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Summary. Grapevine trunk diseases (GTDs) are major biotic factors reducing yields 
and limiting vineyard economic life spans. Fungi in the GTD complex cause a range 
of symptoms in host plants, although these pathogens are slow wood colonizers and 
potentially latent pathogens. Understanding has recently increased on the possible 
roles that GTD fungi may play as latent pathogens, and how this can be translated 
into disease management. This paper summarizes evidence for the latent nature of 
infections by these fungi in grapevines and other hosts. Abiotic and biotic stressors 
have been associated with symptom expression in many hosts, but limited informa-
tion is available regarding their roles in symptom development in grapevines. Based 
on research conducted in other pathosystems, this review discusses how abiotic and/
or biotic stress factors may influence the transition from the endophytic to the patho-
genic phases for GTD fungi. Potential methods for stress mitigation are also outlined 
as alternative GTD control strategies to minimize the economic impacts that that these 
diseases have on grape production.

Keywords. Abiotic and biotic stresses, black foot disease, Botryosphaeria dieback, 
endophyte, Esca, Eutypa dieback, Petri disease, Phomopsis dieback.

INTRODUCTION

Grapevine trunk diseases (GTDs) are major threats to the economic 
sustainability of viticulture; they cause significant economic losses due to 
reduced yields, increased crop management costs and shortened life spans 
for vineyards (Wicks and Davies, 1999; Siebert, 2001; Bertsch et al., 2013; 
Kaplan et al., 2016; Gramaje et al., 2018). The GTD complex includes Black 
foot disease, Botryosphaeria dieback, Esca, Eutypa dieback, Petri disease, 
and Phomopsis dieback (Gramaje and Armengol, 2011; Úrbez-Torres, 2011; 
Agustí-Brisach and Armengol, 2013; Bertsch et al., 2013; Gramaje et al., 
2018; Mondello et al., 2018). These diseases are primarily caused by taxo-
nomically unrelated Ascomycete fungi, and to lesser extent by several Basidi-
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omycetes which are primarily associated with the Esca 
complex (Gramaje et al., 2018). Black foot disease and 
Petri disease typically occur in grapevines aged 5 years 
or younger, while Botryosphaeria dieback, Esca, Eutypa 
dieback, and Phomopsis dieback are usually seen in old-
er vineyards, although these diseases may also occur in 
young grapevines (Gramaje and Armengol, 2011; Úrbez-
Torres et al., 2008; Agustí-Brisach and Armengol, 2013; 
Bertsch et al., 2013). Pruning wounds serve as major 
routes of infection by these pathogens in established 
vineyards. The discharge of spores from fruiting bodies 
and airborne transmission of these spores from plant to 
plant have primarily been associated with rainfall, with 
the exception of black foot pathogens, which are known 
to be soil-borne (Agustí-Brisach and Armengol, 2013; 
Agustí‐Brisach et al., 2014; Eskalen and Gubler, 2001; 
Rooney-Latham et al., 2005; Trese, 1980; Úrbez-Torres et 
al., 2010a; Úrbez-Torres et al., 2010b).

Grapevine trunk diseases are caused by xylem-colo-
nizing fungi, and are categorized as slow-progression dis-
eases with symptoms sometimes taking several years to 
appear after infection. In addition, GTD symptoms are 
known to be expressed inconsistently from year to year on 
individual grapevines (Bertsch et al., 2013; Calzarano et 
al., 2018; Songy et al., 2019). General symptoms of GTDs 
include delayed bud-break, leaf chlorosis, reduced vig-
our, stunted growth, wood necroses, canker formation, 
dieback, and eventual death of affected grapevine plants 
(Gramaje and Armengol, 2011; Úrbez-Torres, 2011; Agustí-
Brisach and Armengol, 2013; Bertsch et al., 2013; Gramaje 
et al., 2018; Mondello et al., 2018; Billones-Baaijens and 
Savocchia, 2019; Reis et al., 2019; Songy et al., 2019). Due 
to the inconsistent symptom expression from year to year 
for some GTDs, and the reported isolation of GTD fungi 
from asymptomatic tissues, it has been proposed that some 
of these fungi may act as latent pathogens (Úrbez-Torres, 
2011; Gramaje et al., 2018). The presence of GTD fungi in 
asymptomatic tissues can be very problematic for growers 
and propagators, as infections can spread unnoticed in the 
field or in nurseries. Asymptomatic infections in rootstock 
and scion mother plants can provide possible sources of 
infection in nurseries (Fourie and Halleen, 2004; Mondello 
et al., 2018). In addition, abiotic and biotic stresses are like-
ly to play important roles in GTD symptom development 
(Úrbez-Torres, 2011; Gramaje et al., 2018; Reis et al., 2019; 
Songy et al., 2019).

