could be used in a for-
mulation to which adjuvants could be added to aid bio-
control activity. The objective of the present study was 
to assess drying supports and polymers for efficacy as 
biocontrol formulation additives to T. harzianum and C. 
rosea for control of disease caused by D. seriata.

MATERIALS AND METHODS

Fungus strains and culturing

Trichoderma harzianum (strain RGM2218) and C. 
rosea (strain RGM2217) were used, from the laboratory 
fungal collection at Laboratorio de Fitopatología y Con-
trol Biológico de Enfermedades, Departamento de Sani-
dad Vegetal, Facultad de Ciencias Agronómicas, Uni-
versidad de Chile. These strains had previously shown 
good biocontrol activity against D. seriata (strain 1009), 
whether alone or in mixture (Arriagada, 2015). The iso-
lates were activated on potato dextrose agar (PDA; Dif-
co), and were grown on PDA plates in darkness at 30°C. 
Diplodia seriata was activated and grown on PDA in 
darkness at 25°C. Cultures were stored at 4ºC and sub 
cultured weekly. All microbiological procedures were 
carried out under sterile conditions.

Chemicals

All reagents were technical grade, and were obtained 
from the following providers: a) drying supports; inu-
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lin (Reutter S.A.), maltodextrin (Quimatic S.A.), lactose 
(Reutter S.A) and talc (Reutter S.A); b) polymers car-
boxymethyl cellulose (CMC, Winkler Ltd.), Aloe vera gel 
(liquid extract; Proaltec) and chitosan (Reutter SA); c) 
Culture media; potato dextrose agar and agar (DIFCO), 
glucose (Merck).

Biocontrol agent conidium viability

Conidium suspensions of T. harzianum and C. 
rosea were prepared, respectively, from 7- or 14-d-old 
cultures, in 9 g·L-1 sterile NaCl solution, and were then 
filtered through two layers of sterile gauze to remove 
mycelia. Conidium suspension (100 mL containing 1 × 
105 conidia·mL-1 (T. harzianum or C. rosea) was placed 
in a Petri dish containing glucose agar (GA; 10 g L-1 glu-
cose and 5 g L‑1 agar). The inoculum was spread over the 
entire agar surface in the dish using a Drigalski’s spatu-
la. All plates were incubated for 24 h at 30°C. One hun-
dred conidia were assessed for germination, with conidia 
classified as germinated when germ tubes were ≥ twice 
the diameter of the conidia (Latorre and Rioja, 2002).

To test effects of different compounds on conidium 
viability, the compounds were added to culture medium 
before autoclaving. Drying supports were added at 0, 2.0, 
4.0, 6.0, 8.0, or 10.0% (w/v) and polymers were added at 
0, 0.5, 1.0, 1.5 or 2.0 % (w/v). 

Mycelium growth from biocontrol agents

Mycelium discs (0.5 cm diam.) were taken from a 
5-d-old PDA culture of T. harzianum or a 10-d-old culture 
of C. rosea, and were each placed in the middle of a Petri 
dish containing PDA. Plates were then incubated at 30°C 
for 2 d for T. harzianum, and for 6 d for C. rosea. Colony 
growth in each dish was then measured two perpendicular 
axes, then averaged, and expressed as diameter in mm.

To test the effects of the different compounds on 
mycelium growth, the compounds were added to cul-
ture medium (PDA) before autoclaving. Drying supports 
were added at 0, 2.0, 4.0, 6.0, 8.0 or 10.0% (w/v), and pol-
ymers were added at 0, 0.5, 1.0, 1.5 or 2.0 % (w/v).

