
Phytopathologia Mediterranea 61(3): 451-471, 2022

Firenze University Press 
www.fupress.com/pm

ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.36253/phyto-13154

Phytopathologia Mediterranea
The international journal of the  

Mediterranean Phytopathological Union

Citation: H.-H. Kassemeyer, F. Kluge, 
E. Bieler, M. Ulrich, J. Grüner, S. Fink, 
M. Dürrenberger, R. Fuchs (2022) Trunk 
anatomy of asymptomatic and sympto-
matic grapevines provides insights into 
degradation patterns of wood tissues 
caused by Esca-associated pathogens. 
Phytopathologia Mediterranea 61(3): 
451-471. doi: 10.36253/phyto-13154

Accepted: October 20, 2022

Published: November 25, 2022

Copyright: © 2022 H.-H. Kassemeyer, F. 
Kluge, E. Bieler, M. Ulrich, J. Grüner, 
S. Fink, M. Dürrenberger, R. Fuchs. 
This is an open access, peer-reviewed 
article published by Firenze Univer-
sity Press (http://www.fupress.com/pm) 
and distributed under the terms of the 
Creative Commons Attribution License, 
which permits unrestricted use, distri-
bution, and reproduction in any medi-
um, provided the original author and 
source are credited.

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

Editor: Luisa Ghelardini, University of 
Florence, Italy.

ORCID:
H-HK: 0000-0001-8675-787X 
JG: 0000-0003-1673-5071
RF: 0000-0001-5056-5323

Research Papers
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Summary. Wood colonizing fungi are specialists that exploit the lignocellulose of 
cell wall components in host wood cylinders as a carbon sources. Some of these spe-
cialized fungi, including Fomitiporia mediterranea (Fmed) and Phaeomoniella chla-
mydospora (Pch), cause the disease Esca of grapevine. This disease complex includes 
grapevine leaf stripe disease (GLSD) of canopies and white rot and black wood 
streaking in trunks. The present study gained insights into the activity of Esca patho-
gens in host xylem of the trunk tissues at an anatomical level. Lesions with white 
rot and brown wood streaking were microscopically analyzed, and the structures of 
affected tissues were compared with intact xylem. In trunks with white rot, demar-
cation zones separated intact tissues from the lesions. Immediately adjacent to the 
demarcation zones, cell wall decomposition initiated in the xylem. At this initial 
stage, cavities appeared in the secondary cell walls of libriform fibres, which expand-
ed and closely resembled the degradation pattern of soft rot. In the advanced stage, 
the fibre cell walls were completely decomposed, and the vessels were attacked with 
a degradation pattern similar to white rot. Only remnants of the xylem elements 
remained, forming amorphous matrices. These decomposition patterns occurred in 
field samples and in wood cores artificially infected with Fmed. The obvious com-
partmentalization of the tissue affected by Fmed indicated a defense reaction in the 
xylem, according to the CODIT model. In contrast, brown wood streaking affected 
only small groups of vessels, adjacent libriform fibres and parenchyma. Dark inclu-
sions in cells and tyloses in vessels indicate a defense reaction against the pathogens 
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causing brown wood streaking. Artificial inoculation of sterile wood cores with Pch confirmed the contribution of this pathogen 
to brown wood streaking. This research provides insights into the structural and functional anatomy of intact and infected tis-
sues of grapevines, which clarify the etiology of Esca, and provide new knowledge for developing new approaches to control of 
this disease complex.

Keywords.	 White rot, xylem, cell wall degradation, CODIT-model, Fomitiporia mediterranea, Phaeomoniella chlamydospora.

INTRODUCTION

Grapevines (Vitis vinifera) are woody liana plants, 
with anatomical structure of the secondary xylem adapt-
ed to the climbing vine growth habit. The secondary 
xylem of woody plants is a niche for specialist fungi that 
can exploit cell wall lignocellulose as carbon sources as 
well as ions dissolved in the hydrosystem (Yadeta and 
Thomma 2013). Secondary xylem of grapevine provides 
substrates for several wood-colonizing fungi causing 
grapevine trunk diseases (GTDs), including Esca. Esca 
has been known for many years (Viala 1926; Mugnai et 
al., 1999), but in the last three decades, the increasing 
incidence of this disease has gained economic impor-
tance as it causes premature vine decline. (Gramaje et 
al., 2018; Guerin-Dubrana et al., 2019).

Grapevine leaf stripe disease (GLSD) is the most 
obvious and distinct manifestation of Esca, but GLSD 
was designated by Surico (2009) as a particular dis-
ease complex. There is a consensus that Esca, includ-
ing GLSD, is caused by colonization of host secondary 
xylem by wood-destroying fungi. In xylem of affected 
trunks zones develop with characteristic symptoms of 
white rot and brown streaking (Viala, 1926; Mugnai 
et al, 1999; Chiarappa, 2000; Surico et al., 2000; Suri-
co 2009; Bertsch et al., 2013; Bruez et al., 2016; 2020; 
Gramaje et al., 2018; Mondello et al., 2018; Fischer and 
Peighami Ashnaei, 2019; Hrycan et al., 2020; Vaz et al., 
2020; Pacetti et al., 2021).

