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Summary. Allexivirus (Alphaflexiviridae) was first described in 1970 by Razvjazkina. 
Since then, Allexivirus species have been detected in many countries. Although this 
genus primarily infects plants in the Amaryllidaceae, other hosts include plants in the 
Fabaceae, Rosaceae and Orchidaceae. Thirteen Allexivirus species have been assigned. 
Eight of these infect Allium hosts, and these include: shallot virus X (ShVX), gar-
lic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), garlic virus D 
(GarV-D), garlic virus E (GarV-E), garlic virus X (GarV-X), and garlic-mite filamen-
tous virus (GarMbFV). Five have been described from non-Allium hosts, including 
blackberry virus E (BVE), vanilla latent virus (VLV), alfalfa virus S (AVS), Arachis pin-
toi virus (ApV), and Senna severe yellow mosaic virus (SSYMV). This review analyzes 
the taxonomic positions of the thirteen recognized species and four unassigned species 
(Allexivirus DS-2013/CZE isolate, shallot mite-borne latent virus (SMbLV), cassia mild 
mosaic virus (CaMMV), and papaya virus A (PaVA)). Based on the inspection of data, 
we have concluded that PaVA is an Allexivirus, DS-2013/CZE is an isolate of GarV-D, 
and SMbLV is an isolate of ShVX. Current knowledge of the host ranges, symptoms, 
genome structure and modes of transmission of these viruses is also summarized, and 
control measures employed against them are outlined.

Keywords. Taxonomy, genome organization, hosts, transmission, disease management.

INTRODUCTION

Plant viruses cause major problems for agriculture, affecting crop qual-
ity and yields (Van der Vlugt, 2006). Several studies have been carried out 
to understand the emergence, taxonomy, and evolution of different viruses.  
Allexivirus includes thirteen species recognized by the International Com-
mittee on Taxonomy of Viruses (ICTV). Allexiviruses are considered as 
threats to several economically important hosts, due to their occurrence 
as mixed infections. To date, eight species have been described, primarily 
infecting alliums, and their major vector has been shown to be the eriophy-
id mite Aceria tulipae (Van Dijk et al., 1991). Five other Allexivirus species 
have been described from blackberry, vanilla, forage peanut alfalfa plant, and 
Senna rizzinii (syn. Cassia chrysocarpa var. psilocarpa Benth.), without their 
insect vectors being identified.
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Allium-infecting allexiviruses were initially found 
infecting garlic and onion crops (Razvjazkina, 1970). 
Later, these viruses were described more thoroughly 
by Van Dijk et al. (1991). They were first referred to as 
onion mite-borne latent virus (OMbLV), shallot mite-
borne latent virus (SMbLV) and garlic strain of onion 
mite-borne latent virus (OMbLV-G) (Van Dijk et al., 
1991). Kanyuka et al. (1992) and Vishnichenko et al. 
(1993) reported the presence of a virus in shallot and 
named it shallot virus X (ShVX), and this virus was 
later considered synonymous to OMbLV and SMbLV 
(Van Dijk and Van der Vlugt, 1994). Allexiviruses were 
first assigned to Rymovirus (Potyviridae), based on their 
transmission by mites and the morphology of the virus 
particles (Barg et al., 1994). Subsequently, they were clas-
sified to “Allexivirus” within Alphaflexiviridae, for which 
ShVX is the type (Pringle, 1999). 

Considerable progress has been made to characterize 
the genomes and expression of allexiviruses. Determin-
ing their biology and epidemiology is important, to be 
able to apply appropriate disease management strategies. 
This paper reviews the taxonomic status of Allexivirus 
through phylogenetic analyses and describes their bio-
logical properties and the impacts and management of 
the disease they cause. Perspectives for future research 
are also provided. 

BIOLOGICAL PROPERTIES OF ALLEXIVIRUSES

Current taxonomy

Allexivirus has been assigned to Alphaflexiviridae in 
Tymovirales (Kreuze et al., 2020). The genus currently 
comprises thirteen species recognized by the ICTV, dis-
tinguished by their coat protein (CP) and replicase cod-
ing regions. According to the species demarcation crite-
ria, members of Allexivirus share less than 72% nucleo-
tide sequence identity (or 80% amino acid sequence 
identity) between their CP and replicase, and react dif-
ferently with antisera (King et al., 2012).

The eight allexiviruses that have been detected in 
Allium species are ShVX, garlic virus A (GarV-A), garlic 
virus B (GarV-B), garlic virus C (GarV-C), garlic virus D 
(GarV-D), garlic virus E (GarV-E), garlic virus X (GarV-
X) and garlic mite-borne filamentous virus (GarMbFV) 
(King et al., 2012). Five additional viruses were assigned 
to Allexivirus based on their genome organization 
and sequence identities between replicases and/or CP 
sequences. These viruses are blackberry virus E (BVE), 
vanilla latent virus (VLV), alfalfa virus S (AVS), Ara-
chis pintoi virus (ApV), and Senna severe yellow mosa-
ic virus (SSYMV) (Sabanadzovic et al., 2011; Gutiérrez 

Sánchez et al., 2016; Grisoni et al., 2017; Nemchinov et 
al., 2017; Alves et al., 2020).