Endophytes and latent pathogens: from endophytic to path-
ogenic phases

Endophytes are organisms found in the internal tis-
sues of plants, including in roots, xylem, phloem, and/

or leaves, and these organisms may act as saprobes, 
mutualists, or latent pathogens (Wilson, 1995; Hyde and 
Soytong, 2008; Rodriguez et al., 2009). The definition of 
endophyte has changed several times; however, for this 
review, the definition of Petrini (1991) is followed, as “all 
organisms inhabiting plant organs that at some time in 
their life, can colonize internal plant tissues without caus-
ing apparent harm to their host.” This definition includes 
latent pathogens during their asymptomatic phases 
(Stone et al., 2000; Wilson, 2000; Wilson, 1995; Sieber, 
2007). The term “endophyte” is used here for the endo-
phytic phase of an organism’s life cycle, the life cycle 
of which may include several other phases that may be 
transitory and/or pathogenic (Wilson, 1995; Stone et al., 
2000; Wilson, 2000).

Most fungal endophytes are in Ascomycota R.H. 
Whittaker, although some are in Basidiomycota Whit-
taker ex R.T. Moore, or Oomycota Arx (Hyde and Soy-
tong, 2008; Petrini, 1986). Fungal endophytes can also 
be classified into two broad categories, as clavicipital-
ean endophytes, which live in the internal tissues of 
grasses and have been thoroughly researched, and non-
clavicipatalean endophytes, which live in a wide range 
of hosts including woody perennials and non-vascular 
plants (Sieber, 2007; Hyde and Soytong, 2008; Rodri-
guez et al., 2009). Rodriguez et al. (2009) suggested an 
endophyte classification system with four classes. This 
included Class 1 as clavicipitaceous endophytes which 
are grass endophytes. Classes 2 to 4 are non-clavicipita-
ceous endophytes. Class 2 edophytes are distinguished 
from the rest by their colonization of roots, stems, and 
leaves, and their transmission via seed coats and rhi-
zomes. Class 3 endophytes have diverse plant host rang-
es, including woody perennials, and these endopytes live 
in the inner bark, wood, fruit, or flowers of their hosts, 
and can reproduce via sporulation on dead plant tis-
sues. Class 3 endophytes include xylem-colonizing endo-
phytes. Class 4 endophytes are only found in host roots, 
where they form melanised structures.

The focus of the present review is on xylem-coloniz-
ing Class 3 endophytes, which make up a distinct guild 
of xylem-inhabiting endophytes (Stone et al., 2000). 
These include species in the order Hypocreales Lindau 
and in the genus Hypoxylon Bull, and to a lesser extent 
some Basidiomycetes. Survival strategies of many xylem-
inhabiting endophytes consists of initial infection of host 
plants, followed by indeterminate periods of interrupted 
growth allowing for further invasion and exploitation of 
the substrates upon occurrence of favourable conditions, 
such as host stress (Stone et al., 2000). These xylem-colo-
nizing endophytes typically disperse through horizontal 
transmission, with drop-splash from rainfall for spore 
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dispersal. Wind and/or other vectors such as animals 
or insects may also facilitate transmission of these fun-
gi (Petrini, 1991; Wilson, 2000). Endophytes can either 
have wide host ranges, or as suggested by Petrini (1991), 
they may have coevolved with their host plants, allowing 
the endophytes to infect their hosts without activating 
host defense mechanisms.