White rot in grapevine trunks is caused by spe-
cies of Basidiomycota, including Fomitiporia medi-
terranea (Larignon and Dubos 1997; Mugnai et al., 
1999; Cortesi et al., 2000; Fischer, 2001; Fischer and 
Kassemeyer, 2003; Larsson et al., 2006; Hofstetter et 
al., 2012; Bertsch et al., 2013; Bruez et al., 2016; 2020; 
Baranek et al., 2018, Elena et al., 2018; Del Frari et al., 
2019; 2021; Brown et al., 2020; Moretti et al., 2021; Ye 
et al., 2021; Pacetti et al., 2022). Other species of the 
Hymenochaetales are also involved, including Tropico-
porus sp., Inonotus sp., Fomitoporella sp. and Phellinus 
sp. (Cloete et al., 2015; Brown et al., 2020). Two types 
of white rot of woody plants have been described: (i) 
selective delignification, where first lignin and then 
hemicellulose and cellulose are preferentially degrad-

ed; and (ii) simultaneous degradation of all cell wall 
components (Blanchette, 1984; Schwarze, 2007). The 
causal agents of brown wood streaking include Asco-
mycota species from Phaeomoniellales (e.g. Phaeomon-
iella chlamydospora and Phaeoacremonium minimum 
(teleomorph Togninia minima)), and Botryosphaeri-
ales (e.g. Diplodia seriata and Neofusicoccum parvum) 
(Larignon and Dubos 1997; Crous and Gams 2000; 
Crous et al., 2006; Úrbez-Torres et al., 2008; 2011; 
Mutawila et al., 2011; Lecomte et al., 2012; Fischer et 
al., 2016; Massonnet et al., 2017; 2018a; b; Reis et al., 
2019; Claverie et al., 2020).

Restricted areas of brown wood streaking are most 
likely the result of host defense reactions such as dep-
osition of phenolic compounds in the affected cells 
(Troccoli et al., 2001; Del Rio et al., 2004; Bruno and 
Sparapano, 2006b, 2007; Agrelli et al., 2009; Amalfit-
ano et al. 2011; Mutawila et al., 2011; Lambert et al., 
2012, 2013; 2012; Calzarano et al., 2016; Gómez et al., 
2016; Pierron et al., 2016; Rusjan et al., 2017; Spag-
nolo et al., 2017; Stempien et al., 2017; Khattab et al., 
2020; Labois et al., 2020, 2021). The numerous studies 
on the pathogen spectrum of Esca (including GLSD) 
and on the host plant responses have provided valu-
able insights into the etiology of the disease. However, 
detailed knowledge is not available on the degradation 
patterns caused by these pathogens in xylem of affect-
ed grapevines.

The present study aimed to gain insights into the 
decomposition patterns in grapevine secondary xylem, 
caused by two Esca pathogens. The architecture of sec-
ondary xylem plays a crucial role in the colonization 
dynamics by the pathogens. For this reason, visualiza-
tion of the structural and functional anatomy of this 
host tissue was required. Based on anatomical knowl-
edge, a detailed characterization became possible of the 
degradation patterns in the secondary xylem of infected 
trunks. Wood samples from trunks of symptomatic and 
asymptomatic grapevines, and from wood cores artifi-
cially inoculated with Fomitiporia mediterranea (Fmed) 
and Phaeomoniella chlamydospora (Pch), were examined 
using microscopy. Pathogen pathways in trunk tissues 
and the decomposition processes caused by the fungi 
were characterized.
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MATERIAL AND METHODS

Sampling and macroscopic documentation

In 2019, 2020 and 2021, trunks of Vitis vinifera L. 
“Mueller-Thurgau” and “Pinot noire” vines expressing 
GLSD symptoms were collected from experimental 
plots at the State Institute for Viticulture in Freiburg 
(Germany). Samples of asymptomatic grapevines from 
the same experimental plots were used for compari-
sons. The grapevines were planted in 1999 (“Mueller-
Thurgau”) and 1983 (“Pinot noire”), and were in adja-
cent plots on loess-clay soil facing southwest, located 
south of Freiburg (Germany) (47°45’20’’N; 7°50’04’’E; 
280 m altitude). Incidence of Esca was 46.2% for the 
“Mueller-Thurgau” vines and 27.0% for”Pinot noir”. In 
addition, samples from 2003 were collected from the 
same field, and further samples were collected between 
2014 and 2018 from GLSD-symptomatic and asymp-
tomatic grapevines from different regions of south-
western Germany. Longitudinal and cross-sections 
were made from the trunks with a band saw and the 
conditions of the sections were documented. For the 
microscope analyses, samples each measuring 10 × 8 × 
4 mm were excised from wood segments with lesions 
and intact secondary xylem. Furthermore, approx. 1 
cm thick transverse or longitudinal sections of trunks 
were rubbed with sandpaper of increasing grit size 
(80 to 480) to produce surfaces for stereo microscope 
observation.

Artificial inoculation of wood cores

From GLSD-asymptomatic grapevines grown in the 
vineyard described above, cores of 5 mm diameter were 
taken from the central areas of sampled trunks using a 
drill bit (5 mm diam.). Trunk sampling was radial, that 
all zones of each wood cylinder were included in the 
drill core. The wood cores were then autoclaved (121°C, 
20 min.) to avoid contamination by pathogenic and 
endophytic fungi. The samples were then placed into 
Petri dishes (90 mm diam.) containing malt extract agar 
(30 g malt extract, 5 g yeast extract, 20 g agar, 1 L deion-
ized water), and were inoculated with mycelium pieces 
from Fomitiporia mediterranea M. Fischer, (accession 
No. 45/23 from V. vinifera cv. Mueller-Thurgau Blank-
enhornsberg) or Phaeomoniella chlamydospora Gams 
W., Crous P., Wingfield M.J & Mugnai L., (accession No. 
CBS 229.95), and were incubated at 24°C. Samples were 
taken from the inoculated wood cores 2 to 4 months 
after inoculation for the preparation of semi-thin wood 
sections.