In addition, new virus accessions have been shown 
to be related to Allexivirus but remain unassigned until 
an assessment by ICTV members. Based on sequence 
analyses, the unassigned viruses share a high degree 
of nucleotide (nt) and amino acid (aa) sequence simi-
larity with the existing members of Allexivirus. The 
unassigned viruses comprised four species:  SMbLV 
that was identified as ShVX isolate (GeneBank acces-
sion EU835196.1), Allexivirus DS-2013/CZE isolate 
(JX682826.1), and cassia mild mosaic virus (CaMMV) 
isolate (partial sequence GU481094.1) (Beserra et al. 
2011). The Senna macranthera isolate was given the 
name cassia mild mosaic virus based on particle mor-
phology and host range (J.E.A Beserra, personal com-
munication). However, since there was no available 
information about the nucleotide sequence of the virus, 
the authors referred to the newly identified allexivirus as 
Senna virus X (SVX) (Beserra et al., 2011).

Phylogenetic analyses and taxonomic impact

Given the global distribution of allexiviruses, 
insights from phylogenetic analyses provides under-
standing of the origins and the relatedness between 
members of the genus. Sequence alignments were per-
formed with MUSCLE (Edgar, 2004) and trees were 
constructed with nucleotide sequences of the complete 
genome and CP from selected allexiviruses and closely 
related unassigned member sequences available in NCBI 
(https://www.ncbi.nlm.nih.gov/). Phylogenetic trees were 
constructed using the neighbour-joining (NJ) method 
with a bootstrap value of 1000 using MEGA X (http://
www.megasoftware.net/mega.php) (Kumar et al., 2018; 
Stecher et al., 2020) (Figure 1). Only partial sequences of 
GarMbFV were available in GenBank, so this virus was 
only included in the analysis of the CP. For the unas-
signed species CaMMV, only the replicase sequence was 
available so this species was not included in the analy-
sis. New viruses have been deposited in GenBank as 
tentative Allexivirus species and these include: papaya 
virus A (PaVA; MN418120.1) (Read et al., 2020), garlic 
virus F (GarV-F; MN059330.1), garlic virus H (GarV-
H; MN059332.1), garlic virus G (GarV-G; MN059331.1), 
garlic virus I (GarV-I; MN059334.1), and garlic yellow 
virus (GYV; MN059396.1). The viruses PaVA, GarV-F, 
-H, -G, and -I have been included in the analysis. How-
ever, GYV lacks the 42 KDa protein and is more related 
to Carlavirus (>76% nt and aa sequence identity of the 
CP to Garlic latent virus), so GYV was not considered in 
this review. Potato virus M (PVM, Carlavirus) was used 
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Figure 1. Phylogenetic analysis among Allexivirus isolates (ShVX, GarV-A, -B, -C, -D, -E, -X, -F, -G, -H, -I, GarMbFV, AVS, BVE, ApV, 
VLV, SSYMV, and unclassified PaVA) based on alignment of nucleotide sequences of complete genomes (A) and of coat proteins (B). Potato 
virus M (PVM; Carlavirus, Betaflexiviridae) was used as the outgroup. For the generation of the tree, nucleotide sequences were aligned 
using MUSCLE (Edgar, 2004), and the tree was constructed using MEGA x (Kumar et al., 2018). The neighbour-joining method was used 
for the construction of the tree, and the reliability of the branches was inferred from a bootstrap analysis of 1000 replicates. Abbreviations 
indicated are: shallot virus X (ShVX), garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), garlic virus D (GarV-D), 
garlic virus E (GarV-E), garlic virus X (GarV-X), garlic mite-borne filamentous virus (GarMbFV), blackberry virus E (BVE), vanilla latent 
virus (VLV), alfalfa virus S (AVS) and Arachis pintoi virus (ApV), Severe yellow mosaic virus (SSYMV), garlic virus F (GarV-F), garlic virus 
H (GarV-H), garlic virus I (GarV-I), garlic virus G (GarV-G), and  papaya virus A (PaVA). The countries of origin and the accession num-
bers of the selected Allexivirus sequences retrieved from GenBank are shown next to the virus acronyms.
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as an outgroup. Sequence similarity and identity analy-
ses were performed in BioEdit (Hall, 1999).

Whole genome phylogenetic analysis divided the 
allexiviruses into the Allium and non-Allium-infecting 
viruses (Figure 1A). Two clades were observed within 
the Allium-infecting group, separating ShVX and GarV-
A from the remaining Allium-infecting allexiviruses. 
The unassigned PaVA together with the non-Allium 
allexiviruses BVE, VLV, ApV, AVS, and SSYMV, formed 
a monophyletic group of distant accessions. Similarly, 
the CP-based phylogenetic analysis showed the same two 
clades of the Allium-infecting allexivirus group and the 
non-Allium group (Figure 1B). Within the Allium-infect-
ing allexivirus clade, two groups were observed: the first 
comprised GarV-X, -B, -I, -H, -F, -G, and -C isolates. 
The second group included GarV-D and -E, GarV-A and 
GarMbFV isolates, and grouped together with ShVX 
isolates. The second clade included the four non-Allium 
allexiviruses AVS, BVE, VLV, ApV, and SSYMV, while 
PaVA formed a very distant monophyletic isolate. In 
view of the high homology in the CP, and based on the 
phylogenetic tree, the species PaVA could be considered 
as new species of allexivirus.

