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Summary. Detection and classification of phytoplasmas mainly rely on amplification
of the 16S rRNA gene followed by RFLP analysis and/or sequencing, because these
organisms lack complete phenotypic characterization. Other conserved genomic loci
have been exploited as additional molecular markers for phytoplasma differentiation.
Two loci, SSU12p and LSU36p, selected by whole-genome comparison of 12 phytoplas-
ma strains, were used for primer design, and were successfully tested on DNA sam-
ples from plants infected by phytoplasmas belonging to ten 16S ribosomal groups. The
phylogenetic trees inferred from SSU12p and LSU36p loci were highly congruent to the
trees derived from 16S rRNA and tuf genes of the same phytoplasma strains. Virtual
RFLP analysis of the amplified SSUI2p gene showed distinct patterns for most of the
phytoplasma ribosomal subgroups tested. These results show that SSUI12p and LSU36p
genes are reliable additional markers for phytoplasma detection and differentiation.

Keywords. PCR, 16S rRNA gene, tuf gene, RFLP.

INTRODUCTION

Phytoplasmas are obligate intracellular pathogens that reside and multi-
ply in the phloem tissues of plants and in insect hosts. They are associated
with severe diseases of economically important plants, including aster yel-
lows, coconut lethal yellowing, apple proliferation, pear decline, peach X dis-
ease and ash yellows. Australian grapevine yellows, which is associated with
three phytoplasmas, causes up to 54% yield losses (Glenn, 2000). In Brazil,
yield losses caused by maize bushy stunt are estimated to be worth $US 16.5
million (Oliveira et al., 2003). Due to the difficulty to culture phytoplasmas
(Contaldo and Bertaccini, 2019) and the lack of a complete phenotypic char-
acterization of these organisms, phytoplasmas classification is based on their
16S rRNA gene sequences, that are conserved and widely used for prokary-

Phytopathologia Mediterranea 60(2): 281-292, 2021
ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.36253/phyto-11993



282

ote identification (Lee et al., 1993; Ludwig and Schleifer,
1994; Seemiiller et al., 1994; Schneider et al, 1995; Jen-
kins et al., 2012). A provisional naming system (IRP-
CM, 2004) assigned ‘Candidatus Phytoplasma’ species
to strains whose 16S rRNA gene sequence has less than
97.5% identity to any previously described ‘Ca. Phy-
toplasma’ species. A set of 17 restriction enzymes was
selected to generate the restriction fragment length poly-
morphism (RFLP) profile of the R16F2n/R2 fragment of
the 16S rRNA gene. By this approach, 16Sr groups and
subgroups have been identified (Lee et al., 1998; Wei et
al., 2008). The ‘Ca. Phytoplasma’ species and the RFLP-
generated ribosomal groups and subgroups are therefore
the two approaches used to classify these prokaryotes.
However, one 16S ribosomal group may contain one or
more ‘Ca. Phytoplasma’ species, whereas all the strains
within one ribosomal subgroup belong to the same ‘Ca.
Phytoplasma’ species (Bertaccini and Lee, 2018).

Considering the stringency of the 16S rRNA gene in
assigning ‘Ca. Phytoplasma’ species, there are limitations
in differentiating closely related strains, so other loci
have been described and utilized as additional molecu-
lar markers for phytoplasma strain differentiation. Other
markers have been used in phytoplasma phylogenetic
studies, including the 16S-23S intergenic spacer, the 23S
rRNA gene, the ribosomal protein operon (rpl9-rpl22-
rps3), the elongation factor Tu (fuf), protein translocase
units (secA and secY), the chaperonin 60 (cpn60), and
the subunit p of RNA polymerase (rpoB) (Marcone et al.,
2000; Martini et al., 2002, 2007; Hodgetts et al., 2008;
Lee et al., 2010; Makarova et al., 2012; Valiunas et al.,
2013). The methionine aminopeptidase gene (map)-uvrB-
degV, nusA and vmpl was also used for differentiation of
strains within, respectively, the 16SrV, 16SrI and 16SrX-
II-A groups and subgroups (Shao et al., 2006; Arnaud
et al., 2007; Cimerman et al., 2009). All these markers
except vmpl have also been used for differentiation of
other bacteria (Pérez-Lopez et al., 2016), confirming the
suitability of a gene-based strategy also for phytoplasma
strain differentiation.