Light microscopy

The wood specimens were fixed in 2% glutardial-
dehyde in phosphate buffer (pH 7.4) in a vacuum for 24 
h and then rinsed three times in deionized water. The 
samples were then dehydrated in an increasing concen-
tration of isopropanol, and then embedded in meth-
acrylate resin. Semi-thin sections (3 µm and 1 µm) were 
made with a rotation microtomes (LEICA Reichert & 
Jung Supercut 2065 and 2044). The sections were rinsed 
overnight in isopropanol to remove the resin, and were 
then fixed on glass slides and stained in a programmable 
slide stainer (ZEISS HMS TM Series) with 2 % safranine 
and 1% acriflavine (12 h), 1% acid-yellow (30 min) and 
1% methylene-blue (5 min). For fluorescence microscopy 
(FM), the slides were stained with 5 µM acridine orange. 
After staining, the specimens were embedded in Eukitt 
(O. Kindler). The microscopic analyses were carried out 
with a light (brightfield) and fluorescence microscope 
(ZEISS Axio Imager Z1, Carl Zeiss AG), equipped with 
the optical sectioning system (ZEISS Apotome 2) for 
structural illumination and a digital imaging system 
(ZEISS Axiocam MR35, ZEN 2,9 pro imaging process-
ing software, Carl Zeiss AG). The specimens stained 
with acridine orange were analysed by epif luores-
cence using the FITC filter combination 38 HE (excita-
tion 460-488 nm, emission 500-557 nm). The overview 
images of the wood longitudinal and cross sections were 
acquired using a ZEISS Stereo LumarV12 with motor-
ized x-, y-, z-axis positioning control, and ZEISS Axi-
ocam 305 and ZEN 3.2 pro image processing software 
(Carl Zeiss AG).

Scanning electron microscopy

Host xylem structure was visualized using a scan-
ning electron microscope (SEM). The surfaces of speci-
mens excised as described above were ground and pol-
ished using the Leica EM TXP Target Surfacing System 
(Leica Microsystems) before being examined in the SEM. 
After sputtering the specimens with 20 nm of gold, the 
wood structure was analyzed using a High Resolution 
Field-Emission (Cold Emission) Scanning Microscope 
FEI Nova Nano SEM 230 (FEI Company). To preserve 
the structure of the fungi colonizing the wood tissues, 
fresh samples were additionally analyzed with a Cryo-
SEM (Philips XL30 ESEM, Koninklijke Philips N.V.) 
equipped with a cryo preparation unit (Gatan Alto 2500, 
Gatan Inc.). Small slices (approx. 4 mm thick) were 
excised from trunk segments with a scalpel, and were 
mounted on specimen holders with low-temperature 
mounting medium. Cryofixation was carried out using 
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nitrogen slush (< -185°C) in the cryo-preparation unit. 
The frozen samples were then sputtered with 20 nm gold 
in a high vacuum cryo-preparation chamber, and exam-
ined with a SE detector operating with an acceleration 
voltage of 5–10 kV at high vacuum and -150°C. The SEM 
and Cryo-SEM images were acquired and documented 
with DISS5 Software from REM-X GmbH Bruchsal.

RESULTS

Anatomy of intact host secondary xylem

In the cross-sections of both varieties, wide-lumened 
vessels occurred more frequently in the early wood 
than in the late wood, followed by a number of narrow-
lumened vessels (Figure 1, Figure 2 A and B). The lateral 
walls of the vessels and tracheids were scalariform with 
bordered pits (Figure 3 A and B; Figure 4 A). In the cen-
tre of the pits, the middle lamella and primary cell wall 
formed a membrane (Figure 3 A). A paratracheal sheath 
of parenchymatic cells was associated with each vessel, 
which extended parallel in axial direction (Figure 2 A; 
Figure 4 A). Semi-bordered pits connected the vessels 
with the associated cells (vessel associated cells - VACs) 
of the paratracheal sheaths (Figure 4 A). Longitudinal 
and tangential sections showed that each vessel formed 
an axial continuum without transverse walls over a 
long distance due to the remission of the transverse 
walls (Figure 4 B). In contrast, the tracheids had com-
partments whose lateral walls tapered at the apex and 
formed an end plate (Figure 4 B). A row of thick-walled, 

libriform fibres surrounded the vessels and tracheids, 
forming a compact bond without intercellular spaces 
(Figure 5). Radial and tangential sections displayed 
tapered longitudinal tips of the libriform fibres, similar 
to the tracheids (Figure 4 B). Fluorescence microscopy 
revealed the highly fluorescent middle lamella and the 
different layers of libriform fibre cell wall (cw) in the 
samples stained with acridine orange. A thick laminated 
structure (S2 layer) was visible between a thin outer (pri-
mary cell wall and S1 layer of secondary cell wall) and 
inner S3 layer (Figure 5). Pits, each containing a septum 

Figure 2. Cross section of intact xylem of Vitis vinifera “Mueller-Thurgau”. (A) Detail of a wide lumen vessel (VS), paratracheal parenchyma 
(pTR), tracheids (TR), libriform fibres (LF), parenchyma of a primary wood ray (PR), and parenchyma cells filled with starch grains (ST). 
Brightfield micrograph, 10× magnification.  (B) Series of tracheids within a single annular ring. Wide lumen early wood vessel (VS), and a 
late wood vessel (VSl). Bright field micrograph, 10× magnification.