Antagonistic activity against Diplodia seriata

The antagonistic activities of T. harzianum or C. 
rosea against D. seriata were assessed in the absence 
or presence of each adjuvant that did not affect growth 
of T. harzianum or C. rosea growth, in dual cultures. 
Ten µL of conidium suspension (1 × 105 conidia mL-1) 
of each biocontrol agent was applied to a 0.5 cm diam. 

mycelium disc from a 5-d-old D. seriata culture (Figure 
1). Conidium suspensions and PDA medium contain-
ing specific adjuvants were prepared as described above. 
Experimental controls were included, replacing conidi-
um suspensions with sterile water. All plates were incu-
bated for 5 d at 25°C. Radii of D. seriata colonies were 
measured for each treatment (Figure 1), and percent 
inhibition was determined.

Experimental design and statistical analyses

Completely randomized designs (CRDs) with uni-
factorial structures were used to determine effects of the 
different concentrations of the drying supports and the 
polymers, and to establish the greatest concentration of 
these where no negative effects were detected on viability 
of conidia or mycelium growth of the of the antagonists. 
The factors assessed were type of drying support (inulin, 
maltodextrin, lactose, or talc) or polymers (CMC, Aloe 
vera gel, or chitosan), each independently, at their differ-
ent % w/v concentrations.

The experimental units were four Petri dishes (each 
as a subsample), with three repetitions for each treat-
ment. Infostat software was used for the statistical anal-
yses with interface of R, and Wald Tests were applied, 
through a general and mixed linear model. If statistically 
significant differences (P ≤ 0.05) were determined, LSD 
Fisher LSD Multiple Comparison Tests was carried out.

A CRD with a factorial structure was used to deter-
mine the biocontrol capacity of the antagonists on D. 
seriata (antagonism), using type of drying support (inu-
lin, maltodextrin, lactose, or talc) or polymer (CMC, 
Aloe vera gel, or chitosan), and type of antagonist (T. 
harzianum, or C. rosea). Drying supports and polymers 
were analyzed independently.

 
 Control plate              Dual culture plate 

A B 

Figure 1. Measurement of radial colony growth of Diplodia seriata 
in dual cultures A: W, sterile water and P, pathogen (D. seriata); B: 
B, biocontrol agent (Trichoderma harzianum or Clonostachys rosea 
conidium suspension) + adjuvant and P, pathogen (D. seriata). The 
culture medium was PDA.
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RESULTS

Viability of conidia in the presence of different adjuvants: 
drying supports or polymers

The drying supports inulin and maltodextrin did 
not affect viability of T. harzianum conidia at any of the 
concentrations tested, while lactose decreased mean via-
bility by 3.02%, and talc by 15.67% (Table 1A). Viability 
of C. rosea conidia was not affected by inulin, lactose or 
talc (Table 1B), but maltodextrin at 8% (w/v) in the cul-
ture medium increased viability of C. rosea.

The sticky polymers Aloe vera gel and chitosan did 
not affect viability of T. harzianum conidia, while CMC 
decreased viability by 5% at concentrations of 1% (w/v) 
and greater (Table 2A). Viability of C. rosea conidia 
was not affected by CMC or by chitosan, while con-
centrations of Aloe vera gel of 1.5% (w/v) and greater 
decreased viability (Table 2B).

Growth of biocontrol agents in the presence of different 
adjuvants

Mycelium growth of T. harzianum was not modified 
by the presence of the drying supports inulin, malto-
dextrin, or talc in the culture media (Table 3A). Lactose 
concentrations of 8% w/v or greater decreased growth of 
this fungus. Growth of C. rosea was not affected by inu-

lin, maltodextrin, or talc, but lactose at 6% w/v or great-
er significantly increased growth of this BCA (Table 3B).

Growth of T. harzianum was not modified by the 
sticky polymer CMC in culture medium at the different 
concentrations tested (Table 4A). Aloe vera gel concen-
trations of 1% w/v and greater and chitosan at 2% w/v, 
significantly decreased growth of this BCA. None of the 
adjuvants at any of the assessed concentrations modified 
growth of C. rosea (Table 4B).