There are three hypotheses for the causes of the 
transition from endophytic to pathogenic phases. The 
first is that some event occurs which increases host sus-
ceptibility, facilitating the transition. These events are 
most likely to be abiotic and/or biotic stressors, includ-
ing drought, poor host nutrient supply, and/or host 
wounding (Petrini, 1991; Stone, et al., 2000). The sec-
ond hypothesis includes endophyte changes, including 
single point mutations, the transfer of virulence genes, 
and/or virus infections causing change to a pathogenic 
state (Sieber, 2007). The third hypothesis is the thresh-
old model developed by Sieber (2007) for conifer needle 
endophytes, and this could be relevant to other types of 
endophytes. This model suggests that endophytes live in 
needle tissues, which senesce once a colonization thresh-
old has been reached. This threshold is only reached 
under normal circumstances during the natural senes-
cence of the needles; however, under stress conditions, 
the colonization threshold is reached sooner, leading to 
premature death (Sieber, 2007). All these scenarios could 
be applied to GTD fungi thought to have endophytic 
phases before becoming pathogenic. Most GTD fungi 
are slow wood colonizers causing slow-developing dis-
eases (Bradshaw et al., 2005; Agusti-Brisach et al., 2019). 
In healthy grapevines, fungal growth is characteristi-
cally slow. When vines become stressed, however, fun-
gal growth is accelerated and colonization thresholds are 
reached sooner than under non-stress conditions. Addi-
tionally, this threshold could be reached sooner when 
multiple GTD fungi are present within a grapevine (Fig-
ure 1).

Endophytes in grapevines

Characterization of bacterial and fungal endophytes 
of grapevines has been a major focus of research, to 
identify potential biocontrol agents against pathogens 
(Bruisson et al., 2019). Endophytes colonize above- and 
below-ground plant organs, including, in grapevines, 
flowers, berries, xylem, roots, and seeds (Compant et al., 
2011; Bruisson et al., 2019). Bacterial endophyte richness 
is greater than fungal endophyte richness in grapevines, 
and Proteobacteria Garrity et al., and Ascomycota spe-
cies, respectively are the most abundant bacteria and 
fungi in grapevines (Deyett and Rolshausen, 2020). In 

Vitis vinifera L., Ascomycota endophytes are primarily 
Class 3 xylem-colonizing endophytes in the Hypocreales, 
Pleosporales Luttrell ex M.E. Barr, and Xylariales Nannf., 
which is consistent with other woody perennial hosts 
(Petrini, 1986; Hyde and Soytong, 2008; González and 
Tello, 2011).

Among these Ascomycetes, species in the Hypocrea-
les and Pleosporales were the most abundant endophytes 
found across multiple grapevine cultivars in a study in 
Spain (González and Tello, 2011). However, the culti-
vars were colonized by different endophyte populations, 
showing that grapevines cannot be viewed as a homoge-
neous group of hosts, but cultivars must be studied indi-
vidually. For example, González and Tello (2011) found 
‘Tempranillo’ and ‘Merlot’ cultivars harboured high lev-
els of Eurotiales G.W. Martin ex Benny & Kimbr., while 
‘Cabernet Sauvignon’ harboured the least variable endo-
phyte diversity. This study also showed high prevalence 
of the GTD pathogen Diaporthe ampelina (Berkeley & 
M.A. Curtis) R.R. Gomes, C. Glienke & Crous, (syn. 
Phomopsis viticola Sacc.) in asymptomatic and symp-
tomatic grapevines (González and Tello, 2011). Other 
GTD pathogens found less widely in asymptomatic 
vines include Phaeomoniella chlamydospora (W. Gams, 
Crous, M.J. Wingf. & Mugnai) Crous & W. Gams, Phae-
oacremonium minimum (Tul. & C. Tul.) D. Gramaje, L. 
Mostert & Crous, and Phaeoacremonium inflatipes W. 
Gams, Crous & M.J. Wingf. (involved in Petri disease 

Figure 1. Illustration of the Threshold Model in grapevines, show-
ing the relationship between the grapevine age and GTD fungal col-
onization density. Under normal conditions, fungal growth is slow, 
only reaching the colonization threshold in old grapevines during 
natural senescence. Under stress conditions, fungal growth is accel-
erated, and this threshold is reached rapidly in the grapevine lifes-
pan, leading to disease progression and premature host death. This 
threshold is hypothesized to be reached sooner when multiple GTD 
fungi are present than when few fungi occur (adapted with permis-
sion from Sieber, 2007).
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and Esca), Ilyonectria destructans (Zinssm.) Rossman, L. 
Lombard & Crous (associated with Black foot disease), 
and species in the Botryosphaeriaceae Theiss. & P. Syd. 
[causing Botryosphaeria dieback (Gonzalez and Tello, 
2011)]. These results, along with other reports of GTD 
fungi isolated from asymptomatic grapevines (Halleen 
and Petrini, 2003; Zanzotto et al., 2007; Kaliterna et al., 
2009; Aroca et al., 2010; Carlucci et al., 2017), support 
the hypothesis that some of these fungi may have roles 
as latent pathogens in grapevines (González and Tello, 
2011; Gramaje and Armengol, 2011; Úrbez-Torres, 2011; 
Gramaje et al., 2018).