Coat protein sequence analysis showed that the 
SMbLV sequence shared 90.5–97.1% nt sequence iden-
tity (97.0–98.0% aa sequence identity) to ShVX isolates 
(GeneBank: MH389253.1, MH389252.1, KY012791.1). 
Similarly, DS-2013/CZE isolate (GeneBank: JX682826.1) 
shared 84.2% nt sequence identity (95.0% aa sequence 
identity) to GarV-D isolates (GeneBank: JX682863.1, 
AJ551490.1). Therefore, SMbLV should be considered 
as an isolate of ShVX, and ShVX should be retained as 
an ICTV recognized species, and DS-2013/CZE isolate 
should be considered an isolate of GarV-D. In addition, 
identity pairwise comparisons of the CP gene of GarV-
I, GarV-F and GarV-G showed high degrees of sequence 
similarity (99.1-99.6% nt sequence identity; 97.9-98.9% 
aa sequence identity), while GarV-H shared, respectively, 
73.0%, 72.6%, and 72.5% nt sequence identity (66.1%, 
65.7%, and 65.9% aa sequence identity) with, respectively, 
GarV-I, -G, and -F. The CP gene of GarV-I shared 85.4 to 
99.5% nt sequence identity (72.7–98.9% aa sequence iden-
tity) with GarV-B isolates, but the replicase gene analy-
sis of GarV-I identified high identity values with GarV-
D isolates (92.1–95.3% nt sequence identity, 96.1-99.7% 
aa sequence identity). CP sequence analysis also showed 
that GarV-F, GarV-G, and GarV-H shared high similar-
ity to GarV-B isolates (68.6–99.8% nt identity, 75.6–98.9% 
aa identity). These values suggest that GarV-F, -G, and -H 
are different isolates of GarV-B. Based on our analyses, 
these new accessions retrieved from GenBank as allexivi-
ruses have similar structure, and they are closely related 

to Allexivirus, with evidence of recombination between 
the species. However, since information about these new 
accessions is limited, additional information is required 
to give accurate taxonomic assignation.

The CP and replicase genes have been used to clas-
sify species within the genus. Although this criterion 
has been widely used, there is growing evidence of high 
similarities existing between some of the Allexivirus spe-
cies (Celli et al., 2018; Geering and McTaggart, 2019). 
For example, when available GarMbFV CP sequences 
were compared with GarV-A CP sequences, the identity 
values for CP among the isolates were 79.5 to 81.1% for 
nt sequences (76.6–81.8% aa sequence identity), all val-
ues of which are above the taxonomic classification cri-
teria. Based on the phylogenetic analyses, both species 
formed a separate well-supported monophyletic cluster 
(Figure 1B), with the exception of GarV-A Tunisian iso-
late (GenBank: MN995837.1) that groups with GarMbFV 
isolates (Figure 1B). The Tunisian GarV-A shared 91.5 to 
93.6% nt sequence identity (97.1–98.5% aa sequence iden-
tity) with GarMbFV isolates. Our data analysis there-
fore indicated that the two species are very similar and 
may be different isolates of the same species. The high 
similarity observed between the species has been clearly 
demonstrated by Geering and McTaggart (2019), clarify-
ing the taxonomic position of GarMbFV and GarV-A. 
These authors concluded that the two species are con-
specific. Additionally, since the replicase region used 
in taxonomic classification is absent, the risk of errors 
occurring in classification increases, especially in cases 
when only partial sequences have been determined. In 
view of these high proportions of sequence identity and 
as previously proposed (Geering and McTaggart, 2019), 
we suggest that GarMbFV should be considered as a 
strain of GarV-A species. Isolation of GarMbFV com-
plete genome sequence is required to confirm the rela-
tionship of GarMbFV with GarV-A.

During the CP and replicase gene analysis, high 
similarity was observed between GarV-B and GarV-X iso-
lates. GarV-B and GarV-X isolates shared 75.4 to 78.1% 
nt sequences identity (84.4–89.6% aa sequence identity) 
between the CP sequences, and 73.4 to 74.1% nt sequenc-
es identity (81.6–82.9% aa sequence identity) between the 
replicase sequences, both values of which are greater than 
demarcation criteria of Allexivirus (King et al., 2012). 
Although the different accessions of both isolates are 
well separated in the phylogenetic analysis, GarV-B and 
GarV-X have enough homology to be considered as dif-
ferent strains of the same species. Our data analysis con-
firms previous results of Celli et al. (2018), that also indi-
cated possible recombination events within the complete 
genome of Allium-infecting allexiviruses.
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Based on the data analysis, we suggest that SMbLV 
is an isolate of ShVX, DS-2013/CZE is an isolate of 
GarV-D, while GarMbFV and GarV-A are conspecif-
ic, and GarV-B and GarV-X are also conspecific. More 
data are required to assess the taxonomic status of the 
sequences of GarV-F, -G, -H, and -I.

The genetic diversity of allexivirus populations has 
been reported when comparing the CP and the repli-
case sequences, indicating population differentiation 
(Chen et al., 2001; Melo-Filho et al., 2004; Mohammed 
et al., 2013). Our data indicates that phylogenetic cluster-
ing among allexivirus isolates was independent of geo-
graphical area (Figure 1B). This means that the overall 
variability is largely due to global trade between coun-
tries, and evolutionary forces such as virus occurrence 
in mixed infections and interactions between different 
genotypes of the same species (Melo-Filho et al., 2004; 
Mohammed et al., 2013). More analysis of the of allexi-
virus population genetics is required to allow precise 
understanding of their  evolution  and genomic diversity 
within virus populations.