Besides providing classification, the 16S rRNA gene
also serves as the most important detection marker
for phytoplasmas. Several sets of primers have been
designed to amplify different fragments from this gene.
The combination of P1/P7 and R16F2n/R2 is the most
employed for phytoplasma detection, but other primer
sets as well as ribosomal group-specific primers are use-
ful for detection of multiple phytoplasma infections and/
or heterogeneous phytoplasma populations (Duduk et
al., 2013). Other loci are also used as detection mark-
ers, including tuf, rpoB, cpn60, nusA and vmpl (Shao et
al., 2006; Cimerman et al., 2009; Makarova et al., 2012;
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Valiunas et al., 2013; Dumonceaux et al., 2014). However,
the lack of universal primers (rpoB, secY, rp), the narrow
detection range (nusA, vimpl, map-uvrB-degV) and the
high rate of false positives (cpn60) severely reduce their
detection efliciency.

In the present study, new molecular markers for
phytoplasma detection and differentiation were designed
and tested. Using whole genome comparisons, the phy-
toplasma genome conserved regions SSU12p and LSU36p
were selected for primer design, and tested to verify
their usefulness as molecular markers for a range of
phytoplasma strains.

MATERIALS AND METHODS
Phytoplasma strains and nucleic acid preparation

Thirty-three phytoplasma strains collected from vari-
ous host plant species from different geographic regions
worldwide were used. The strains were identified on their
16S ribosomal DNA (Cui et al., 2019; EPPO-Q-bank,
2020), and belong to the 16Sr groups: -1, -II, -III, -V, -VI,
-VII, -IX, -X, -XII and -XIII. The strain names, acronyms,
16Sr groups/subgroups, and providers are listed in Table
1. The DNAs from strawberry plants infected by the
StrPh-CL strains were extracted as described by Cui et
al. (2019). DNA samples provided by EPPO-Q-bank were
extracted as described by Makarova et al. (2012).