The objectives of this review are to provide up-to-
date information indicating that GTD fungi may func-
tion as latent grapevine pathogens, to develop a syn-
thesis of current knowledge available on the different 
abiotic and biotic stress factors that may influence the 
transition from endophytic to pathogenic phases, and to 
indicate future research directions for advancing under-
standing and management of these complex diseases.

GRAPEVINE TRUNK DISEASE FUNGI AS LATENT 
PATHOGENS

Most knowledge on the potential of GTD fungi to 
act as latent pathogens comes from studies in two main 
groups of Ascomycetes: Botryosphaeriaceae and Ilyonec-
tria P. Chaverri & C. Salgado (“Cylindrocarpon” Wol-
lenw.) spp., on grapevines as well as other woody peren-
nials (Fourie and Halleen, 2004; Slippers and Wingfield, 
2007; Úrbez-Torres, 2011). This paper also reviews the 
endophytic-pathogenic continuum of Phaeomoniella 
chlamydospora, Diatrypaceae and species of Phaeoacre-
monium and Diaporthe on grapevines.

Botryosphaeriaceae

Botryosphaeriaceae includes morphologically diverse 
fungi which have been found in gymnosperms and 
angiosperms in every climatic region except the polar 
regions (Phillips et al., 2013; Slippers and Wingfield, 
2007). Not all fungi in the Botryosphaeriaceae produce 
disease symptoms, and some species may be true endo-
phytes, which never produce disease symptoms (Slippers 
and Wingfield, 2007). Some Botryosphaeriaceae have 
been shown to be important pathogens and have become 
problems in economically important agricultural crops, 
with several different species found to be associated 
with decline symptoms in apple trees (Brown-Rytlewski 
and McManus, 2000; Úrbez-Torres et al., 2016), Euca-
lyptus (Burgess et al., 2005), dwarf cashew (Cardoso et 

al., 2006), hickory (Dai et al., 2017), macadamia (Jeff-
Ego and Akinsanmi, 2019), bay laurel (Lawrence et al., 
2017), almond, dried plum, pistachio, walnut (Luo et al., 
2019), peach, pear, blueberry (Sessa et al., 2018), black 
currant (Singer and Cox, 2010), olive (Úrbez-Torres et 
al., 2013b), and grapevine (Úrbez-Torres, 2011). However, 
even in the most severe diseases caused by Botryospha-
eriaceae in some hosts, virulence is probably favoured 
by abiotic and/or biotic stresses suffered by host plants 
(Slippers and Wingfield, 2007). Fungi in the Botryospha-
eriaceae have been found in several hosts which were 
asymptomatic and symptomatic (Brown-Rytlewski and 
McManus, 2000; Tennakoon et al., 2018; Panahandeh 
et al., 2019; Scala et al., 2019). Botryosphaeriaceae iso-
lated from asymptomatic hosts have been found to be 
pathogenic in pathogenicity trials conducted under con-
trolled greenhouse conditions (Manzanos et al., 2017; 
Steinrucken et al., 2017). The Botryosphaeriaceae have 
gone through extensive taxonomic changes and revi-
sions since first introduced in 1918, and have primarily 
been considered to be saprophytes (Phillips et al., 2013). 
Only in the last two decades have detailed studies on the 
Botryosphaeriaceae, supported by the use of molecular 
techniques, revealed the widespread presence of these 
fungi in asymptomatic hosts, which has led to further 
investigations of the hypothesis that some of Botryospha-
eriaceae species may act as latent pathogens.