Genome organization and virion properties

Members of Allexivirus are single-stranded positive-
sense RNA viruses with genome sizes of approx. 9 kb 
(Chen et al., 2004). Virions are flexuous and filamentous, 
approx. 800 nm in length and 12 nm in diameter (Figure 
2). These viruses induce granular inclusion bodies and 
small bundles of flexible particles in the cytoplasm of 
the epidermis cells of infected plants (Kang et al., 2007). 
The RNA of allexiviruses is capped at the 5’ untranslated 
region (UTR) terminus with a 7-methylguanosine  cap 
(m7G) and has a polyadenylated tail at the 3’ UTR ter-
minus. 

The genome organization of Allexivirus members is 
outlined in Table 1. The number of open reading frames 
(ORFs) varies among species. The genomes of seven 
Allium-infecting allexiviruses (GarV-A, -B, -C, -D, -E, 
-X, and ShVX) contains seven ORFs, whereas those of 
AVS, VLV, ApV and SSYMV contains six ORFs, and 
that of BVE contains five ORFs (Table 1), and there is no 
published complete genome sequence of GarMbFV. The 
first ORF in all Allexivirus species is the largest gene, 
which encodes a putative replicase protein with three 
conserved motifs: methyl transferase (MET), NTPase/
helicase (HEL) and RNA-dependent RNA polymerase 
(RdRp) (Song et al., 1998). The replicase protein of ShVX 
and AVS contains an oxidative demethylase domain 
(AlkB) located between the MET and HEL domains 
that is present in some members of the Alphaflexiviridae 
(Van den Born et al., 2008; Nemchinov et al., 2017). 

Allexiviruses also contains triple gene blocks 
(TGBs); TGB1 encodes helicase and TGB2 encodes virus 
movement domains. The two TGBs were shown to be 
required for viral cell-to-cell movement through plas-
modesmata and systemic transport via host phloem tis-
sues (Lezzhov et al., 2015). The TGB3 protein was found 
in all the Allium-infecting allexiviruses and in BVE and 
ApV but lacked the initiation codon. TGB3 synthesis 
requires a leaky ribosome scanning initiated by a TGB3 
CUG initiator codon, rather than internal ribosome 
entry (Lezzhov et al., 2015). This mechanism is com-
monly used by RNA viruses to translate functionally 
multicistronic messages (Firth and Brierley, 2012). The 
TGB3 of the VLV, AVS, SSYMV and the unclassified 
virus PaVA had the initiation AUG start codon (Griso-
ni et al., 2017; Nemchinov et al., 2017; Read et al., 2020; 
Alves et al., 2020). Presumably, the TGB3 may have an 
accessory function alongside the TGB1 and TGB2 in 
cell-to-cell movement of the viruses (Morozov and 
Solovyev, 2003).

Another large ORF, downstream of the TGB, encod-
ing a protein of approx. 42 KDa, is found in all allexivi-
ruses, and this has no homology to any known protein 
of other genera (King et al., 2012). The 42 KDa protein 
contains a serine and threonine-rich protein and has 
been shown to be involved in virion assembly and act as 

Figure 2. Transmission electron microscopy showing particles of 
Garlic virus D from garlic plants (negative staining with 1 % uranyl 
acetate). Particle sizes are approx. 800 nm length and 12 nm diam-
eter. Bars represent 500 nm.
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a co-factor to facilitate the interaction of the capsid pro-
tein with genomic RNA during assembly (Vishnichenko 
et al., 2002).

The coat protein (25-36 KDa) shares the conserved 
structural core and evolutionary origin of some families 
of filamentous plant viruses and shows high similarity 
to carla- and potex-viruses (Kanyuka et al., 1992; Mar-
telli et al., 2007). Only the eight viruses infecting Allium 
(ShVX, GarV-A, -B, -C, -D, -E, -X, and GarMbFV) have 
an additional ORF, that contains a nucleic acid binding 
domain (NABP). This ORF contains a small cysteine-
rich protein (CRP), a basic arginine-rich domain and a 
zinc-finger motif at the 3’-terminal region (Song et al., 
1998; Kanyuka et al., 1992). Although CRPs of many 
plant viruses were shown to act as RNA silencing sup-
pressors (Senshu et al., 2011; Fujita et al., 2018), Arkh-
ipov et al. (2013) did not observe this activity in ShVX. 
The allexivirus CPR is likely to be necessary for the reg-
ulation of virus RNA replication, together with patho-
genicity determinants during allexivirus evolution and 
control interactions of the viruses with their plant hosts 
(Lukhovitskaya et al., 2014, Yoshida et al., 2018).

Various nucleotide insertions between CP and CRP 
genes have been observed in GarV-B, GarV-C and GarV-
X. These insertions are complementary to garlic 18S 
ribosomal RNA (rRNA) and are probably involved in the 
termination-reinitiation translation mechanism (Yoshida 
et al., 2018). It is possible that GarV-B, -C, and -X utilize 
this mechanism to regulate the expression of virus pro-

tein, to enable adaptations to specific hosts and vectors 
(Gramstat et al., 1994).

Virus proteins are often multifunctional, and 
each function is essential for virus survival and can be 
dependent on virus species, host and/or vector. Further 
research is required to clarify the entire allexiviruses 
infection process. How these viruses avoid host defense 
mechanisms and what are the functional features of 
the virus genomes, are essential questions to allow full 
understanding of the expression of allexiviruses and 
their interactions with their hosts plants.