Antagonistic activity against Diplodia seriata

The antagonistic activity of the BCAs against D. 
seriata was tested with the highest concentrations of the 
drying support and sticky polymers adjuvants that did 
not modify either their viability or growth. These were 
10% inulin, 10% maltodextrin, 6% lactose and 4% talc 
for the drying supports; and 0.5% CMC, 0.5% Aloe vera 
and 1.5% chitosan for the sticky polymers. 

Results showed that none of the drying supports test-
ed (Table 5A) or the sticky polymers tested (Table 5B), at 
the concentrations already mentioned, modified the ability 
of T. harzianum or of C. rosea to inhibit D. seriata growth, 
although significant differences were observed between the 
two BCAs in % inhibition of the pathogen. Controls per-
formed in the absence of the BCAs showed that none of 
the adjuvants modified the growth of D. seriata.

Table 1. Mean conidium viability (%) of Trichoderma harzianum (A) and Clonostachys rosea (B) after culture in Petri dishes containing glu-
cose agar amended with different drying supports adjuvants (inulin, maltodextrin, lactose, or talc) at different concentrations (0, 2.0, 4.0, 6.0 
,8.0 or 10.0 % w/v).

A. Trichoderma harzianum

Drying 
supports

Concentrations (% w/v) Wald Test 
P value0 2.0 4.0 6.0 8.0 10.0

Inulin 91.17a 94.83a 96.25a 94.00a 95.17a 96.08a 0.3502
Maltodextrin 95.25a 94.92a 96.83a 96.00a 95.42a 97.42a 0.4895
Lactose 97.67a 93.75b 95.58b 95.83b 94.33b 93.75b 0.0154
Talca 97.00a 81.67b 81.00b - - - 0.0047

B. Clonostachys rosea

Drying 
supports

Concentrations (% w/v) Wald Test 
P value0 2.0 4.0 6.0 8.0 10.0

Inulin 92.33a 95.92a 95.08a 96.58a 95.92a 91.58a 0.4760
Maltodextrin 94.25c 96.42bc 98.17ab 96.58bc 99.00a 97.92ab 0.0002
Lactose 87.42a 87.67a 85.58a 89.00a 89.42a 86.42a 0.6214
Talca 83.33a 86.25a 86.58a - - - 0.8973

aConcentrations of talc greater than 4% (w/v) interfered with viability analyses.
Means for each treatment followed by different letters indicate differences (P ≤ 0.05), according to Fisher’s LSD tests.
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DISCUSSION

Bioformulation development requires assessment 
of included adjuvants for viability modification, growth 

and the biocontrol effects on the BCAs that are the active 
ingredients of the formulations. Also, each bioformu-
lation will focus on biocontrol of specific or groups of 
pathogens, so it is important to consider pathogen char-
acteristics, routes of entry to plant host, and the diseases 
produced. As fungi belonging to the Botryosphaeriaceae 
mainly enter hosts through pruning wounds, the biocon-
trol formulations should be applied directly to the dam-
aged zone of the grapevines. The formulations should 
remain on damaged host surfaces to prevent infections 
by these fungi. Solid formulations (powders), or semi-
solids (pastes), could be appropriate. Therefore, adjuvants 
such as the drying supports and polymers tested in the 
present study are likely to be these types of formulation.

Presence of the drying supports inulin, maltodex-
trin, lactose, or talc, or of the polymers CMC, chitosan, 
or Aloe vera gel, at the concentrations assessed (Table 
5) did not modify the biocontrol properties of T. harzi-
anum or of C. rosea. It has been previously shown that 
some components may decrease or increase the antago-
nistic capacity of BCAs towards the pathogen targets 
(Bernhard et al., 1998). This was not observed with the 
selected adjuvants in the present study. On the other 
hand, assessments of viability and growth of the BCAs 
in the presence of different adjuvants (Tables 1 to 4) 
allowed selection of the adjuvants that could be used in 
bioformulations, including their appropriate concentra-
tions, to ensure that the adjuvants do not harm biocon-
trol agent conidium viability, reproductive structures, or 

Table 2. Mean conidium viability (%) of Trichoderma harzianum 
(A) and Clonostachys rosea (B) in Petri dishes containing glucose 
agar amended with polymers adjuvants (carboxymethylcellulose 
(CMC), Aloe vera gel, or chitosan), each at different concentrations 
(0, 0.5, 1.0, 1.5 or 2.0 % w/v). 

