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Summary. Copper is an essential element for microbes as it is involved in many redox 
reactions. Numerous resistance systems have been evolved in microbes to maintain 
copper homeostasis under copper stress conditions. These systems are responsible for 
the influx and efflux of copper ions in the cells. In phytopathogenic bacteria, copper 
ions play essential roles during disease development in plants. Copper-based chemicals 
are extensively used for control of diseases caused by bacteria, which leads to induced 
pathogen resistance derived from various copper resistance systems. Previous studies 
have shown that copper ions are harnessed by host plants to protect against bacterial 
infections, triggering immune responses through activation of defence signalling path-
ways. Thus, it was anticipated that bacterial copper resistance could play an alternative 
role in adaptation to plant immunity. This review summarizes current knowledge of 
copper resistance systems in plant pathogenic bacteria, which may provide a new per-
spective of molecular mechanisms associated with bacterial adaptation in host plants.

Keywords. Resistance systems, stress conditions, signalling pathways, bacterial copper 
resistance, plant immunity.

INTRODUCTION

In nature, plants are always under threats from pests and pathogens. 
Pathogenic bacteria are a major cause of diseases in diverse plants, resulting 
in negative effects on plant growth and crop yields.

Utilization of copper is essential in living organisms. Due to easy con-
version process between reduced Cu(I) and oxidized Cu(II) with low ener-
gy consumption, copper serves as a cofactor for many key enzymes that are 
involved in essential biochemical and physiological processes, including elec-
tron transport, oxidative stress response, denitrification, respiration and pho-
tosynthesis (Arredondo and Nunez, 2005; Turski and Thiele, 2009; Festa and 
Thiele, 2011; Argüello et al., 2013; Rensing and McDevitt, 2013;). However, 
copper ions are toxic when exceeding a threshold value within cells (Adrees 
et al., 2015; Husak et al., 2018; Kalita et al., 2018). The toxicity mechanisms 
have been attributed to generation of highly reactive hydroxyl radicals via 
Fenton and Haber-Weiss reactions (Liochev and Fridovich, 2002), affecting 
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biomolecules such as peptides, DNA, and lipids (Fre-
inbichler et al., 2011). Excess copper can also bind to 
adventitious sites in proteins, disrupting protein struc-
ture and inactivating function through displacement of 
native metal ions (Keyer and Imlay, 1996; Macomber 
and Imlay, 2009). Organisms have developed complex 
resistance mechanisms to deal with deleterious copper-
induced reactions while satisfying supply for intracellu-
lar copper-requiring biological processes.

The copper (Cu) resistance system was initially dis-
covered in E. coli and has been widely studied. Escheri-
chia coli has evolved two chromosomal encoded cue 
and cus systems and a plasmid-encoded pco system to 
resist copper stress (Argüello et al., 2013; Bondarczuk 
and Piotrowska-Seget, 2013; Solioz, 2018). Many cop-
per based bactericides and fungicides have been used 
in agriculture over a period of time such as Bordeaux 
mixture, which is the sixth highest selling product in 
this regard (Cha and Cooksey, 1991). Cu2+ was found 
to be an integral component that impairs protein activ-
ity by damaging nucleic acids ultimately, leading to the 
suppression of microbial activity (Zhang et al., 2018). 
Experimental pieces of evidence also showed that a low 
concentration of copper ions could effectively protect the 
plants against bacterial infection by activating defense 
signaling pathways (Liu et al., 2015). For instance, the 
ethylene (ET) biosynthesis pathway, which is involved in 
plant immunity, is induced by Cu2+ in Arabidopsis (Liu 
and Zhang, 2004). Cu2+ repressed the expression of genes 
StABA1 and StNCED1 for abscisic acid (ABA) biosyn-
thesis, eliciting ET-dependent immunity against bacte-
rial and fungal pathogens (Liu et al., 2020). Additionally, 
copper composites have been used as an effective treat-
ment against bacterial spot disease, as copper composites 
improve the efficacy of metallic copper by reducing par-
ticle aggregation providing a strong shield against bacte-
rial speck (Strayer-Scherer et al., 2018).