PATHOLOGY AND MANAGEMENT OF 
ALLEXIVIRUSES

Distribution, host range, and transmission

To date, Allium-infecting allexiviruses have been 
recorded in all Allium producing regions (Table 2), while 
the non-Allium-infecting allexiviruses have only been 
reported in countries where they were first described 
(Sabanadzovic et al., 2011; Gutiérrez Sánchez et al., 2016; 
Grisoni et al., 2017; Nemchinov et al., 2017; Alves et al., 
2020). However, it is most likely that these viruses are 
more broadly distributed than currently is known, espe-
cially where their host plants are cultivated.

The natural host range of allexiviruses has been 
reported to be restricted to several cultivated, ornamen-

Table 1. Genome size, number and molecular weight of proteins encoded by the genes of each Allexivirus. 

Virus 
species 

GenBank 
accession

Genome 
size (nt)1

Number 
of ORF

Molecular weight (KDa) Reference

Replicase TGB1 TGB2 TGB3 42K protein CP NABP  

GarV-A AB010300 8660 7 183 28 11 7* 39 28 15 Sumi et al., 1999
GarV-B KM379144 8327 7 168 27 12 7* 39 27 14 Celli et al., 2018
GarV-C AB010302 8405 7 175 27 11 7* 41 28 15 Sumi et al., 1999
GarV-D KF555653 8424 7 177 26 11 7* 40 27 15 Wylie et al., 2014
GarV-E AJ292230 8451 7 176 27 11 7* 40 35 15 Chen and Chen, 2002
GarV-X U89243 8458 7 174 26 12 7* 32 36 15 Song et al., 1998
ShVX M97264 8890 7 195 26 11 7* 42 28 15 Kanyuka et al., 1992
BVE JN053266 7718 5 169 27 12 11* 40 25 -** Sabanadzovic et al., 2011
AVS KY696659 8349 6 188 26 11 10 38 32 -** Nemchinov et al., 2017
ApV KX058345 7599 6 158 26 12 8 41 26 -** Gutiérrez Sánchez et al., 2016
VLV MF150239 7462 6 161 26 11 8 41 25 -** Grisoni et al., 2017
SSYMV MN031278 7829 6 164 26 11 9 37 28 -** Alves et al., 2020

1 nt= nucleotides, ORF= open reading frame, TGB = triple gene block, 42K protein = protein of unknown function, CP = Coat protein, 
NABP = nucleic acid binding protein, GarV-A = Garlic virus A, GarV-B = Garlic virus B, GarV-C = Garlic virus C, GarV-D = Garlic 
virus D, GarV-E = Garlic virus E, GarV-X = Garlic virus X, ShVX = Shallot virus X, BVE = Blackberry virus E, VLV = Vanilla latent 
virus, AVS = Alfalfa virus S, ApV = Arachis pintoi virus.
* Untranslated TGB-like gene that lacks the initiator AUG codon and partially overlapping with the TGB2 genes.  
** No sequence was identified.
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tal, and wild Allium species (Table 3). Allium-infecting 
allexiviruses, have been shown to only infect monocoty-
ledon plants in the Asparagales (Van Dijk et al., 1991; 
Fidan et al., 2013). The only exception was detection of 
GarV-D on Drimia maritima (L.) (Asparagaceae), which 
is, to date, the only reported natural occurrence of Alli-
um-infecting allexiviruses in a non-Alliaceae host (Fidan 
et al., 2013). The presence of Allium-infecting allexivi-
ruses in D. maritima suggests that either the virus is 
expanding its host range (new host adaptation), or that it 
has always been present unnoticed in other host families.

ApV, AVS, BE, VLV, and SSYMV have been reported 
to naturally infect dicotyledonous plants in the Rosace-
ae, Fabaceae, Orchidaceae and Caricaceae (Table 3). The 
unclassified allexivirus PaVA was detected in Carica 
papaya L. (Read et al., 2020) and CaMMV was detected 
in S. macranthera (Beserra et al., 2011).

Most members of Allexivirus are transmissible from 
natural to experimental hosts by mechanical inocula-
tion. Allium-infecting allexiviruses can be transmitted 
to several diagnostic hosts, including Chenopodium qui-
noa, C. murale, C. amaranthicolor, Gomphrena globosa, 

Table 2. Geographical distribution of allexiviruses.  

Location Detected viruses1 References

China GarV-A, -D, -E, -X, ShVX, GarV-B (GarV-F, 
GarV-I, GarV-G, and GarV-H)2

Chen et al., 2001, 2004

Japan GarV-A, -B, -C, -D, GarMbFV Sumi et al., 1993; Yamashita et al., 1996
South Korea GarV-A, -B, -C, -D, -E, -X Kang et al., 2007; lee et al., 2007
India GarV-A, -C, -D, -X, GarMbFV, ShVX Mandal et al., 2017
Iran GarV-A, -B, -C, -D, ShVX Shahraeen et al., 2008
Russia ShVX Kanyuka et al., 1992; Vishnichenko et al., 1993
Turkey GarV-B, -D, -X, GarMbFV Fidan, 2010; Fidan et al., 2013
Italy GarV-B, -D, -X, ShVX Taglienti et al., 2017
Poland GarV-A, -B, -D, -X, GarMbFV, ShVX Bereda et al., 2017
France ShVX Marais et al., 2019
Greece GarV-C, -D, GarMbFV Dovas et al., 2001
Czech Republic GarV-A, -B, -C, -D, -E, -X, GarMbFV, ShVX Klukáčková et al., 2007
Slovenia GarV-A, -B, -C, -D, -E, -X, GarMbFV, ShVX Mavrič and Ravnikar, 2005
Spain GarV-B, -D, -X Tabanelli et al., 2004
United Kingdom ShVX Ryabov et al., 1996
Netherlands OMBLV, SMbLV3 Van Dijk et al., 1991
Argentina GarV-A, -B, -C Cafrune et al., 2006a
Mexico GarV-D Rocha and Esmeralda, 2019
Brazil GarV-A, -B, -D, -X, GarMbFV, SSYMV Oliveira et al., 2014; Alves et al., 2020
Colombia ApV Gutiérrez Sánchez et al., 2016
Ecuador ShVX Granda et al., 2017
USA GarV-B, -C,-D, -E, ShVX, AVS, BVE Gieck et al., 2009; Sabanadzovic et al., 2011; Nemchinov et 