Figure 1. Cross section from intact xylem of Vitis vinifera “Mueller-
Thurgau”. Xylem with vessels (VS), tracheids (TR), libriform fibres 
(LF) primary wood rays (pR), secondary wood ray (sR), and annual 
ring (AR) are indicated. Bright field micrograph, 5× magnification.
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composed of the middle lamella, connected the lumina 
of the libriform fibres to each other and to the adjacent 
parenchyma cells (Figure 5). The primary and secondary 
wood rays consisted of elongated parenchymatous cells 
filled with starch grains (Figures 1; 2 A and B; 4 A; 5).

Trunks with GLSD had different types of lesions in the 
wood cylinders 

In vines with characteristic GLSD canopy symp-
toms, macroscopically visible necrotic lesions were 
always evident in longitudinal and cross sections of 

the trunks. However, plants with GLSD-symptomless 
canopies also had these lesions. Two different patterns 
occurred in the trunks: (i) extended lesions with white 
rot, and (ii) dark brown to black spots in radial sections 
and streaks in longitudinal sections.

White rot was clearly visible as pale brown zones 
each with a central ochre amorphous mass (Figure 6). In 
cross section, black demarcation lines clearly separated 
the lesions from apparently intact wood (Figures 6; 8 A 
and B). The lines were more or less concentric, but often 
showed protuberances with second or third lines, form-
ing distinct compartments (Figure 6). In longitudinal 

Figure 4. Tracheids (TR) and vessel (VS) from asymptomatic xylem of Vitis vinifera “Mueller-Thurgau”, longitudinal section. (A) Wide 
lumen vessel (VS) with semi-bordered pits (bPT), vessels surrounded by a sheath of paratracheal parenchyma (pTR), libriform fibres (LF), 
and a wood ray (PR) are indicated. Fluorescence microscopy 3D image, 63× magnification. (B) Vessel (VS) with remitted cross walls (arrow 
heads), tracheids with endplate (), and paratracheal sheet of parenchyma (pTR). Bright field micrograph, 5× magnification.

Figure 3. Cross section of asymptomatic xylem of Vitis vinifera “Pinot Noir”. (A) Scalariform lateral cell wall between tracheids and vessels 
is formed by bordered pits (bPT). The middle lamella (ML) forms the pit membrane, and a tracheid (TR) with endplate () are indicated. 
Fluorescence microscopy 3D image, excitation (460–488 nm, emission 500–557 nm). 63× magnification. (B) Vessel with scalariform pitting 
at the lateral wall. Scanning electron micrograph, 2000× magnification.
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sections, the lesions spread from the top of the trunks to 
the bases, thinning downwards (Figure 6). The white rot 
originated from pruning wounds, and from there pen-
etrated into the middle of the trunks (Figure 6).

In addition, dark brown to black spots were evident 
in the trunk cross-sections, often arranged in concen-
tric groups or rings. (Figure 7). In longitudinal sections, 
these spots were as more or less short, dark streaks. 
However, if an imaginary line was drawn along the dark 
streaks, they each traversed the trunk in a continuous 
row for a considerable distance in the longitudinal direc-
tion (Figure 7).

Xylem elements naturally affected by white rot had specific 
decomposition patterns

Light microscopy and SEM visualized the structures 
of the host tissues and cells in the lesions affected by 
white rot. In each demarcation zone, the parenchymatic 
cells and the libriform fibres contained dark inclusions, 
and the vessels were obstructed by tyloses (Figure 8 A 
and B). Adjacent to the demarcation line, round cavities 
were seen in the S2 layer of each fibre cell wall (Figure 9 
A). The pits in the cell walls were frequently dilated and 
widened toward the unaffected middle lamella (Figure 
9 A). These cavities enlarged the closer the cells were to 
the lesion centres, often became tubular (Figure 9 B). At 
advanced stages, the entire S2 layers were decomposed 
and only the middle lamella and primary cell walls, as 
well as the S3 layers, remained (Figure 9 B). In the ves-
sels, vascular tracheids and wood rays resisted degrada-
tion until a late stage of decay (Figure 9 C). Observa-
tions with Cryo-SEM showed that fungi were evident 
in affected vessels, in which branched hyphae formed 
mycelia (Figure 10 A). In the central parts of lesions, a 

Figure 5. Cross section of libriform fibres (LF) from asymptomatic 
xylem of Vitis vinifera “Mueller-Thurgau”. Middle lamella (ML) filling 
the cell corners, and the primary cell wall (pCW) are indicated. The 
laminated secondary cell wall, and the exterior S1-, and the inner-
most 3S- layer enclose the central thick S2-layer. Pits (PT) connecting 
fibre cells and parenchyma cells (PR) are also indicated. Fluorescence 
micrograph 63×, excitation 460-488 nm, emission 500-557 nm.

Figure 6. Cross section of a symptomatic (GLSD) xylem of Vitis vin-
ifera “Pinot noir” and longitudinal section of a symptomatic (GLSD) 
Vitis vinifera “Mueller-Thurgau” trunk. Xylem with white rot lesions 
extending from wounds (arrow heads) into the trunk center, pro-
tuberances of the demarcation lines (arrows) are clearly visible; in 
some parts the pathogen has passed the primary demarcation line 
and colonized further areas of the xylem causing a compartmen-
talization of the white rot by secondary demarcation lines (), sap-
wood (SW), heartwood (HW). Bright field micrograph 0.8×.