A. Trichoderma harzianum

Polymers
Concentration (% w/v) Wald Test 

P value0 0.5 1.0 1.5 2.0

CMC 97.25a 96.62a 91.92b 92.58b 92.25b 0.0001
Aloe vera gel 96.25a 95.08a 93.83b 94.25b 93.75b 0.0001
Chitosan 92.83a 82.42b 83.25b 86.00b 84.08b <0.0001

B. Clonostachys rosea

Polymers
Concentration (% w/v) Wald Test 

P value0 0.5 1.0 1.5 2.0

CMC 84.00a 84.00a 83.58a 84.58a 86.50a 0.9943
Aloe vera gel 88.75a 81.83ab 82.17a 75.17b 58.25c 0.0003
Chitosan 91.08a 85.25b 88.58ab 88.92ab 89.63ab 0.0036

Means for each treatment followed by different letters indicate dif-
ferences (P ≤ 0.05), according to Fisher’s LSD tests. CMC= carboxy-
methylcellulose.

Table 3. Mean colony diameters (mm) of Trichoderma harzianum (A) and Clonostachus rosea (B) after culture in Petri dishes containing 
potato dextrose agar amended with different drying support adjuvants (inulin, maltodextrin, lactose, or talc) at different concentration (0, 
2.0, 4.0, 6.0, 8.0, and 10.0 % w/v) 

A. Trichoderma harzianum

Drying 
supports

Concentrations (% w/v) Wald Test 
P value0 2.0 4.0 6.0 8.0 10.0

Inulin 80.76a 84.59a 85.00a 84.14a 85.00a 84.44a 0.0818
Maltodextrin 80.71a 81.23a 81.46a 83.72a 84.18a 85.00a 0.8702
Lactose 85.00a 84.72a 85.00a 83.38a 78.77b 75.58c <0.0001
Talc 82.29a 79.22a 83.43a 83.70a 83.24a 80.86a 0.7307

B. Clonostachys rosea

Drying 
supports

Concentrations (% w/v) Wald Test 
P value0 2.0 4.0 6.0 8.0 10.0

Inulin 36.78a 37.03a 37.56a 36.83a 36.55a 37.26a 0.0501
Maltodextrin 45.04a 44.99a 44.67a 45.93a 45.49a 45.76a 0.6139
Lactose 44.02b 45.09b 45.33b 46.01a 46.23a 46.16a 0.0004
Talc 44.69a 46.67a 47.61a 47.33a 48.95a 47.73a 0.1755

Means for each treatment followed by the different letters indicate differences (P ≤ 0.05), according to Fisher’s LSD tests.
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growth, or establishment in plants (Guijarro et al., 2008; 
Sabuquillo et al., 2009). The type of formulation will also 
depend on the disease and the phytopathogen to be con-
trolled (Bernhard et al., 1998).