In grapevines, up to 26 species of Botryosphaeriaceae 
have been identified as pathogens responsible for symp-
toms associated with the GTD Botryosphaeria dieback. 
These symptoms include leaf chlorosis, bud and wood 
necrosis, weak spring growth, and vascular cankers 
primarily in the shape of wedges (Úrbez-Torres, 2011; 
Gramaje et al., 2018; Billones-Baaijens and Savocchia, 
2019) (Figure 2). Among all species known to be associ-
ated with Botryosphaeria dieback, Botryosphaeria dothi-
dea (Moug. ex Fr.) Ces. & De Not. has been described as 
a latent pathogen of global importance in woody peren-
nials (Marsberg et al., 2017). Several other Botryospha-
eriaceae species have been described as latent pathogens 
in other woody hosts, but have not been confirmed in 
grapevines (Slippers and Wingfield, 2007; Carlucci et al., 
2015; Marsberg et al., 2017; Billones-Baaijens and Sav-
occhia, 2019). Lecomte and Bailey (2011) found Botryo-
sphaeriaceae species, primarily Diplodia seriata De Not., 
in wounded host tissues, which was attributed to pres-
ence of these fungi in the bark prior to wounding, sug-
gesting that the fungi may act as latent pathogens in 
grapevines. This is important for grape production, as 
Botryosphaeria dieback is one of the most prevalent dis-
eases of grapevines, and the causal pathogens may not 
be detected due to their latent nature (Marsberg et al., 
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Figure 2. Botryosphaeria dieback, Eutypa, Phomopsis dieback, and Esca symptoms. Botryosphaeria dieback symptoms on wine (A) and 
table grapevines (B) are characterized by dead spurs and cordons with no spring growth. Characteristic foliar symptoms of Eutypa dieback 
are shoots with short internodes and chlorotic and cupped leaves (C and D). Phomopsis dieback symptoms resemble those of Botryospha-
eria dieback, with dead spurs and lack of spring growth (E). Vines affected by Botryosphaeria, Eutypa and/or Phomopsis dieback have per-
ennial cankers in spurs, cordons and trunks, often with wedge shapes (F). Tiger-striped leaves (G) and characteristic soft yellowish wood rot 
(H) caused by Basidiomycete fungi are commonly associated with Esca disease.
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2017; Agusti-Brisach et al., 2019; Billones-Baaijens and 
Savocchia, 2019). Neofusiccocum parvum (Pennycook 
& Samuels) Crous, Slippers & A.J.L. Phillips remained 
latent in ‘Cabernet Sauvignon’ grapevines, with limited 
pathogen spread or lesion growth for 1.5 months after 
inoculation; thereafter, lesion lengths increased (Czem-
mel et al., 2015). However, no cause for the transition 
from endophyte to pathogen was investigated, and more 
research should be conducted to determine whether this 
is the normal latency period of N. parvum, and/or if 
some external factors played roles in the transition, such 
as abiotic or biotic stress.

Some GTD fungi can be detected in asymptomatic 
host tissues far beyond necrotic or cankered wood. For 
example, B. dothidea colonizes asymptomatic tissues 
beyond canker margins in many different hosts, which 
supports the hypothesis of its endophytic nature (Wene, 
1979; Schoeneweiss, 1981). Similarly, Botryosphaeriaceae 
known to be pathogenic in grapevines have been found 
in asymptomatic and symptomatic grapevines (Halleen 
and Petrini, 2003; Aroca et al., 2010; Abreo et al., 2013; 
Úrbez-Torres et al., 2015). Other Botryosphaeriaceae have 
also been shown to infect asymptomatic tissues beyond 
lesions in grapevines (Amponsah et al., 2011; Billones-
Baaijens et al., 2013a). As in other hosts, the relation-
ship between symptomatic tissue and/or hosts in grape-
vines has also become an area of interest, with particu-
lar emphasis on the role that drought stress may play on 
symptom expression and disease development.

Ilyonectria

Species of Ilyonectria are cosmopolitan soil-borne 
fungi, and the fungi are weak and/or opportunistic 
pathogens associated with root rot diseases in several 
economically important hosts, including apple (Manici 
et al., 2013), avocado (Parkinson et al., 2017), banana 
(Booth and Stover, 1974), Mexican blue palm, Guada-
lupe palm, Kentia palm (Aiello et al., 2014), clover (Bar-
betti et al., 2007), ginseng (Rahman and Punja, 2005), 
hazelnut (Guerrero et al., 2014), kiwifruit (Erper et al., 
2013), loquat (Agustí-Brisach et al., 2016), olive (Úrbez-
Torres et al., 2012), strawberry (Ceja-Torres et al., 2008), 
and other fruit trees and nut producing hosts (Law-
rence et al. 2019). In addition, several Ilyonectria species 
and closely related Campylocarpon Halleen, Schroers & 
Crous, Cylindrocladiella Boesew., Dactylonectria L. Lom-
bard & Crous, Neonectria Wollenw., and Thelonectria P. 
Chaverri & C. Salgado, are known to cause black foot of 
grapevines (Agusti-Brisach et al., 2013). Black foot path-
ogens have been isolated from asymptomatic and symp-
tomatic rootstock mother-plants, rootstock cuttings, 

and young grafted grapevines, in nurseries and young 
vineyards, as well as from other hosts, which has led to 
the hypothesis that Black foot pathogens act as latent 
and/or weak pathogens in grapevines (Agustí-Brisach 
and Armengol, 2013; Carlucci et al., 2017; Dubrovsky 
and Fabritius, 2007; Dumroese et al., 2002; Halleen and 
Petrini, 2003; Úrbez-Torres et al., 2015).