Figure 7. Trunk of a symptomatic (GLSD) Vitis vinifera “Mueller-
Thurgau”. Cross section with a concentric ring of black spots (black 
arrow); longitudinal section traversed by black streaks visible as 
a discontinuous line due to the torsional growth (white arrows). 
Bright field micrograph 0.8×.
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Figure 8. Cross section of the affected by white rot like lesions. (A) Demarcation zone (DL) with darker coloration of xylem elements, 
inwards with rot like lesion (WR), vessels with tylosis (TL). Bright field 5×. (B) Overview of a white rot like lesion, with decomposed S2-lay-
er of libriform fibers, the lumen of vessels is filled with tylosis and the parenchyma cells show dark inclusions. Bright field micrograph 10×.

Figure 9. Cross section of the affected by white rot like lesions. (A) 
Initial decay with round caverns in the S2-layer (S2) of libriform 
fibres (LF), middle lamellae with primary cell wall and adjacent 
S1-layer (ML) as well as S3-layer (S3) are the still intact, vessel filled 
by tylosis (TS), in advanced stages cavities became tubular shaped 
() and pits dilated (). Fluorescence micrograph 63×, excitation 
460–488 nm, emission 500–557 nm. (B) Advanced decomposition 
of the libriform fibres, the S2 layer is decomposed, middle lamel-
la, primary cell and S1 as well S3-layer are remaining. Bright field 
micrograph 63×. (C) White rot like lesions with advanced decay of 
xylem in the right part of the image, while the libriform fibres are 
completely degraded, the structures of vessels and tracheids filled 
by tylosis are still visible. Scanning electron micrograph 100×.
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progressive decay of the secondary xylem proceeded, 
which finally also affected vessels, vascular tracheids 
and parenchyma. In this final process, a dense mycelium 
proliferated over the remains of the tissue, and only an 
amorphous mass remained, from which isolated rem-
nants of the cell walls were recognizable (Figure 10 B). 
The decomposition patterns of white rot were the same 
for both V. vinifera cultivars.

Brown spots and streaks of naturally infected trunks dis-
played different decay patterns

In cross-section, the brown spots each consisted of 
individual groups of vessels with the surrounding tis-
sue located between the wood rays within a growth 
ring. (Figures 7; 11 A). Examination at higher resolu-
tion showed that small spots were also scattered over the 
entire cross-sections in the secondary xylem, encom-
passing only one small group of vessels (Figure 11 A 
and D). Semi-thin sections visualized deposits in the 
lumina of libriform fibres and parenchyma cells, which 
caused the dark spots and streaks (Figure 11 A, B and 
C). In these areas, the vessels were obstructed by tyloses, 
originating from the VACs and invading through the 
half-bordered pits of the scalariform cell walls (Supple-
mentary Figure 1). The libriform fibres were partially 
compressed, and high magnification revealed elongated 
or crescent-shaped cavities in the cell walls (Figure 12 A 
and B). In this case, the pits were dilated and often fun-
nel-shaped opened towards the cell lumen (Figure 12 A). 
Weakly branched hyphae sporadically colonized the ves-
sels and parenchymatic cells of the wood rays (Figure 13 
A and B).

Artificial inoculation with Fomitiporia mediterranea and 
Phaeomoniella chlamydospora resulted in comparable 
lesion patterns as in the field

Within 4 d post inoculation (dpi), Fmed had colo-
nized the plant sample surfaces, and 16 dpi ocher-
coloured mycelium completely covered the specimen 
cores. At this stage, fine hyphae permeated the S2 layers 
of fibres, which could be distinguished from the pits by 
their sinuous structure (Figure 14 A). Two months after 
inoculation, Fmed grew within the cell walls of the 
libriform fibres and decomposed the S2 layers, form-
ing round caverns in an identical pattern as seen in the 
cross sections of samples taken from the field (Figure 14 
B). In tangential section, caverns were aligned in a heli-
cal pattern at an angle of 50° to 60° in the cell walls of 
the libriform fibres (Figure 14 C). This alignment was 
also observed in cross sections when examining round 
cavities in cell walls at different focal planes (Supple-
mentary Figure 2 Video). Four months after inoculation, 
advanced decomposition of the S2 layers occurred (Sup-
plementary Figures 3 A, B, C). In general, the pattern of 
cell wall decomposition of libriform fibres observed in 
this study was consistent with that found in white rot 
lesions of trunks sampled from the field.

In cores inoculated with Pch, isolated hyphae 
occurred in the secondary xylem two months after inoc-
ulation (Figure 15 A). In tangential and cross sections, 
falciform caverns occurred in each S2 layer near the mid-
dle lamella, and these were similar to those in samples 
from the field (Figure 15 A; Supplementary Figure 4). In 
contrast to the cores from plants inoculated with Fmed, 
the wood inoculated with Pch was only slightly decom-

Figure 10. Cross-section of a white rot like lesion, Vitis vinifera “Mueller-Thurgau”. (A) Vessel with hyphae; Cryo scanning electron micro-
graph 400×. (B) Mycelium with remains of a vessel. Cryo scanning electron micrograph 500×.
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posed, although mycelium had spread on the wood core 
surfaces, and hyphae had invaded the vessels (Figure 
15 B). As in the naturally infected samples, dark depos-
its filled the libriform fibres and parenchyma cells, and 
tylosis obstructed the vessels (Supplementary Figure 5).