The different tested drying support or polymer 
compounds tested here did not modify the antago-
nistic activity of T. harzianum or C. rosea towards D. 
seriata. Thus, their use in formulations at the concen-
trations tested is likely to modify viability or growth of 
the BCAs. Nevertheless, final selection of specific adju-
vants to be included in formulations should consider 
characteristics of each compound. For example, inulin 
which neither modified conidium viability of growth 
nor interfered with antagonistic activities of T. harzi-
anum and C. rosea against D. seriata, could be used as a 
formulation adjuvant. Inulin is a suitable carbon source 
for microorganisms (Kelly, 2008), it stabilizes proteins, 
and protects conidia during freeze-drying (Mensink et 
al., 2015; Nunes et al., 2018). However, some Trichoder-
ma isolates are not able to hydrolyze inulin (Cordeiro et 
al., 1997; Souza-Motta et al., 2003); so, this compound 
may not be useful unless adequately evaluated. The dry-
ing support maltodextrin, that has been widely used in 
formulations (Samborska et al., 2007; Du et al., 2014; 
Wenzel et al., 2017; Fernández and Sepúlveda, 2019) 
did not modify the parameters analyzed in the present 
study, except at greater than 4% w/v, an increase of C. 
rosea conidium germination was detected, indicating a 
protective effect. These results are like those previously 
described for T. harzianum, where maltodextrin pro-
tected from protein denaturation increased shelf-life by 
up to 6 months at temperatures between 15°C and 35°C 
(Rai and Tewari, 2016).

Lactose is a drying support used in production of 
bioformulations, for minimization microorganism via-
bility losses from high temperatures during spray dry-
ing or low temperatures during freeze-drying (Tan et 
al., 2007; Higl et al., 2008; Cabrefiga et al., 2014). Results 
in the present study showed that addition of lactose 
decreased T. harzianum conidium germination at con-
centrations less than 2%, and mycelium growth at less 
than 8% w/v. However, results were different for C. rosea, 
where lactose favored mycelium growth and did not 
modify conidium viability. These results could be due 
to different use of lactose by the microorganisms, as has 
been reported for filamentous fungi which use lactose 
at low rates (Swartz, 1985), and in two possible ways: 
direct absorption of the disaccharide and subsequent 
intracellular hydrolysis, or extracellular hydrolysis and 
subsequent absorption of the resulting monosaccharides 
(Seiboth et al., 2007). The present study results could be 
explained by the biocontrol agents using different routes 

Table 4. Mean colony diameters (mm) of Trichoderma harzianum 
(A) and Clonostashys rosea (B) after culture in Petri dishes contain-
ing potato dextrose agar amended with polymer adjuvants (carbox-
ymethylcellulose, Aloe vera gel, or chitosan) at different concentra-
tion (0, 0.5, 1.0, 1.5 and 2.0 % w/v).

A. Trichoderma harzianum

Polymers
Concentration (% w/v) Wald Test 

P value0 0.5 1.0 1.5 2.0

CMC 85.00a 76.26a 64.79a 54.33a 67.96a 0.3003
Aloe vera gel 85.00a 81.81a 74.67b 70.18bc 66.04c 0.0026
Chitosan 76.41a 68.87ab 65.84ab 62.40ab 56.45b 0.0179

B. Clonostachys rosea

Polymers
Concentration (% w/v) Wald Test 

P value0 0.5 1.0 1.5 2.0

CMC 44.34a 42.22a 41.85a 41.17a 42.02a 0.5045
Aloe vera gel 45.59a 44.51a 45.38a 44.33a 42.93a 0.5557
Chitosan 45.49a 46.25a 44.05a 45.40a 44.38a 0.2733

Means for each treatment followed by the different letters indicate 
differences (P≤ 0.05), according to Fisher’s LSD statistical. CMC = 
carboxymethylcellulose.

Table 5. Mean percent inhibition of Diplodia seriata growth caused 
by Trichoderma harzianum or Clonostachys rosea in the presence 
of: (A) drying supports (inulin, maltodextrin, lactose, or talc); or 
(B) sticky polymers (carboxymethyl cellulose, Aloe vera gel, or chi-
tosan), in dual cultures in Petri dishes containing potato dextrose 
agar.