Phaeomoniella chlamydospora and Phaeoacremonium 
species

Petri disease is mainly caused by P. chlamydospo-
ra and Phaeoacremonium spp. in young grapevines, 
while Esca is thought to be caused by the same species 
of fungi along with colonization of various Basidiomy-
cetes in older grapevines (Gramaje et al., 2018). While 
Petri disease and Esca are different, for the purpose of 
this review these two diseases are considered together 
(Figure 3). Phaeomoniella chlamydospora and Phaeo-
acremonium spp. have been isolated from asymptomatic 
and symptomatic wood from grapevines and other hosts 
(Halleen and Petrini, 2003; Edwards and Pascoe, 2004; 
Zanzotto et al., 2007; Abreo et al., 2011; Panahandeh et 
al., 2019). Some grapevines infected with Esca patho-
gens have displayed symptoms one year but not in the 
next, which has been proposed to correspond to differ-
ences in environmental conditions, primarily tempera-
ture and rainfall (Surico et al., 2000; Marchi et al., 2006; 
Péros et al., 2008; Calzarano et al., 2018). In addition, 
P. chlamydospora and Phaeoacremonium spp. have been 
found to widely occur in grapevines in several regions 
such as in Australia and British Columbia (Canada). 
However, Esca foliar symptoms are rarely observed in 
these regions in comparison with Europe, where these 
symptoms are common (M. Sosnowski, Personal Com-
munication; Úrbez-Torres et al., 2014a). Though not yet 
studied, the lack of Esca symptom expression in Austral-
ia and/or Canada may result from the lack of Basidiomy-
cete species associated with Esca symptoms in Europe, 
primarily those in Fomitiporia Murrill (Fischer, 2002; 
Fischer and Kassemeyer, 2003). On the other hand, other 
studies have tended to exclude a direct role of Fomitipo-
ria in Esca leaf symptom expression (Calzarano and Di 
Marco, 2007). In a study in Australia, P. chlamydospora 
was widely found in south-eastern Australia, less com-
monly in western Australia, and absent from the north-
ern region, indicating that host range may be mainly 
inf luenced by climatic factors (Edwards and Pascoe, 
2004). Nevertheless, these observations suggest that 
Esca internal symptoms are not necessarily indicative 
of external symptoms, and that foliar symptom expres-
sion may rely also on external abiotic or biotic stress fac-
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Figure 3. Decline of young vines caused by Petri disease and/or black foot. Overall symptoms in the field include poor vigour, leaf chlorosis, 
short internodes (A and B) and eventual or sudden collapse (C) during the growing season. Internal wood necrosis observed at the basal 
end of the rootstock (D) commonly associated with black foot. Tylosis plugged xylem vessels and necrosis observed at a graft union (E) and 
trunk base, usually associated with Petri disease in young vines (F). Longitudinal section of a ready-to-plant nursery vine showing vascular 
necrosis originating from the basal end of the rootstock (G and H). Phaeomoniella chlamydospora, Phaeoacremonium spp., Ilyonectria spp., 
and some Botryosphaeriaceae spp. can be isolated from asymptomatic (I) and symptomatic (J) wood tissues from nursery propagated mate-
rial, which reveals their potential latent phases in grapevines.
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tors (Surico et al., 2000; Zanzotto et al., 2007; Calzarano 
and Di Marco, 2018). Lack of correlation between extent 
of vascular alteration and foliar symptom expression 
in Esca may indicate a latent phase (Calzarano and Di 
Marco, 2007). In addition, rainfall has been suggested to 
be involved in foliar symptom expression regardless of 
the extent of fungal colonization (Calzarano et al., 2018).