Primer design

Direct and nested PCR primers were designed by
comparing the conserved genomic regions of 12 phyto-
plasma strains available from the GenBank, including
those associated with the diseases aster yellows witches’
broom (AYWB) (CP000061), onion yellows mild strain
(OYM) (NC_005303), peanut witches” broom (PnWB)
strain NTU2011 (AMWZ00000000), Echinacea purpu-
rea witches’ broom (E. purpurea WB) strain NCHU2014
(LKAC00000000), Italian clover phyllody (ItCIPh) strain
MA1 (AKIMO00000000), Vaccinium witches’ broom
(VacWB) strain VAC (AKIN00000000), milkweed yel-
lows (MWY) strain MW1 (AKIL00000000), poinset-
tia branch-inducing phytoplasma (PoiBI) strain JR1
(AKIK00000000), ‘Ca. P. mali’ strain AT (CU469464),
‘Ca. P. australiense’ (AUSGY) (AM422018), strawber-
ry lethal yellows phytoplasma (CPA) strain NZSbll
(CP002548), and phytoplasma Vc33 (LLKK00000000).
Whole-genome comparison was performed with the
“Sequence-based comparison” tool on the Rapid Anno-
tation using the Subsystem Technology (RAST) server
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(http://rast.nmpdr.org/rast.cgi). The annotated genes
5l o582 B fCowenaQy were sorted based on similarity, and four genes with
ElSlece T elcl-ReReB R the greatest similarities, except for the 16S rRNA, were
Z |3 E E E E E E E E E E E selected for primer design. These were: the small subu-
g nit ribosomal protein S12p (SSUI2p), and the large sub-
g unit ribosomal proteins L2p, L27p and L36p (LSU2p,
2 g LSU27p and LSU36p). For each gene, a region contain-
7 <+ 1 o g N ® o X 22qgqQR I D K K -
S &R ERSBSEIEERIERE R ing the gene and 500 bp flanking the region upstream
I i Rt S i i I B
Clo|eeesegdgEeresss and downstream was used for the alignment. Direct and
5| QIEEEQESEEEEEREE . o
O SS5582520s555555355 nested primers were selected within the most conserved
= regions (Table 2).
(=¥
¥Ssye8gss8888888
= | 4 Cloning and sequencing
=]
Q
= | e
E‘ g IR LLADAAILYISTaaLS PCRs were carried out using the Invitrogen™ Plati-
< 733 [ O S S S N O S S S T T N N N o~ .
3 num” Taq DNA Polymerase system. Each reaction was
N ® performed in a 30 pL volume containing 1x reaction
o % g buffer, 2.5 mM MgCl, and 2 U Taq polymerase, supplied
S |E€E5 £ 5 5 with 0.3 mM dNTP, 0.8 uM of each primer and sterile
L
2 '09 3 "O? 4 "O?, E) Z double distilled water. One uL (20 ng) of nucleic acid
2 2 2 2 p‘é‘ 2 p'é’ 5.;‘ § g was used as template, and 0.2 uL of the amplicon was
SRR 5 used as template for the nested assays. A sample devoid
of DNA template was enclosed as negative control. PCR
was initiated by a 5 min denaturation at 94°C, followed
by 35 cycles of 30 s denaturation at 94°C, 45 s annealing
E at respective temperatures (Table 2) and 1 min extension
g at 72°C, and a final extension at 72°C for 7 min. A three
—
2 5O e N step annealing strategy was used, with each step of 15 s,
. & ;3 &:) z &:) z z i:) for all the primer sets (Table 2).
SN0 TSR ERERERERERE The PCR products were resolved in 1.2% agarose gels
S A2 A0<X0OB RSB BBH . . 1 . . .
with ethidium bromide. Amplicons, corresponding to
approx. 820 bp for the SSUI2p gene and 420 to 530 bp
for the LSU36p gene from nested PCR, were recovered
and cloned into the vector pGEM™-T Easy (Promega). The
plasmids were transformed into E. coli TOP10 chemi-
° cally competent cells (Life Technologies), and the clones
§ were sequenced using the T7/SP6 primers in both direc-
E . tions. Each pair of sequences was aligned and assembled
g g <  using BioEdit. Three individual clones for each amplicon
3 T 2 S from each sample were analyzed. Each PCR, cloning and
< ” R & < sequencing was repeated at least three times.
-5 w 1 s = '2 2 ¢:
© z2iiiz T |E
£ o 8 LR B2 - 2
£ 23 Rl g g %‘ ¢ Phylogenetic analyses
FRE RN |
= 2 g g’ & & é £ g g o The consensus sequence of each amplicon was
§ = e @@ < f submitted to the NCBI GenBank database (Table 1).
é S lmuo<<<<moOm v ; Sequence information of the 12 phytoplasma strains
S § 2 used for the primer design was obtained from the
= ) . .
- = = 5 same database. Sequence information of four other
< . . . .
_ié & %‘ ;5 é < strains, including maize bushy stunt phytoplasma
= S &% S = £ (MBS) strain M3 (CP015149), ‘Ca. P. pruni’ strain CX
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Table 2. Universal primers designed for amplification of SSU12p and LSU36p loci.
ToCh
Target PCR Primer Sequence®
1 2 3
SSU12p Direct ItSSU12pF ATGCCTACTRTTTCWCAATTAATTA 51.8 48.3 44.0
ItSSU12pR ATCTTAAACCTAAAGATTGRCGTC
Nested [tSSul2pFn AAAACCTAACTCCGCTTT 49.7 45.8 44.1
ItSSul2pR1n TTATGAAAAGTGGTAAAAAAG
[tSSul2pR2n TTATGAAAGATGGMAAAAAGG
LSU2p Direct ItLSu2pF CTCATGYAAGTGTTTATCA 55.0 47.0 42.0
ItLSu2pR CTAAACGTGYTTTTCKAGG
Nested ItLSu2pFn YACTAGCAAYGTTTTRCC 56.0 47.0 42.0
ItLSu2pRn CCTAATTTATGWCCCACCAT
LSU27p Direct ItLSu27pF1 AAAAATATCGTTTAAAACAAGG 55.0 47.0 42.0
ItLSu27pF2 AAAAATATCGTTGTAAACAAGG
ItLSu27pR GATATAGTTTGTGCTTCBGTTTC
Nested ItLSu27pFn GTTCCTCTTTGGCGRTAA 56.0 53.0 48.0
ItLSu27pRn TTAGAATGAGAATCACGACC
LSU36p Direct ItLSU36pF1 GACTTTTTGCATTGAACC 51.6 47.2 42.2
ItLSU36pF2 GACTTTTTGTGTTGAACC
ItLSU36pR CGTTGTTTCTAGTTTTTTGHCC
Nested ItLSU36pFn AAGTGCTCATTTTGAACAYAC 50.0 47.7 43.1
ItLSU36pRn TTAYCCTTGTCTTTGATTRT