However, copper resistance has evolved in phy-
topathogenic bacteria due to extensive use of copper-
based bactericides for plant disease control. Since the 
first description of the copper-inducible system in Pseu-
domonas syringae pv. tomato (Pst) (Cooksey, 1987), 
many copper resistance systems have been identified 
in numerous plant-pathogenic species of Pseudomonas 
(Cazorla et al., 2002; Gutiérrez-Barranquero et al., 2013; 
Colombi et al., 2016), Xanthomonas (Lee et al., 1994; 
Behlau et al., 2011, 2012, 2013), Pantoea (Nischwitz et 
al., 2007) and Erwinia (Al-Daoude et al., 2009; Águila-
Clares et al., 2018). Although there are some homologous 
copper resistance genes between E. coli and plant patho-
genic bacteria, they differ in gene size, genetic organiza-
tion and molecular regulation. Thus, plant-pathogenic 

bacteria have evolved different copper response mecha-
nisms due to diverse living conditions, host stresses, 
and adopted ecological niches. In the present review, 
the molecular mechanisms related to copper resistance 
developed by plant-pathogenic bacteria are summarized, 
with emphasis on Pseudomonas and Xanthomonas spe-
cies. It suggested that some mechanisms are unique in 
plant pathogenic bacteria, and some occur in E. coli and 
plant pathogens.

COPPER RESISTANCE SYSTEMS IN PSEUDOMONAS 
SYRINGAE

Pathovars of P. syringae are plant pathogens that 
can severely damage their hosts. Long-term utilization 
of copper compounds for control of these pathogens has 
resulted in the generation of copper resistant strains, 
compromising the efficacy of copper (Sundin et al., 1989; 
Zhang et al., 2017). In Pst, four copper response genes, 
namely, copABCD are localized within a 35-kb pPT23D 
plasmid controlled by one promoter which is specifically 
induced by copper ions (Cooksey, 1987; Cha and Cook-
sey, 1991). These genes have similarities to corresponding 
pco genes in E. coli (Silver and Walderhaug, 1992). 

CopA, a 72 kDa periplasmic protein, shares similar-
ity with multicopper oxidase CueO from E. coli (Arnes-
ano et al., 2002). The particular motifs rich of methio-
nine, histidine, and aspartic acid have enabled CopA 
protein to bind up to 11 copper ions (Cha and Cooksey, 
1991; Cooksey, 1993). Compared with CueO in E. coli 
combined with five copper ions, high copper-binding 
capacity and oxidase activity give CopA with major role 
in sequestration and detoxification in copper resistance. 

CopB is an outer membrane protein containing 
numerous methionine residues that can combine cop-
per ions, but the copper binding ability of CopB has not 
yet been proven (Arnesano et al., 2002; Puig et al., 2002; 
Zhang et al., 2006). 

CopC is a 10.5 kDa soluble molecule with a β-barrel 
structure. This protein comprises two completely dif-
ferent but interdependent binding sites for, respectively, 
reduced Cu(I) and oxidized Cu(II). In periplasmic space, 
copper ions probably substitute two sites due to change 
in oxidation state (Zhang et al., 2006). CopC has been 
proposed to function as a redox switch to maintain free 
copper ion concentrations at sub-picomolar levels. When 
a Cu(II) site is empty, the Cu(I) ion is oxidized by air, 
but when both binding sites are occupied, no oxida-
tion occurs, showing that CopC acts as a Cu chaperone 
in oxidizing periplasm, potentially interacting with its 
neighbor proteins (Zhang et al., 2006). A hypotheti-
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cal model has been suggested that CopC interacts with 
CopA and/or CopB to detoxify excess copper (Arnesano 
et al., 2002) (Figure 1). 

CopD is a 33 kDa protein located in plasma mem-
branes, and contains eight predicted transmembranous 
helices and some conserved histidine residues (Arnesa-
no et al., 2002). CopD transports essential copper ions 
delivered by CopC through inner cell membranes into 
the cytoplasm to balance the abundant periplasmic cop-
per sequestered from CopA and CopB (Cooksey, 1993; 
Arnesano et al., 2002). CopD and CopC are mutually 
involved in copper uptake in cytoplasm resulting in 
increased copper accumulation and copper sensitivity 
(Arnesano et al., 2002).

Except for an induction by high levels of copper 
ions, transcription of the copABCD operon requires a 

two-component regulatory system CopRS. CopRS genes 
are the downstream components of copABCD operon 
with similar transcriptional orientation but constitu-
tive expression (Mills et al., 1993). CopS acts as a sensor 
kinase that traverses cytoplasmic membrane and detects 
copper concentration in the cell periplasm. When the 
copper ion binds to CopS, a conserved histidine residue 
is autophosphorylated. Upon phosphorylation of con-
served aspartic acid residue, CopR consecutively acti-
vates the expression of copABCD (Cooksey, 1993; Mills 
et al., 1993).