Diatrypaceae

The causal organism for Eutypa dieback is the dia-
trypaceous fungus Eutypa lata (Pers.) Tul. & C. Tul. 
Although other 23 species in the Diatrypaceae Nitschke 
have been isolated from grapevine cankers, only E. lata 
has been proven to cause the foliar symptoms associ-
ated with Eutypa dieback (Trouillas and Gubler, 2010; 
Gramaje et al., 2018). These symptoms include internal 
wood wedge-shaped necroses, cordon dieback, leaf chlo-
rosis, and stunted shoots (Rolshausen et al., 2015) (Fig-
ure 2). These symptoms mainly appear on grapevines 
that are 7 years or older, and foliar symptoms typically 
do not appear for 3 to 8 years post-infection (Rolshausen 
et al., 2015). Symptoms have also been observed to be 
inconsistent from year to year, with individual grape-
vines displaying symptoms one year, while appearing 
asymptomatic the next (Sosnowski et al., 2007b; Bertsch 
et al., 2013; Mundy and McLachlan, 2016). Several 
hypotheses have been proposed to explain why symp-
toms do not appear for extended periods, including the 
influence of environmental factors. Bruez et al. (2016) 
found E. lata among other GTD pathogens in asympto-
matic grapevines aged 40 years or older and suggested 
that there was a balance between beneficial organisms 
and pathogenic fungi, which prevented the pathogens 
from developing further in grapevines. Eutypa lata and 
other Diatrypaceae have been isolated from asympto-
matic or healthy tissues several centimeters ahead of 
disease margins, indicating pathogen latency (Pitt et al., 
2013). Other hypotheses, including the threshold model 
(above), could also explain these observations.

Diaporthe

The main causal agent of Phomopsis dieback is D. 
ampelina, which has recently been added to the list of 
pathogens in the GTD complex (Úrbez-Torres et al., 
2013a). Symptoms of Phomopsis dieback are similar to 
those observed in Botryosphaeria dieback, and include 
perennial cankers, lack of or delayed bud break and leaf 
chlorosis (Úrbez-Torres et al., 2013a) (Figure 2). Fungi in 
Diaporthe Nitschke are diverse, inhabiting many differ-

ent hosts including grapevines, as pathogens, true endo-
phytes, or saprobes (Gomes et al., 2013; Úrbez-Torres et 
al., 2013a). In grapevines, a diversity of Diaporthe spe-
cies, including D. ampelina, have been found in asymp-
tomatic and symptomatic grapevine tissues from mature 
vines and especially from nursery propagated plants, 
leading to the suggestion that some Phomopsis die-
back pathogens may have endophytic phases. However, 
research into this is limited (Mostert et al., 2000; Kalit-
erna et al., 2009; Król, 2012; Guarnaccia et al., 2018; ).

In general, knowledge of the role that species in 
the Diaporthaceae Höhn. ex Wehm. may have as latent 
pathogens comes from hosts other than grapevines. For 
example, Diaporthe toxica P.M. Will., Highet, W. Gams 
& Sivasith., the cause of Phomopsis stem blight in Lupi-
nus albus L., has been suggested as a latent pathogen, 
due to a prolonged latent period under which no vis-
ible symptoms occur (Cowley et al., 2012). Tongsri et 
al. (2016) also suggested an endophytic phase for Dia-
porthe pathogens in durian leaves and flowers, with 
symptoms typically occurring 32 d after infection. 
Similarly, lupins infected with Phomopsis leptostromi-
formis (J.G. Kühn) Bubák, exhibited a 20 d asympto-
matic period after infection (Williamson et al., 1991). 
Furthermore, symptom expression from D. toxica 
and P. leptostromiformis infections in lupins has typi-
cally been associated with host senescence (Cowling 
et al., 1984; Williamson and Sivasithamparam, 1994). 
Mature durian leaves also contained a higher density 
of Diaporthe pathogens than immature leaves (Tongsri 
et al., 2016). This evidence indicates that these patho-
gens reach their thresholds for transition from endo-
phytic to pathogenic phase during natural senescence 
in mature leaves and/or hosts, as suggested by Sieber 
(2007). However, further research is required to con-
firm these observations, particularly in grapevines, to 
determine if Phomopsis dieback pathogens act similar-
ly across different host plants.