*Degenerate nucleotides: R=AorG,W=AorTH=AorCorT,Y=CorT.
Annealing temperatures: a three-step annealing was applied: 15 s of T1 followed by 15 s of T2, and then 15 s of T3.

(LHCF00000000), ‘Ca. P. phoenicium’ strain SA213
(JPSQ00000000), and ‘Ca. P. solani’ (STOL) strain SA-1
(MPBG00000000), was also retrieved from the data-
base for constructing phylogenetic trees. The sequence
alignment was performed using ClustalW. Achole-
plasma laidlawii (CP000896) served as outgroup. The
phylogenetic trees were constructed using the Molecu-
lar Evolutionary Genetics Analysis program (MEGA?7)
(Kumar et al., 2016). Diversity indices, represented by
the distances within and between groups, were also
calculated using MEGA7. Virtual RFLP was performed
using Vector NTIL.

RESULTS
PCR amplification

In all the PCR reactions, several annealing tempera-
tures were tested to select the best combinations. Since
one reaction may include more than two primers and
each primer may contain several degenerate nucleo-
tides, a range of melting temperatures was calculated
using the online tool (IDT OligoAnalyzer). This range
could exceed the suggested melting temperature differ-

ence (5°C) for primer design, and when a single anneal-
ing temperature was utilized, not all the primers would
anneal as efficiently, and nonspecific amplicons might be
produced. Therefore, a three-step annealing strategy was
used to optimize the reactions. Three annealing temper-
atures were selected at the maximum, mean and mini-
mum points in the melting temperature range, each step
lasting 15 sec. For each primer set, several adjustments
were made before establishing the optimal combination
(Table 2).

For all the samples used in this study, the PCR
assay using the ItSSU12pF/ItSSU12pR primer pair pro-
duced clear bands approximately ranging from 750 bp
to 820 bp (Figure 1A, Table 1). Subsequent nested PCR
also generated clear bands (data not shown). These PCR
amplicons were cloned and sequenced.

The PCR assay using the ItLSU36pF1/2/I1tLSU36pR
primers generated multiple bands or smears, and, in sev-
eral cases, the expected products were not visible (Fig-
ure 1B). However, the subsequent nested PCR using the
ItLSU36pFn/ItLSU36pRn primers always generated a
strong and clear amplicon, and, in some cases, longer
but significantly weaker bands (Figure 1C, Table 1). The
strongest bands from each sample were recovered from
the gels, cloned and sequenced.
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Figure 1. Agarose electrophoresis of the PCR results using the
primer sets ItSSUI12pF/ItSSU12pR (A), ItLSU36pF1/2/ItLSU36pR
(B) and ItLSU36pFn/ItLSU36pRn (C). Lanes: 1. PRIVA, 2. CVT, 3.
KVE, 4. A-AY, 5. FBP, 6. TBB, 7. CX, 8. PYLR, 9. TA, 10. LNII, 11.
GR, 12. SP1, 13. MW], 14. JR, N = negative control. Ladder: Maes-
trogen AccuRuler 100 bp Plus (ThermoFisher).