Although copper resistance genes in P. syringae pv. 
syringae (Pss) isolated from mango trees can hybridized 
to copABCD DNA, the homologues to copABCD are pre-
sent in a 62-kb plasmid, showing rich diversity (Cazorla 
et al., 2002). Further studies detected a novel plasmid 

Figure. 1. Proposed model of encoded proteins involved in copper resistance in Pseudomonas syringae. Arrows indicate interactions 
between proteins. CopR induces the expression of copABCD via CopS which detects excess periplasmic copper. CopA sequesters excess 
periplasmic copper due to its strong binding ability; CopB combines with copper; CopC transfers copper from CopA to CopD, and CopD 
then transports copper into bacterium cytoplasm. CopC also functions as a redox switch to maintain free copper ion concentrations in solu-
tion at sub-picomolar levels. The structure of the cus operon and copG in plasmids of P. syringae pv. syringae is a novel efflux system, but 
the location of these proteins in cell has not been identified.
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structure located between copABCD and copRS has been 
detected, that encoded the efflux system cusCBA and 
a putative metal transporting P-type ATPase copG in 
62-kb plasmid (Gutiérrez-Barranquero et al., 2013). This 
arrangement has also been observed in other P. syrin-
gae pathovars affecting different hosts in several coun-
tries, and with high sequence similarity (Renick et al., 
2008; Studholme et al., 2009; Cai et al., 2011). The genetic 
organization is involved in the increase of copper resist-
ance in Pss strain (Gutiérrez-Barranquero et al., 2013). In 
a recent study, a new Tn7 transposon containing copper 
resistance genes (COARS Tn7-like) has been localized in 
the chromosome of Pss strains from mango trees. This 
new COARS Tn7-like was found to confer high levels of 
resistance against copper sulphate that could probably be 
due to the continuous application of copper. P. fluores-
cens and Pseudomonas syringae pv. actinidiae (Psa) also 
possess the same genomic sequence of COARS Tn7-like 
transposon (Aprile et al., 2020). In addition, the model 
Pss strain B728a, responsible for brown spot of bean, 
contains the copABCD operon in its chromosome. Pss 
strain B728a is an epiphyte that feeds on the surface of 
leaves, from where it can colonize the plant and behave 
as a pathogen (Vaughn and Gross, 2016).

Zhang et al., (2017) assessed copper resistance in 
P. syringae pv. phaseolicola (Psp) responsible for halo 
blight disease in beans. Bacterial populations on liquid 
NB media indicated that 28 out of 35 (80%) strains of 
this pathogen were resistant to copper, and the bacterial 
population was similar to that grown on casitone-yeast 
extract (CYE) agar. Both types of strains have an ade-
quate rate of copper i.e., 161 mg mL-1 CuSO4, indicating 
that CYE agar containing copper can be used for rapid 
evaluation of copper resistance in this pathogen. Further 
experiments showed that addition of mancozeb enhanced 
the effectiveness of copper hydroxide against Psp strain, 
as mancozeb elevates the solubility of fixed copper.

Psa, causal agent of kiwifruit canker disease, was 
found to be resistant against copper through integra-
tive conjugative elements (ICEs) and plasmids. Further 
analyses showed that Psa strains containing genes czc/
cusABC and copABCD were not only resistant to copper 
but also resistant against arsenic and cadmium. Out of 
seven strains examined, five showed resistance to cop-
per encoded by ICEs lying at different positions in the 
Psa genome (Colombi et al., 2017). In general, P. syrin-
gae pathovars respond to copper stress mainly through 
sequestration and compartmentalization of the element 
in cell periplasm and outer membranes (Cha and Cook-
sey, 1991; Cooksey, 1994). This mechanism is different 
from the cue and cus system in E. coli, which exhibits 
resistance by pumping and reducing cellular accumula-

tion of copper (Rensing and Grass, 2003; Bondarczuk 
and Piotrowska-Seget, 2013). However, the cus system in 
P. syringae has an additional efflux mechanism (Gutié-
rrez-Barranquero et al., 2013). Pathovars of P. syringae 
have evolved a complex response and detoxification sys-
tem to deal with copper stress in natural environments.