al., 2017; Wijayasekara et al., 2019 
Sudan GarV-A, -B, -X, ShVX Mohammed et al., 2013; Hamed et al., 2012
La reunion VLV Grisoni et al., 2017
Ethiopia GarV-B, -C, -D, -X Jemal et al., 2015; Abraham et al., 2019
DR Congo GarV-D Majumder et al., 2019
New Zealand GarV-A, -B, -D, ShVX Ward et al., 2009
Australia GarV-A, -B, -C, -D, -E, -X Wylie et al., 2014; Nurulita et al., 2020

1 GarV-A = Garlic virus A, GarV-B = Garlic virus B, GarV-C = Garlic virus C, GarV-D = Garlic virus D, GarV-E = Garlic virus E, GarV-X = 
Garlic virus X, GarV-F = Garlic virus F (GenBank accession MN059330.1), GarV-H = Garlic virus H (MN059332.1), GarV-G = Garlic virus 
G (MN059331.1), GarV-I = Garlic virus I (MN059334.1), GarMbFV = Garlic-mite borne filamentous virus, ShVX = Shallot virus X, BVE = 
Blackberry virus E, VLV = Vanilla latent virus, AVS = Alfalfa virus S, ApV = Arachis pintoi virus.
2 Based on phylogenetic and sequence analysis, GarV-F, -H, -G, and -I are conspecific of GarV-B. 
3 Onion mite-borne latent virus (OMbLV) and shallot mite-borne latent virus (SMbLV) were the first name species given for Allium-infect-
ing allexiviruses, later identified as shallot virus X (ShVX).
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Table 3. Natural hosts and experimental host range when mechanically inoculated with one of allexiviruses. 

Virus species1 Natural hosts References Experimental hosts (References)

GarV-A Allium ampeloprasum,  A. angulosum, A. ascalonicum, A. 
anisopodium, A. caesium, A. chinense, A. bucharicum, A. 
carinatum, A. cyathophorum, A. cernuum, A. flavum, A. 
hybridum, A. ledebourianum, A. microdictyon, A. moly, A. 
narcissiflorum, A. neapolitanum, A. nutans, A. oleraceum, 
A. ramosum, A. runyonii, A. roseum, A. rotundum, A. 
sativum, A. senescens, A. scabriscapum, A. schoenoprasum, 
A. scorodoprasum, A. sphaerocephalon, A. stipitatum, A. 
suaveolens, A. tuberosum, A. thunbergii, A. ursinum, A. 
victorialis var. platyphyllum, A. vineale

Yamashita et al., 1996; Ward 
et al., 2009; Park et al., 2011; 
Mansouri et al., 2021a

Chenopodium murale, Gomphrena 
globosa, C. amaranticolor, C. 
quinoa, Atriplex hortensis, C. 
foliosum, C. opulifolium, A.cepa, 
A. ampeloprasum, Nicotiana 
benthamiana (Van Dijk et al., 
1991, Yamashita et al., 1996; 
Melo-Filho et al., 2004; Cafrune 
et al., 2006a; Dąbrowska et al., 
2020)

GarV-B A. anisopodium, A. chinense, A. caeruleum, A. caesium, 
A. sphaerocephalum, A. cyathophorum, A. cernuum, A. 
flavum, A. ledebourianum, A. hybridum, A. narcissiflorum, 
A. neapolitanum, A. nutans, A. oleraceum, A. oreophilum, A. 
sativum, A. schoenoprasum, A. scorodoprasum, A. senescens, 
A. stipitatum, A. suaveolens, A. tuberosum, A. ursinum

Ward et al., 2009; Bampi et 
al., 2015; Paduch-Cichal and 
Bereda, 2017; Mansouri et al., 
2021a

GarV-C A. ampeloprasum, A. caeruleum, A. angulosum, A. 
bulgaricum, A. carinatum, A. caesium, A. cepa L., A. 
cyathophorum, A. cernuum, A. flavum, A. microdictyon, 
A. moly, A. narcissiflorum, A. neapolitanum, A. nutans, 
A. oleraceum, A. oreophilum, A. ramosum, A. roseum, 
A. rotundum, A. sativum, A. sphaerocephalum, A. 
schoenoprasum, A. scorodoprasum, A. senescens, A. 
suaveolens, A. tuberosum, A. ursinum, A. vineale 

Shahraeen et al., 2008; Ward 
et al., 2009; Bampi et al., 
2015 ; Mansouri et al., 2021a

GarV-D A. atropurpureum, A. sativum, A. cepa L., A. caesium, Drimia 
maritima, A. ascalonicum, A. fistulosum, A. caeruleum, A. 
sphaerocephalum, A. angulosum, A. flavum, A. hybridum, 
A. karataviense, A. macrostemon, A. moly, A. oreophilum, A. 
scabriscapum, A. senescens, A. thunbergii