DISCUSSION

The wide lumen vessels and vascular tracheids of 
the two grapevine varieties exhibited characteristics of 
a ring-porous xylem, as described by Carlquist (1985; 
2010) and Vazquez-Cooz and Mayer (2004). Vessels and 
tracheids formed axial continua from top to bottom, 

which provides high conductivity of plant hydrosystems 
(Bortolami et al., 2021). Plant vessels can reach lengths 
of several meters in early wood (Hacke and Sperry, 
2001). Measurements of vessel length for Vitis labrusca 
by Zimmermann and Jeje (1981) showed a minimum 
length of 1 m in >70% of samples. The structure of the 
vessels found in both cultivars in the present study 
indicates that long open vessel sections also occur in V. 
vinifera. Pronounced primary and secondary wood rays 
with parenchyma (RP) cells radially traversed the sec-
ondary xylem, as is typical of lianas. (Carlquist 1985, 
2010; Gallenmüller et al., 2001; Rowe and Speck, 2004; 
Masselter and Speck, 2008; Angyalossy et al., 2012). In 
addition, axial strands of vessel associated parenchy-

Figure 11. Cross section of black spot, Vitis vinifera “Mueller-Thurgau”. (A) Wood cylinder, overview with black spots comprising a couple 
of vascular bundles (BS) and a single vessel interspersed in intact xylem (BS 1); bright field Plan-Neofluar 5×. (B) Vessels obstructed by 
tylosis in black spots, libriform fibres and parenchyma filled with dark inclusions and slightly deformed. Bright field micrograph 10×. Insert: 
Cross section of a vessel in a black spot obstructed with tylosis; 3D Fluorescence micrograph 25×. (D) Trunk of a symptomatic Vitis vinifera 
“Mueller-Thurgau”, cross section with a small spot encompassing one vessel, whit rot (WR) in the center. Bright field micrograph 0.8×, dis-
play window Bright field micrograph 0.8×.
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ma cells (VACs) formed paratracheal sheaths of living 
cells, as described in woody plants by Carlquist (2010) 
and Morris et al (2016 a; b; 2018). The parenchyma cells 
of RP and VACs fulfill important functions in second-
ary xylem, including: (i) sink and source for assimilates, 
mainly starch, remobilized in spring; (ii) regeneration 
into secondary cambium to heal injuries; (iii) refilling 
vessels; (iv) bidirectional transport of water, ions and 
organic molecules between the symplastic and the apo-
plastic elements of the secondary xylem; and (v) defense 
response after infections by pathogens (Carlquist, 2012; 
Holbroock and Zwieniecki, 1999; Pfautsch et al., 2015 a; 

b; Morris et al., 2016 a; b; Morris and Jansen 2016; Mor-
ris et al., 2018; Secchi et al., 2017). Numerous pits inter-
connect secondary xylem elements and ensure exchange 
and communication between the living cells of RP and 
VACs and the apoplastic vessels, tracheids and libriform 
fibres. Of particular importance are the bordered pits at 
the lateral scalariform wall of vessels and tracheids and 
the half-bordered pits at the boundaries with RP and 
VACs. They form an interface between apoplastic xylem 
elements and the symplast, constituting a three-dimen-
sional network in the plant trunk that extend to the 
shoot tips (Kedrov, 2013; Sano et al., 2013; Donaldson et 

Figure 12. Libriform fibres (LF) in black spots and streaks of Vitis vinifera “Mueller-Thurgau”. (A) Cross section of libriform fibres with fal-
ciform detachments (arrows) of the primary cell wall (pZW) from the S1-layer and dilated pits (arrow heads), middle lamella (ML) is intact. 
Fluorescence micrograph 63×, excitation 460–488 nm, emission 500–557 nm. (B) Longitudinal section of libriform fibres, falciform cell wall 
detachments in axial direction, pits (Pt) interconnect the fibres. Fluorescence micrograph 63×, excitation 460–488 nm, emission 500–557 nm. 

Figure 13. Details of black spots and streaks on Vitis vinifera “Mueller-Thurgau”; (A) cross-section, vessel with hyphae (H) and tylosis 
(TH). Cryo scanning electron micrograph 400×; B longitudinal section, parenchyma cells of the wood ray with hyphae. Cryo scanning elec-
tron micrograph 1000×.
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Figure 14. Artificial inoculation of sterile wood cores from Vitis 
vinifera “Pinot noir” with Fomitiporia mediterranea. (A) Cross sec-
tion with libriform fibres, S2 layer of the cell wall intermingled by 
hyphae (arrow heads), hyphae spread from fibre to fibre within the 
S2 layer (arrows). Bright field micrograph 63×. (B) Artificial inocu-
lation with Fmed shows the same decomposition of the libriform 
fibres as in white rot lesions from the field. Bright field micrograph, 
63×. (C) Tangential section with libriform fibres showing helically 
arranged caverns (arrows). Bright field micrograph 63×.

Figure 15. Artificial inoculation of sterile wood cores from Vitis vinifera “Pinot noir” with Phaeomoniella chlamydospora. (A) Libriform 
fibres (LF), longitudinal section, growing hypha (arrowheads) in axial direction, beginning detachment of the S2 layer from the middle 
lamella (ML) and outer cell wall (arrows), Bright field micrograph 63×. (B) Surface of an inoculated core colonized by Pch, hyphae entering 
the vessels. Scanning electron micrograph 100×.
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al., 2018; Morris et al.; 2018; Gao et al., 2020; Zhang et 
al., 2020; Kaack et al., 2021; Koddenberg et al., 2021;).

Structural and functional studies have shown that 
the vascular architecture of grapevine trunks facilitates 
dissemination of wood-colonizing pathogens. The wide 
lumened vessels provide highways for wood-colonizing 
pathogens to pass axially through trunks (Pouzoulet et 
al., 2014, 2017, 2020; Bruez et al., 2020). Longitudinal 
sections through trunks verified the large-scale coloniza-
tion of secondary xylem and confirmed that wounds are 
entry ports for wood-degrading pathogens (Rolshausen 
et al., 2010; Travadon et al., 2013; 2016; Claverie et al., 
2020; Martinez-Diz et al., 2020). In addition, the scalari-
form cell walls facilitate the passage of pathogen hyphae 
from vessels into adjacent libriform fibres, where the 
hyphae proliferate laterally via the numerous pits.