The direct and nested PCR assays targeting LSU2p
and LSU27p genes failed to produce satisfactory results.
In each trial, less than half of the tested samples showed
amplification, and the results were not repeatable (data
not shown). Optimization of the annealing temperatures
failed to achieve consistent results and these primers
were therefore discarded.

The specificity of the remaining primers was tested
for detection of Xylella fastidiosa, Agrobacterium tume-
faciens, Pantoea agglomerans, Clavibacter michiganensis
subsp. michiganesis, Pseudomonas syringae pv. tomato, P.
syringae pv. syringae, Ralstonia solanacearum, Curtobac-
terium flaccumfaciens pv. flaccumfaciens, Xanthomonas
arboricola pv. juglandis, ‘Candidatus Liberibacter sola-
nacearum’, and ‘Ca. L. asiaticus’, with no amplification
(data not shown).

Loci structures

The amplicons generated by ItSSU12pF/ItSSU12pR
covered the full length of the SSUI2p gene, the par-
tial sequence of SSU7p gene, and the intergenic region
between the two genes. In the following text, this ampli-
con and its corresponding genomic locus are referred to
as SSUI2p. Sequence alignment of all the amplified sam-
ples and selected strains retrieved from the GenBank
showed that SSUI2p presented greater variation among
ribosomal groups and subgroups compared with 16S
rRNA (Supplementary Figure S1). The most relevant var-
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iation lay between 396 to 431 nt in strain AYWB (16SrI-
A) corresponding to the intergenic region, which was
less conserved than the coding genes, where the phyto-
plasma strains of the same ribosomal group and/or sub-
group were featured by specific insertions and deletions.

The amplicon generated by ItLSU36pFn/ItLSU36pRn
covered approximately 80% of the LSU36p gene, the full
length of the gene encoding bacterial protein translation
initiation factor 1 (IF-1), approx. 5% of the map gene,
and the two intergenic regions. This amplicon and its
corresponding genomic locus is referred to as LSU36p
in the following text. Sequence alignment showed that
the most conserved region was that encompassing the
first 102 nt in the sequence of the strain AYWB, cor-
responding to the LSU36p gene (Supplementary Figure
S2). The rest of the amplicon was highly variable among
ribosomal groups and/or subgroups, with especially low
similarity between the three tested strains in the 16SrIX
group and the rest of the strains. However, by compar-
ing this region in AYWB and ‘Ca. P. phoenicium’ strain
SA213 (16SrIX-B) it was observed that the low similarity
was mainly located in the two intergenic regions, which
also resulted in differences in length among the tested
strains (Supplementary Figures S2 and S3).

Phylogenetic analyses

Phylogenetic trees were constructed with the SSUI12p
and LSU36p sequences separately as well as with the con-
catenated sequences (Figures 2A, 2B and 2C). The three
trees showed clear separation of the phytoplasmas clas-
sified in the different 16Sr groups, the only exception
being the 16SrXII-A subgroup (‘Ca. P. solani’), which was
more closely related to the 16SrI group than to the oth-
er 16SrXII subgroups in the SSUI2p tree (Figure 2A). A
number of subgroups and their corresponding ‘Ca. Phy-
toplasma’ species were also clearly separated, e.g. 16SrI-
B (‘Ca. P. asteris’), 16SrXII-A (‘Ca. P. solani’), 16SrXIII-
F, 16SrXIII-K, 16SrX-A (‘Ca. P. mali’), 16SrX-B (‘Ca. P.
prunorum’) and 16SrX-C (‘Ca. P. pyri’). The three trees
showed significant consistency with those inferred from
the 16S rRNA and tuf genes (Figure 2D and 2E).