COPPER RESISTANCE SYSTEMS IN XANTHOMONAS

Three distinct copper resistance systems have been 
detected in plant pathogenic—Xanthomonas, including 
a well-known copper-inducible chromosomal cohABCD 
system and a plasmid-born copLAB system. The cus-
AB/smmD system similar to that of Stenotrophomonas 
maltophilia, has been discovered from the plasmids of 
Xanthomonas strains, including X. citri subsp. citri, X. 
gardneri, and X. euvesicatoria (Richard et al., 2017). The 
plasmid-encoded cop genes play dominant roles due to 
the presence of chromosomal copper resistance genes 
in copper sensitive Xanthomonas and Pseudomonas 
strains (Cooksey et al., 1990; Lim and Cooksey, 1993; 
Behlau et al., 2011). Since copper resistance systems in 
xanthomonads vary among different species and strains, 
current understandings of X. arboricola pv. juglandis, 
X. axonopodis pv. vesicatoria, and X. citri subsp. citri is 
summarized below.

Xanthomonas arboricola pv. juglandis

The chromosomal cohABCD operon has been fully 
elucidated in X. arboricola pv. juglandis C5, which is the 
homologous system of copABCD in P. syringae. CohA 
protein shares 65% similarity with CopA from Pst, and 
contains three highly conserved regions of multicop-
per oxidase. Similarly to CopA, CohA has been pro-
posed to bind four copper ions due to the presence of 
only one tandem repeat of MX2MXHX2M  (Lee et al., 
1994). Although CohB and CopB share 45% similarity 
of amino acid sequences, the N terminus of CohB has 
a hydrophilic region while, CopB contains a hydropho-
bic region. CohA is a cytosolic protein and CohB has 
been detected only in cytoplasmic membranes, show-
ing distinctive differences from their homologues in Pst 
(Teixeira et al., 2008). CohAB are essential for copper 
resistance, while cohABCD are required for complete 
resistance to copper. Inactivation of cohAB in other Xan-
thomonas strains supported this conclusion (Teixeira et 
al., 2008). 

The plasmid-borne copLAB gene cluster has also 
been identified from Italian strains of X. arboricola pv. 
juglandis by PCR amplification (Giovanardi et al., 2016). 



133Copper resistance in phytopathogenic bacteria

The sequence of copA shares 78% similarity with cohA 
in the chromosomal cohABCD operon. In contrast, nei-
ther copL nor copB exhibited sequence similarity with 
any gene member of the cohABCD operon. This variance 
in copper resistance gene organization within one same 
species indicated that the genetic basis for copper resist-
ance varies at the intraspecific level.

Xanthomonas axonopodis pv. vesicatoria

The copLAB resistance system was first detected in 
the plasmid of X. axonopodis pv. vesicatoria 7882. The 
gene cluster (based on DNA or amino acid sequence) 
was different from common copper resistance systems in 
pseudomonads and E. coli. CopL, a 122 amino acid pro-
tein, exhibited a regulatory role required for copA induc-
tion under copper stress, since knock-out copL resulted 
in a complete loss of copper-dependent transcription 
of copA (Voloudakis et al., 2005). CopL is rich in histi-
dine and cysteine residues that can bind to copper ions. 
However, expression of copL is copper-independent, and 
is transcribed at the lowest level dominated by a consti-
tutive promoter lacking strong ribosome binding sites 
(Voloudakis et al., 2005). CopLAB is widely distributed 
in the plasmids of Xanthomonas from different world 
regions (Behlau et al., 2011; Richard et al., 2017), and 
has also been found on the chromosome of a few Xan-
thomonas strains and Xylella fastidiosa, regardless of 
their copper sensitivity or resistance (Simpson et al., 
2000; da Silva et al., 2002; Potnis et al., 2011; Kong et al., 
2018). CopL has been found to be the least conserved cop 
gene in previously sequenced xanthomonads (Behlau et 
al., 2013). However, copA is the most conserved copper 
resistance gene in xanthomonads that have been exten-
sively studied. Several amino acids deletion mutation 
could cause copper sensitivity (Kong et al., 2018). CopB 
is also probably not as important as copA, because dis-
ruption of copB did not result into complete removal of 
copper resistance (Behlau et al., 2011). 