Ward et al., 2009; Fidan et 
al., 2013; Bampi et al., 2015; 
Paduch-Cichal and Bereda, 
2017; Mansouri et al., 2021a 

GarV-E A. caeruleum, A. cernuum, A. flavum, A. sativum, A 
sphaerocephalum, A. scorodoprasum 

Chen and Chen, 2002; Bampi 
et al., 2015; Mansouri et al., 
2021a

GarV-X A. caesium, A. hybridum, A. karataviense, A. sativum, A. 
schubertii

Song et al., 1998; Mansouri et 
al., 2021a

GarMbFV A. caesium, A. cepa L., A. cernuum, A. flavum, A. hybridum, 
A. karataviense, A. moly, A. oreophilum, A. sativum, A. 
schubertii 

Dovas et al., 2001; Mansouri 
et al., 2021a

ShVX A. angulosum, A. altaicum, A. ascalonicum, A. anisopodium, 
A. bucharicum, A. caeruleum, A. caesium, A. sativum, A. 
cepa L. var. aggregatumA. ledebourianum, A. hybridum, 
A. sphaerocephalum, A. flavum,  A. bulgaricum, A. 
cyathophorum, A. cernuum, A. microdictyon, A. moly, A. 
narcissiflorum, A. neapolitanum, A. nutans, A. oleraceum, A. 
oreophilum, A. przewalskianum, A. ramosum, A. rotundum, 
A. scabriscapum, A. scorodoprasum, A. stipitatum, A. 
suaveolens, A. tuberosum, A. ursinum, A. vineale

Ward et al., 2009; Hamed et 
al., 2012; Bampi et al., 2015; 
Taglienti et al., 2017; Paduch-
Cichal and Bereda, 2017; 
Mansouri et al., 2021a

BVE Rubus L. Sabanadzovic et al., 2011  
VLV Vanilla planifolia, V. pompona, V. humblotii Grisoni et al., 2017 V. planifolia
ApV Arachis pintoi Gutiérrez Sánchez et al., 2016  
AVS Medicago sativa Nemchinov et al., 2017  
SSYMV Senna rizzini Alves et al., 2020 C. amaranticolor, C. quinoa, G. 

globosa, S. rizzinii, S. occidentalis

1 GarV-A = Garlic virus A, GarV-B = Garlic virus B, GarV-C = Garlic virus C, GarV-D = Garlic virus D, GarV-E = Garlic virus E, 
GarV-X = Garlic virus X, GarMbFV = Garlic-mite borne filamentous virus, ShVX = Shallot virus X, BVE = Blackberry virus E, VLV = 
Vanilla latent virus, AVS = Alfalfa virus S, ApV = Arachis pintoi virus.
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Nicotiana occidentalis and Atriplex hortensis (Van Dijk 
et al., 1991; Yamashita et al., 1996). VLV is mechanically 
transmitted to its natural vanilla host (Vanilla planifo-
lia) (Grisoni et al., 2017). SSYMV is mechanically trans-
mitted to S. rizzinii, S. occidentalis, C. amaranticolor, 
G. globosa, and the unassigned CaMMV is transmitted 
mechanically to S. macranthera, Phaseolus vulgaris, and 
G. globosa (Beserra et al., 2011; Alves et al., 2020).

Allium-infecting allexiviruses are transmitted by 
their major vector, the eriophyid mite Aceria tulipae 
Keifer (Van Dijk et al., 1991). The Allium-infecting allex-
iviruses have been successfully transmitted to leek plants 
(Allium ampeloprasum) by A. tulipae (Dąbrowska et al., 
2020; Mansouri et al., 2021b). The transmission char-
acteristics of these viruses, including acquisition time, 
inoculation time, persistence in the vector, and effective-
ness of the transmission, have been recently described as 
semipersistent (Mansouri et al., 2021b). Studies on other 
mite-transmitted viruses indicated a similar mode of 
transmission (Gispert et al., 1998; Kulkarni et al., 2002). 

Potential vectors of the non-Allium allexivirus-
es have not yet been identified and are different to the 
those of other allexiviruses, because A. tulipae  was 
shown to be restricted to alliums (Kiedrowicz et al., 
2017). Dissemination of these viruses probably takes 
place through the distribution of infected propagative 
materials, which is a major mode for the long-distance 
dissemination of allexiviruses (King et al., 2012). In 
addition, detailed studies on the transmission of the 
non-Allium allexiviruses are required to understand and 
prevent their dissemination.

Economic impacts and disease management

The Allium-infecting allexiviruses are responsible 
for important economic impacts, although they only 
cause mild host symptoms (mild mosaic, yellow stripes, 
stunted growth) in natural infections (Kang et al., 2007). 
These viruses have been reported to cause yield losses 
and reduce quality of several Allium crops (Cafrune et 
al., 2006b). Single infection with either GarV-C or GarV-
A resulted in decreased garlic bulb weight (approx. 15% 
reduction) and diameter (approx. 5%) (Cafrune et al., 
2006a; Perotto et al., 2010). Single infection with GarV-
D caused a 12% reduction in garlic bulb weight and 7% 
of bulb quality (Celli et al., 2016). Although infections of 
garlic crops by one of the Allium-infecting allexiviruses 
alone could result in diseases, yield losses were consider-
ably more severe when allexiviruses occurred in mixed 
infections, especially in the presence of Potyvirus and 
Carlavirus species (Conci et al., 2003). Little research 
has been reported on the non-Allium allexiviruses since 

their discovery, suggesting that they have low prevalence 
on their host crops. Although BVE and ApV cause mild 
host symptoms (e.g., chlorosis and vein yellowing), it is 
possible that these symptoms are exhibited due to mixed 
virus infections (Sabanadzovic et al., 2011; Martin and 
Tzanetakis, 2015; Gutiérrez Sánchez et al., 2016).