The extensive lesions observed in the secondary 
xylem macroscopically resembled typical white rot of 
woody plants (Blanchette 1984; Schwarze, 2007; Good-
ell et al., 2008; Daniel et al., 2004; 2014; Hastrup et al., 
2012). However, greater magnification revealed decom-
position patterns in the affected zones of the secondary 
xylem that were distinctly different from the pattern 
described for white rot. The first signs of cell wall deg-
radation became evident in the libriform fibres, whose 
structured walls (middle lamella, primary and secondary 
cell wall) corresponded to the general pattern of this cell 
type. Of particular importance for the characterization 
of the degradation pattern was the thickened secondary 
cell walls of the libriform fibres, with S1, S2, and S3 lay-
ers, generally composed of cross-linked cellulose, hemi-
cellulose, lignin, and pectins in varying ratios (Plomion 
et al., 2001, Schuetz et al., 2013, Rathgeber et al., 2016; 
Schneider et al., 2017). In the S2 layers of woody plants, 
helically arranged cellulose fibrils predominate in most 
species. The round caverns found here in the S2 layer of 
libriform fibres at the periphery of lesions did not cor-
respond either selective delignification or simultane-
ous degradation of all cell wall components, but were 
typical of soft rots (Schwarze et al., 1995; Worrall et al., 
1997; Schwarze and Fink, 1998; Schwarze, 2007). In the 
initial stage of lesions, the cavities extended at an acute 
angle to the long axis, a conclusive indication that ini-
tially the helically oriented cellulose fibrils in the S2 lay-
ers were preferentially degraded, as is typical for soft rot 
(Schwarze, 2007; Schneider et al., 2017). The completely 
eroded S2-layers at the advanced stage also indicated soft 
rot, as the more lignified components of the cell walls 
such as the middle lamella, the primary cell walls, the S1 
layer and the inner S3 layer, remained intact. In the final 
stage, the more lignified parts of the cell walls, such as 
the middle lamella, the primary and the S1 and S3 lay-

ers of the secondary cell walls, were also affected, while 
the vessels and tracheids remained intact for longer. 
Complete disintegration of all xylem elements including 
VACs and RP in the centres of lesions can be attribut-
ed to simultaneous degradation of lignocellulose in the 
final stage of white rot, as described by Blanchette (1984) 
and Schwarze (2007).

The existing classification of Esca affected trunks 
into white rot does not adequately reflect the decom-
position pattern observed in the present study, in par-
ticular since the binary classification into white rot and 
brown rot has recently been further developed in favour 
of a differentiated classification of wood decay mecha-
nisms. It has been proposed that the molecular patterns 
of enzymes expressed by wood decomposing fungi, such 
as carbohydrate active enzymes (CAZymes), peroxidas-
es (PODs), and laccases, should be used to characterize 
decomposition patterns (Riley et al., 2014; Schilling et 
al., 2015, 2020). These current models show a gradient 
between phenotypes in which lignin degrading PODs 
with high selectivity for lignin predominate, and those 
with high activity of CAZymes, which are highly selec-
tive for carbohydrates. Based on the enzyme machinery 
described in publications on lignocellulose-degrading 
fungi (Bruno and Sparapano 2006a, Alfaro et al. 2014, 
Ohm et al. 2014, Riley et al. 2014, Floudas et al. 2015, 
Morales-Cruz et al. 2015, Massonette et al. 2018a; b; 
Hage and Rosso 2021), and the microscopic analysis of 
the degradation pattern described in the present paper, 
it can be concluded that the lesions caused by Fmed are 
the result of a transition from soft rot to white rot. The 
sequence of decomposition steps observed here suggests 
sequential activity of lignocellulose-degrading enzymes 
in the course of host tissue colonization by Fmed. Future 
studies should verify whether Fmed and related Esca 
pathogens first engage CAZymes to utilize the readily 
degradable cellulose in the S2 cell wall layer as resources 
for subsequent depolymerization of the more persistent 
lignin by PODs and laccases.

A distinctly different pattern was seen in the lesions 
with brown spots or streaks, which are clearly attrib-
uted to brown wood streaking. Microscopic analysis 
of the spots showed no evidence of intensive degrada-
tion in the cell walls of vessels, tracheids, and libriform 
fibres, even though lignocellulose-degrading enzymes 
have been found in pathogens that cause brown wood 
streaking, such as D. seriata and N. parvum (Czem-
mel et al., 2015; Morales-Cruz et al., 2015; Fischer et al., 
2016; Stempien et al., 2017; Massonnet et al., 2018 a; b; 
Garcia et al., 2021). These results indicate that the path-
ogens use the cell wall lignocellulose as a nutrient sub-
strate to a minor extent. Rather, the presence of hyphae 
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in the parenchyma of the lesions indicates exploitation 
of alternative carbon sources in living cells. The clusters 
of putative amylases and plant invertases found in the N. 
parvum genome (Czemmel et al., 2015) imply that Pch 
also abundantly degrades starch stored as a reserve in 
the parenchyma of wood rays. The extent of brown wood 
streaking from top to bottom, which is limited to small 
vessel groups or individual vessels, is evidence that the 
causing agent spread in the vascular system primarily in 
an axial direction. These observations are in accordance 
with those of Bruez et al. (2020), who suggested top-to-
bottom spread of Pch in grapevine trunks. Vessels are 
grouped into functional vascular bundles forming indi-
vidual leaf tracks extending through stems and corre-
sponding shoots into the leaves (Pratt 1974; von Arx et 
al., 2013). Consequently, a vascular bundle with brown 
wood streaking is in direct contact with a particular 
shoot and its associated leaves in the host canopy. In 
this way, toxic or stress-inducing metabolites, and effec-
tors secreted by Esca pathogens in the affected vascular 
bundles, can be transported via the individual leaf track 
into the corresponding shoots and leaves. This explains 
the observation, at least in the early stages of GLSD, that 
symptoms often occur only on single shoots. The scat-
tered single brown stained vessels in secondary xylem 
can be assigned to brown wood streaking, although they 
were not visible macroscopically. Lack of visibility also 
explains the results of Vaz et al. (2020), who detected 
Pch and other agents of brown wood streaking in appar-
ently intact wood, using µ-CT analyses.