Copper resistance in X. axonopodis pv. vesicatoria 
was regarded as only plasmid-born (Bender et al., 1990; 
Garde and Bender, 1991), until a unique chromosomal 
copper resistance gene cluster was identified in X. axo-
nopodis pv. vesicatoria strain XvP26 (Basim et al., 2005). 
Five open reading frames (ORFs), ORF5, ORF4, ORF3, 
CopR, and CopS are sequentially arranged in this clus-
ter. Total genomic DNA digests of XvP26 could not be 
hybridized by the cop gene cluster in X. campestris pv. 
vesicatoria as indicated using Southern hybridization 
analysis. CopR, ORF3, and ORF4 are major determi-
nants for complete resistance to copper. CopR contains a 
conserved palindrome copper box motif, which is essen-

tial for copper-inducible activity at the pcoA promoters 
in E. coli (Rouch and Brown, 1997). Although defect in 
the copS gene showed no effect on copper resistance, 
ORF3 failed to respond to copper induction (Basim et 
al., 2005). Integrity of copS played an essential role in 
completing the two-component signal transduction 
system in X. campestris pv. vesicatoria. The CopRS two 
component regulatory system, has only been found in X. 
axonopodis pv. vesicatoria XvP26, and not in other Xan-
thomonas strains (Basim et al., 2005). 

Xanthomonas citri subsp. citri

A more complicated copLAB gene cluster was iden-
tified in the X. citri subsp. citri A44 plasmid (Behlau 
et al., 2011). Compared the copLAB operon in X. arbo-
ricola pv. juglandis and X. axonopodis pv. vesicatoria, 
copMGCDF have been identified as the downstream of 
copLAB genes in X. citri subsp. citri A44. CopLAB are 
the most important genes essential for copper resistance 
in X. citri subsp. citri A44, while copMGCDF displayed a 
dose-dependent effect (Behlau et al., 2011). CopL possi-
bly regulated cop gene expression by interacting with the 
intergenic region between copL and copA (Behlau et al., 
2012). It has been assumed that CopM is a cytochrome 
c oxidase involved in electron transport, CopG is a 
hypothetical export protein, CopC and CopD are trans-
membrane transporter proteins, and CopF is a putative 
copper-transporting p-type ATPase (Behlau et al., 2011). 
However, elucidation of the specific functions requires 
more experimental evidence.

In X. citri subsp. citri strain LM199, the copLAB 
amplicon could not be detected by PCR. The copABCD 
copper resistance system is plasmid-derived, showing 
more than 97% similarity with the chromosomal cohAB-
CD system of X. arboricola pv. juglandis (Pereira et al., 
2015). Although it lacks the two-component regulator 
copRS, a MerR transcriptional regulator, which controls 
the transcription of proteins CopA and CueO in E. coli 
(Stoyanov et al., 2001; Sameach et al., 2017), was found 
close to the copABCD cluster (Richard et al., 2017). The 
genetic arrangement and composition of homologues of 
these plasmidic and chromosomal copper resistance genes 
in different Xanthomonas strains is illustrated in Figure 2.

An HME-RND system cusAB/smmD was identified 
in the plasmid of several X. citri subsp. citri strains from 
Réunion, Martinique and Argentina, which showed 
more than 95% amino acid similarity to RND efflux 
pumps of S. maltophilia isolated from the citrus phyllo-
sphere (Crossman et al., 2008). The components of the 
HME-RND system in X. citri subsp. citri contain a CusA 
inner membrane pump, a CusB periplasmic protein 
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and an SmmD outer membrane protein (Richard et al., 
2017). However, cusAB/smmD is not widely distributed 
among xanthomonads, and only exists in copper resist-
ance X. citri susp. citri, X. gardneri, X. euvesicatoria and 
X. vesicatoria ATCC 35937 (Richard et al., 2017).

In a Chinese X. citri subsp. citri strain 29-1, dele-
tion mutation of the conserved membrane protein gene 
XAC1347 led to reduced resistance to copper ions (Guo 
et al., 2015; Fan et al., 2018). XAC1347 is low in cysteine 
and methionine residues with no histidine residue, 
implying that XAC1347 has little ability to bind copper 
ions. This indicates this gene may play a role in main-
taining cell integrity and osmotic balance (Cybulski and 
de Mendoza, 2011; Kar et al., 2017). The two-component 
regulator colRS regulates the expression of XAC1347, and 
is involved in copper resistance in X. citri subsp. citri 
(Yan and Wang, 2011; Fan et al., 2018). As it is distrib-
uted in all known X. citri subsp. citri strains, this gene 
could be a universal mechanism required for copper 
osmotic balance by this pathogen.