Allexiviruses present distinct challenges for con-
trol and management of their spread and emergence in 
several crops. These viruses are not seedborne, but they 
have been introduced in different countries via infected 
plant material. Disease control methods, including diag-
nosis, sanitation, sanitary certification, host resistance 
and vector management, are all likely to be key factors 
for the effective management of these diseases. Other 
approaches, such as conventional host breeding, trans-
genic methods, and gene silencing strategies, have been 
used to control RNA viruses (Chaudhary, 2018). It is 
therefore important that the biology of viruses is fully 
understood so that these methods can be utilized to lim-
it the spread of viruses. 

The use of healthy planting material is one of the 
most effective methods for controlling viruses and 
maintaining good crop yields (Torres et al., 2000; Salo-
mon, 2002). In vitro tissue culture techniques, such as 
micropropagation, meristem culture, thermotherapy, 
chemotherapy, cryotherapy, and somatic embryogen-
esis, have been used for production of virus-free gar-
lic plants (Ghaemizadeh et al., 2014; Manjunathago-
wda et al., 2017). Although these techniques have been 
used successfully in the elimination of allexiviruses in 
alliums, these viruses remain major problems because 
these crops are easily re-infected once they are planted 
in fields. Re-infections occur from vector transmission 
from nearby infected crops, such as garlic and onion 
(Taglienti et al., 2017). Regular crop inspection for vec-
tors and strict pest control management are essential 
throughout crop growth.

There have been no reports of in vitro sanitation and 
control management for BVE, ApV, AVS, VLV and the 
newly unassigned viruses. However, the use of virus-free 
planting material can effectively control these viruses. 
Development of transgenic berry crops and legumes 
has been reported to limit damaging viruses in different 
families (Hill et al., 1991; Divakaran et al., 2008; Martin 
and Tzanetakis, 2015). Therefore, the use of host resist-
ance and transgenic varieties may be worthwhile strat-
egies for management of allexiviruses. Although lim-
ited effectiveness has been reported, further research is 
required on the modes of transmission of the non-alli-
um allexiviruses.
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PERSPECTIVES

Plant viruses are major problems in many vegetable 
and ornamental crops, causing economic losses as high 
as 50 billion euros per year (Zhao et al., 2017), especially 
in crops for which no virus-resistant varieties are avail-
able. Allexiviruses continue to be threats to Allium pro-
duction. Key areas for future research are: i) the under-
standing of basic allexivirus biology, including how 
their genomes contribute to infection processes; and ii) 
the underlying mechanisms governing their interactions 
with host plants, and their vectors.

The trade of infected plant material locally, region-
ally, and globally has been the most important factor in 
dissemination of allexiviruses, causing high yield losses. 
Improved techniques for rapid detection and diagnosis, 
including the use of molecular and serological tools such 
as enzyme-linked immunosorbent assay (ELISA), reverse 
transcription polymerase chain reaction (RT-PCR), and 
RT quantitative PCR (RT-qPCR), are essential to assist 
effective disease management decisions. In addition to 
the use of traditional cultural practices, especially con-
trol of nearby infected crops and vector hosts, manage-
ment tactics must also account for climate change. Use 
of high phytosanitary standards for exchanged plant 
material, grower, and public education about these 
viruses their management, are all important to avoid 
crop yield losses.

Climate change poses a new challenge that may 
affect the distribution and survival of plant viruses and 
their vectors, and is likely to aggravate virus epidemics 
(Jones, 2014; 2018). Climate change can also affect viru-
lence and pathogenicity of plant viruses including allexi-
viruses, by increasing disease and insect pest outbreaks 
(Trebicki, 2020). Outbreaks of severe epidemics, cou-
pled with increased long-distance pathogen and vector 
dispersal through the exchange of infected plant mate-
rial, will lead to yield losses. Therefore, understanding of 
Allexivirus epidemiology is required to anticipate chal-
lenges ahead, and to develop effective strategies to secure 
global food production for the future (Trebicki, 2020).

The use of sensitive methods, such as transcriptomic 
analysis and RNA sequencing (RNAseq), may provide 
valuable insights into host factors that differentially inter-
act with viruses (Kamenetsky et al., 2015; Khandagale et 
al., 2020). These methods can enhance understanding of 
host-virus interaction mechanisms and can lead to the 
discovery of genes involved in plant defense responses. 
One recent addition to genetic engineering is the devel-
opment of the characteristic clustered regularly inter-
spaced short palindromic repeats‐associated 9 (CRISPR/
Cas9) protein, that has emerged as a potent genome‐edit-

ing tool to confer resistance against viruses (Khan et al., 
2018). Implementation of CRISPR/Cas9 to modify host 
plants and introduce effective resistance against allexi-
viruses and their vectors could be worthwhile (Khanda-
gale et al., 2020). These host modification techniques will 
complement traditional resistance breeding strategies to 
achieve improve levels of virus resistance.
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