A. Drying supports

Drying 
supports

% 
(w/v)

% Inhibition of D. seriata growth Wald Test 
P valueT. harzianum C. rosea None

Inulin 10.0 61.39a 26.85b 0.00c <0.0001
Maltodextrin 10.0 61.07a 23.70b 2.26c <0.0001
Lactose 6.0 61.16a 27.40b 0.00c <0.0001
Talc 4.0 59.93a 34.43b 2.73c <0.0001
H2O (control) - 60.40a 29.57b 0.00c <0.0001

B. Polymers

Polymers % 
(w/v)

% Inhibition of D. seriata growth Wald Test 
P valueT. harzianum C. rosea None

CMC 0.5 61.00a 26.53b 0.06c <0.0001
Aloe vera gel 0.5 61.36a 32.85b 4.11c <0.0001
Chitosan 1.5 62.99a 24.68b 1.92c <0.0001
H2O (control) - 60.40a 29.57b 0.00c <0.0001

Means for each treatment followed by the different letters indicate 
differences (P ≤ 0.05), according to Fisher’s LSD tests. CMC = car-
boxymethylcellulose.
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of lactose utilization from the culture medium. It has 
also been reported that incorporation of lactose in bio-
formulations can favor stability and survival of T. harzi-
anum over a wide range of storage temperatures (-20 to 
30°C; Kumar et al., 2016), since lactose protects against 
desiccation, stabilizes proteins and lipids in cell mem-
branes (Santos et al., 2011), or can be a prebiotic (Chávez 
and Ledeboer, 2007).

Talc, although showing no effects on mycelium 
growth of C. rosea or T. harzianum, decreased the conid-
ium germination of T. harzianum, probably because 
this substance can form barriers surrounding conidia, 
reducing the water and nutrient, and germination of the 
conidia (IARC, 2010). However, the 80% conidium ger-
mination obtained in the presence of talc indicates that 
it could be used in formulations, since it favored survival 
and storage of CFUs for up to 150 d at temperatures 0 
to 40°C (Bhat et al., 2009; Kumar et al., 2013). Similar-
ly, Rai and Tewari (2016) used talc for moisturizing and 
liquid formulations containing T. harzianum. However, 
use of talc must be accompanied by other adjuvants such 
as CMC, since single component adjuvants cause short 
shelve lives (approx. 3 months) and dehydration (Jayaraj 
et al. 2006; Sallam et al. 2013).

The results obtained with up to 0.5% CMC, where 
conidium viability or mycelium growth of both BACs 
were not affected, are like those from other studies for 
bioformulations containing T. harzianum (Mukherjee 
et al., 2014) or C. rosea (Musiet, 2015; Wu et al., 2018), 
where CMC was used as a binder or adherent.

Chitosan did not adversely affect conidium viability 
or mycelium growth of both the biocontrol agents. How-
ever, chitosan has been reported to inhibit T. harzianum 
spp. conidium germination at 2.0% w/v (Palma-Guerrero 
et al. 2008). This could be related to chitosan prevention 
of T. harzianum conidium germination (Ruiz-de-la-Cruz 
et al. 2017) or to the presence of antibiotic activity (El-
Mohamedy et al. 2014).

Concentrations of Aloe vera gel greater than 1% w/v 
decreased in conidium viability and mycelium growth 
of both BCAs, which agrees with the results of Sitara et 
al. (2011). This could be due to the diversity of bioactive 
molecules in Aloe vera gel that have antimicrobial and 
antioxidant properties (Davis 1997; Vega-Gálvez et al., 
2011), that have been used for medicinal and therapeutic 
purposes (Ahlawat and Khatkar, 2011).

The greatest concentrations of drying supports or 
polymers that did not affect conidium germination or 
mycelium growth of both BCAs did not affect growth of 
D. seriata growth.

This study has shown that the maximum concen-
trations of the drying supports used in bioformula-

tions containing T. harzianum and C. rosea were 10.0% 
w/v for inulin, 10.0% w/v for maltodextrin, 6.0% w/v 
for lactose, and 4% w/v for talc. Similarly, maximum 
concentrations for polymer additives were 0.5% w/v for 
carboxymethylcellulose, 0.5% w/v for Aloe vera gel, and 
1.5% w/v for chitosan. These compounds did not affect 
D. seriata development in the absence of the two various 
BCAs assessed.
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