The obstruction of vessels by tyloses in both white 
rot and brown wood streaking has also been described 
by previous authors (Troccoli et al., 2001; Del Rio et al., 
2001; Edwards et al., 2007; Mutawila et al., 2011; Fischer 
and Kassemeyer, 2012; Pouzoulet et al., 2014; Gomez 
et al., 2016; Pouzoulet et al., 2017; Jacobsen et al., 2018; 
Bortolami et al., 2019; 2021; Claverie et al., 2020). Tyloses 
are, among other functions, also respond to abiotic and 
biotic stress in secondary xylem, and have also been 
observed in grapevine in response to other vascular 
colonizing pathogens such as bacteria (Sun et al., 2006; 
2008; 2017; Leśniewska et al., 2017; Kashyap, 2021). Mas-
sonnet et al. (2017) showed that infection of grapevine 
trunks by Neofusicoccum parvum triggered a defense 
response in the leaves, so this may also occur in the sec-
ondary xylem colonized by the pathogens.

The dark discoloration of the demarcations encir-
cling white rot, and the vessels affected by brown wood 
streaks caused by inclusions of phenolics in the cell 
lumina, can be considered as defense responses in host 
tissues. Phenols are generally expressed in host-pathogen 
interactions by inducing transcriptional and biosynthetic 

machinery of the phenylpropanoid pathway, and these 
compounds serve a number of functions in plant innate 
immunity (Boller and Felix 2009; Yadav et al., 2021). As 
a result, numerous hydroxycinnamic acids, stilbenes, 
and high molecular weight condensation products accu-
mulate in affected xylem (Troccoli et al., 2001, Del Rio et 
al., 2004; Bruno and Sparapano, 2006b; 2007; Agrelli et 
al., 2009; Amalfitano et al., 2011; Mutawila et al., 2011; 
Lambert et al., 2012; 2013; Calzarano et al., 2016; Gómez 
et al., 2016; Pierron et al., 2016; Rusjan et al., 2017; Spag-
nolo et al., 2017; Stempien et al., 2017; Khattab et al., 
2020; Labois et al., 2020; 2021). Whether the demarca-
tion lines described here in white rot were solely due to 
a host response to the pathogen, or whether melanized 
hyphae of the pathogen also accumulate, could not be 
clarified.

The present anatomical study of Esca-affected 
trunks has shown that analysis of structural changes 
using microscopy contributes to a deeper understand-
ing of the molecular and biochemical processes in Esca 
host-pathogen interactions. Therefore, for complete elu-
cidation of the etiology of Esca, including GLSD, host 
and pathogen structural interactions must be considered 
along with the molecular and biochemical aspects of this 
pathosystem.

CONCLUSIONS

Comparing the colonization and degradation pat-
terns of the two pathosystems Fmed and Pch in grape-
vine, fundamental differences between the two emerged. 
The largely open vascular system in grapevine trunks 
enables dynamic adaxial pathogen spread direction 
from top to bottom. In the network of xylem elements, 
a dense system of pits facilitates lateral spread of Fmed, 
causing extensive white rot lesions. Cell wall decom-
position in the xylem by Fmed indicates an intermedi-
ate pattern. Initial soft rot with predominant cellulose 
decomposition is followed by white rot with simulta-
neous breakdown of the lignocellulose. Since the final 
stage of secondary xylem infection by Fmed and related 
pathogens resembles typical white rot, this term may be 
further used for this trunk symptom of Esca. In lesions 
caused by Fmed, there was clear compartmentaliza-
tion with demarcation zones separating intact second-
ary xylem from tissues progressively decayed by soft rot 
first, and then by white rot. This is in accordance with 
the CODIT model (Compartmentalization of Damage/
Dysfunction in Trees), which relates primarily to defense 
responses against wood-destroying pathogens in the sec-
ondary xylem of trees (Shigo 1984, Morris et al., 2016b; 
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2020). Further studies at structural, biochemical and 
molecular levels are required to clarify this intermediate 
status of the degradation pattern of Fmed and how it fits 
into the CODIT model.

The artificial inoculations of wood cores with Pch are 
evidence for the causal relationship of this pathogen with 
brown wood streaking. The present study has shown that 
brown wood streaking in grapevine plants is not a conse-
quence of significant cell wall decomposition, but rather 
a reaction of host tissues to infection by this pathogen. 
In order to clarify the role of Pch in the etiology of Esca, 
particularly GLSD, further in-depth studies are required 
on the induction of multiple resistance responses in 
affected xylem areas, and on biosynthesis and acropetal 
transport of potential stress factors and toxins.
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