ACQUISITION OF COPPER RESISTANCE GENES BY 
PLANT PATHOGENIC BACTERIA

As a result of continuous application of copper-
based chemicals, there has been widespread emergence 

of copper resistant pathogens (Sundin et al., 1989; 
Behlau et al., 2013; Colombi et al., 2016). In Florida, 
nearly 100% of X. euvesicatoria and X. perforans strains 
were found to be resistant to copper, due to 50 years of 
application of copper-based chemicals (Pohronezny et 
al., 1992). Eighty percent of Psp populations in com-
mercial snap bean fields have become copper resistant 
(Zhang et al., 2017). In contrast, all X. campestris pv. 
vitians strains causing foliar disease in lettuce were sen-
sitive to copper due to less use of pesticides based on the 
element (Pernezny et al., 1995). Comprehensive research 
is required on the origins of copper resistance acquired 
by plant pathogenic bacteria. 

Under selection pressure caused by extensive use of 
copper-based chemicals, plasmid-born copper resistance 
genes are responsible for developing copper-resistant 
bacteria in the field. This can be attributed to horizontal 
gene transfer (HGT), which usually occurs through plas-
mids conjugation and bacteriophages transduction (Popa 
and Dagan, 2011; Achtman, 2012; Sen et al., 2013; Hob-
man and Crossman, 2015). Comparative genomics and 
phylogenetic network analyses support the acquisition 
of copper resistance systems through plasmid incorpo-
ration by X. citri subsp. citri populations (Richard et al., 
2017; Gochez et al., 2018). In vitro conjugation studies of 
copper resistance determinants that substituted intra- 
and inter-specifically within plant-pathogenic bacteria 

Figure. 2. The genetic arrangement and composition of copper resistance genes in Xanthomonas strains. Areas with the same colour indi-
cate homologous genes among the strains. Chromosome indicates the corresponding gene cluster located in the chromosome. Plasmid rep-
resents the gene cluster present in a plasmid.
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confirmed this conclusion (Sundin et al., 1989; Behlau et 
al., 2012). In addition, copper resistance genes from plas-
mids of phyllosphere microorganisms can be expressed 
in Xanthomonas, although they have not been found in 
Xanthomonas species. This showed that a broad range of 
copper resistance gene sources is available for HGT in 
nature. 

In addition to plasmid conjugation, copper resist-
ance genes are possibly acquired through the uptake of 
integrative conjugative elements (ICEs). In the kiwifruit 
pathogen P. syringae pv. actinidiae, acquisition of Psa 
NZ45ICE_Cu by a copper sensitive strain Psa NZ13 was 
detected in vitro and in planta (Colombi et al., 2016). As 
well, several genomic islands, including genes of plasmid 
origin, were detected on the chromosome of X. citri sub-
sp. citri (Gordon et al., 2015). This evidence supports the 
conclusion that HGT is the most important process for 
copper resistance evolution.

CONCLUSIONS AND PERSPECTIVES

Long-term use of copper-based bactericides has led 
to the increased populations of copper resistant phy-
topathogenic bacteria. Detailed studies on structure and 
function of copper resistance systems may allow rational 
development of new bactericides that inhibit these sys-
tems. However, extensive research is required to achieve 
this goal. The cytoplasmic copper chaperone responsi-
ble for the transportation and detoxification of copper 
ions has yet to be identified. The present has attempted 
to encapsulate research progress on copper resistance 
systems in model bacteria, including Pseudomonas and 
Xanthomonas. Although the systems have some similari-
ties with those in E. coli, biochemical characteristics and 
crystal structures of various proteins, and the regulato-
ry networks that control the expression are different in 
both Pseudomonas and Xanthomonas. 

Formulations of copper complexed with heptaglu-
conic acid induce innate plant immunity, and could 
be used as an alternative treatment against bacterial 
attack (González-Hernández et al., 2018). Considering 
the existence of plasmid-borne copper resistance sys-
tems, the most effective chemical disease control meth-
od could be strict adherence to appropriate dosage and 
frequency of copper sprays, to reduce the probability of 
transferring copper resistance genes within and between 
phytopathogenic bacteria. Use of copper composites 
against copper tolerant strains can also lessen the chanc-
es of bacterial resistance as they do not accumulate in 
soil or water and exhibit higher antimicrobial activity. 
Following best cultural practices and incorporating bio-

pesticides in copper composite mixture can minimize 
the chances of bacterial resistance. Overall, rational 
studies on evolution of copper resistant phytopathogenic 
bacteria can lead to design more effective formulations 
of copper-based chemicals and control strategies that 
could limit the resistance to copper.
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