To further evaluate the efficiency of the SSUI2p and
LSU36p for phytoplasma strain differentiation, the diver-
sity indices within each 16Sr group and between any
two groups were calculated, and paired t-Tests were per-
formed to compare the set of “between group mean dis-
tance” indices from each marker (Supplementary Table
S1). Both sets of indices from SSUI2p and LSU36p were
significantly higher than that of 16S rRNA (P < 0.01),
suggesting that these two markers could efficiently sepa-
rate the strains in different ribosomal groups. The indi-
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Figure 2. Phylogenetic trees inferred from SSU12p (A), LSU36p (B), concatenated sequences of SSUI2p and LSU36p (C), 16S rRNA (D) and
tuf (E). The trees were inferred using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). Numbers
at the nodes indicate the bootstrap values. The bars indicate substitutions per nucleotide position. Acholeplasma laidlawii was used as out-

group.

ces from LSU36p are also significantly higher than that
of the tuf gene, suggesting that using LSU36p would
improve the differentiation of phytoplasma strains.

RFELP analyses

The SSUI2p sequences were further examined using
by virtual RFLP with 18 restriction enzymes including:
Alul, BamHI, Bfal, BatUl, Dral, EcoRl, Haelll, Hhal,
Hinfl, Hpal, Hpall, Kpnl, Msel, Rsal, Sau3Al, Sspl,
Taql and Thal (Supplementary Figure S4). EcoRI had
no restriction site in any of the 49 samples examined,
BamHI, Hpal and Kpnl each recognized only a single
restriction site in one subgroup, Haelll recognized only
one restriction site in two subgroups, and Msel recog-
nized up to 17 restriction sites in some subgroups. These
enzymes were therefore not suitable for RFLP analyses.
Another seven enzymes, Alul, BstUI, Dral, Hhal, Rsal,
Taql and Thal generated two patterns within only one

(continued)

subgroup, and were therefore not suitable for the gen-
eral phytoplasma differentiation. A set of five enzymes,
Bfal, Hinfl, Hpall, Sau3Al and Sspl clearly separated all
the 16Sr groups (Figure 3). However, subgroups 16SrII-
A and-D, 16SrIII-A and -E, 16SrIII-D and -F, 16SrXII-
B and-C, and 16SrXIII-F and-K still showed the same
restriction patterns. Some of these pairs could be distin-
guished by additional enzymes, including: 16SrIII-D and
-F distinguished by Alul, 16SrXII-B and -C by Hhal, and
16SrXIII-F and -K by Alul, BstUI, Hhal, Rsal and Thal.
The 16SrII-A and -D and 16SrIII-A and -E remained
unresolved.

Several 16S ribosomal groups and subgroups were
featured with specific SNP sites, some of which contrib-
uted to their distinct RFLP patterns. For example, all the
sample strains from the 16SrI group shared the specific
sites of 11T, 183C, 362G, 375T, 376T, 471C, 519C, 630C
and 633C, whereas those belonging to the 16SrIII group
were marked with the sites of 30T, 48G, 58A, 275G and
320G (Supplementary Figure S1). The 578A site of the
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Figure 2. (continued)

strains from the 16SrXIII-F subgroup, and the 576A
site of the strains from the 16SrXIII-K subgroup, also
resulted in a specific Sspl restriction site, producing a
triple-band pattern for these two subgroups on the vir-
tual RFLP. The 218G site unique to the strains from the
16SrIX-C subgroup resulted in a specific Hpall restric-
tion site, generating double bands on the virtual RFLP
for this subgroup (Figure 3, Supplementary Figures Sl
and S4).

DISCUSSION

Using 33 DNA samples and 16 sequences retrieved
from the GenBank belonging to ten 16Sr groups and 27
subgroups, this study has shown that both SSUI2p and
LSU36p are suitable loci for phytoplasma detection and
differentiation. In the RFLP analyses using amplicons
generated by SSUI2p, a set of seven enzymes, including
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Bfal, Hinfl, Hpall, Sau3Al, Sspl, Alul and Hhal, were
able to identify all the phytoplasmas in the 16Sr groups,
and in all but four subgroups (16SrII-A/-D and 16SrIII-
A/-E) examined.

The primers for SSUI2p and LSU36p amplified phy-
toplasma sequences from all the samples tested, proving
that they are amplifying conserved regions in a robust
manner. The SSUI2p primers generated in direct PCR
clear, single-band products. According to the literature,
SSUI2p is to date peerless for phytoplasma PCR detec-
tion, considering its ability to generate a unique specific
band in direct PCR using a single pair of primers from
a wide range of phytoplasmas. The high consistency of
SSUI2p for phytoplasma identification with 16S rRNA
and tuf genes confirms its reliability, suggesting that the
application of this pair of primers is appropriate for rap-
id and eflicient phytoplasma detection and identification.
The LSU36p primers, on the other hand, requires nest-
ed amplification, and the resulting products may vary
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Figure 2. (continued)

significantly in size. However, the relatively high value
of between-group mean distance indices suggests that
LSU36p has potential for resolving closely related strains.
Further study focused on other strains belonging to
different subgroups from the same ribosomal group is
required for confirmation.

Due to different evolutionary processes, phyloge-
netic trees derived from different genome loci may show
conflicting structures. One way to interpret the conflict-
ing information is to concatenate the loci for phyloge-
netic analyses. Although concatenation is a controversial
method because of potential misspecification of mod-
els, it provides longer sequences to overcome sampling
errors (Holland et al., 2004). In the present study, the
phylogenetic trees inferred from SSUI2p, LSU36p and
SSUI12p plus LSU36p showed clear and unambiguous
consistency of ramification of phytoplasma subgroups
within most of the 16Sr groups, confirming the robust-
ness of the concatenation methods.

The only exception was the 16SrIII group, which
showed unclear relationships among several subgroups.
For example, in the SSUI2p tree, the strain SBB from the
16S1III-F subgroup formed a clade with the Vc33 from

the 16SrIII-] subgroup, while the other two strains from
the 16SrIII-F group, MWY and MW1, were grouped with
strains from the 16SrIII-B and 16SrIII-D subgroups. This
was probably due to the intrinsic structure of the 16SrIII
group, since the trees from both tuf and 16S rRNA also
showed unclear structures within this phytoplasma group.
A similar conflict occurred within the 16SrlIII group in
independent studies analyzing 16S rRNA and secY phy-
logenies (Lee et al., 2010; Fernandez et al., 2017). The two
copies of the 16S rRNA gene of phytoplasmas in this group
very often present interoperon heterogeneity. Data from
secY and tuf genes, both present in the genome in single
copy, indicated that the confusing tree structures were not
incidental. These results suggest that the subgroup classi-
fication within the 16SrIII group may not reflect phyloge-
netic interrelationship and the RFLP-based classification
may be biased, because this classification solely depends on
the restriction sites of a selected set of enzymes while the
SNPs in sequences other than these sites are neglected.

The reliability of SSUI2p and LSU36p as phyto-
plasma markers confirms that genome comparison is an
approach that could also be used for selecting genes to
differentiate these bacteria. A larger number of samples
than used in the present study, containing strains from
untested groups and subgroups, will help to confirm the
wide reliability of this detection system. The development
of next-generation sequencing and long-read sequencing
has built an expanding genomic database of microbial
pathogens. Comparative genomics has been used to study
the mechanisms of pathogenicity, molecular epidemiol-
ogy, molecular diagnostics, multi-locus sequence typing,
and transmission prediction (Avarre et al., 2011; Bastardo
et al., 2012; Walker et al., 2014; Bayliss et al., 2017; Aly
et al.,, 2019). As more phytoplasma genomes are being
sequenced, comparative genomics has also become the
trend for analyses in genome reports (Sparks et al., 2018;
Wang et al., 2018; Music et al., 2019; Cho et al., 2019).
Approaches on the genome level will likely be increas-
ingly applied to phytoplasmas for understanding their
adaptations to diverse host species. However, the identi-
fication of new markers for detection and differentiation
of phytoplasmas strains is still a necessary tool for devel-
oping knowledge of epidemiology and management of
phytoplasma-associated diseases that aim to avoid their
pandemic distribution.
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Figure 3. In silico RFLP patterns of SSUI2p sequences from 27 phytoplasma strains, representing all the ribosomal groups and subgroups
used. Restriction enzymes: Bfal, Hinfl, Hpall, Sau3Al, Sspl. Size marker: phiX174 digested by BsuRI and Haelll.
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