YOUNG VINE DECLINE AND GRAPEVINE NURSERY 
STOCK

As outlined above, some of the pathogens respon-
sible for Botryosphaeria dieback, Black foot and Petri 
disease in grapevines have been isolated from ready-
to-plant nursery material and from plants in young 
vineyards, either separately or together and either from 
symptomatic or asymptomatic tissues. Accordingly, 
some of these pathogens may often be latent or weak 
pathogens, remaining in asymptomatic grapevines for 
indeterminate periods, and being widespread in vine-
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yards (Rumbos and Rumbou, 2001; Halleen and Petrini, 
2003; Giménez-Jaime et al., 2006; Dubrovsky and Fabri-
tius, 2007; Halleen et al., 2007a; Gramaje and Armengol, 
2011; Agustí-Brisach and Armengol, 2013; Úrbez-Torres 
et al., 2014a, 2014b; Carlucci et al., 2017).

Black foot pathogens are soil-borne and can be pre-
sent and ready to infect young grapevines when new 
vineyards are established (Halleen and Petrini, 2003; 
Carlucci et al., 2017; Agusti-Brisach et al., 2019;). How-
ever, serious infections and disease outbreaks by these 
pathogens have been found shortly after grapevines 
were planted (Úrbez-Torres et al., 2014b). This rapid 
disease development has been suggested to result from: 
i) exposure to abiotic and/or biotic stress factors dur-
ing planting in material that is already contaminated 
with Ilyonectria spp. (Halleen et al., 2006); or ii) greater 
than normal infection thresholds that host plants can-
not withstand (Úrbez-Torres et al., 2014b; Gramaje et 
al., 2018). In addition, Black foot pathogens have been 
found in soil in rootstock mother fields and young plant 
nurseries (Cardoso et al., 2013; Whitelaw-Weckert et al., 
2013; Agustí-Brisach et al., 2014).

These pathogens are prevalent in asymptomatic 
inner tissues of nursery stock, as shown in 15 nurseries 
in Northern Spain (Berlanas et al., 2020). A total 1,427 
isolates of Black foot pathogens were found, including 
species of Dactylonectria, Ilyonectria, Neonectria, and 
Thelonectria from 3,426 ready-to-plant grafted grape-
vines. Of these pathogens, Dactylonectria torresensis (A. 
Cabral, Rego & Crous) L. Lombard & Crous made up 
75% of all isolates. Further research should be conducted 
in other regions on the incidence of Black foot and Petri 
disease pathogens in nurseries and young vineyards to 
better determine the scale of this problem. In particu-
lar, species of Cadophora Lagerb. & Melin have come to 
attention, since they have been found in grapevines in 
many regions, including Africa, Europe, North America, 
and South America (Halleen et al., 2007b; Casieri et al., 
2009; Úrbez-Torres et al., 2014a; Travadon et al., 2015). 
Cadophora species have also been shown to be occur 
in nursery material in Northern Spain (Maldonado-
Gonzalez et al., 2020), with Cadophora luteo-olivacea 
(J.F.H. Beyma) T.C. Harr. & McNew found in 27% of 
‘Tempranillo’/’110R’ dormant grapevines.

Recent studies have also identified species in Fusa-
rium Link to occur in high numbers in nursery mate-
rial and vineyards in Canada (Úrbez-Torres et al., 2017). 
Pathogenicity studies have shown some Fusarium spe-
cies to be capable of causing necrosis in grapevines to 
the same extent as Ilyonectria spp. under favourable 
conditions. This indicates that Fusarium species poten-
tially act as weak or latent pathogens in grapevines, 

transitioning from endophytic to pathogenic phases 
under stress conditions, thus playing roles in young 
vine decline symptom development (Úrbez-Torres et 
al., 2017). The suggestion that Fusarium is involved in 
grapevine decline is not new, and had been proposed 
by Highet and Nair (1995), when a clear association 
between Fusarium oxysporum Schlecht.  emend. Sny-
der & Hansen and vine decline was found in vineyards 
in New South Wales, Australia. However, the roles of 
Cadophora and Fusarium in nursery material and young 
vineyards, and any interactions of these fungi with Petri 
disease and Black foot pathogens is not well-understood, 
although the high incidence of these fungi in nurs-
ery material warrants further investigation of them as 
potentially relevant to young vine decline. In addition, 
the roles of different types of stress, and the effects of 
intermittent versus prolonged stress on young grapevines 
remains unknown. Research on the roles of Cadophora 
and Fusarium spp. in association with Black foot and 
Petri disease pathogens should be further investigated.

Infection during the grapevine propagation

Several Black foot pathogens have also been discov-
ered in nurseries on grapevine scion cuttings, cutting 
tools, in water from hydration tanks, and in callusing 
medium, indicating that infections can occur at sev-
eral steps in the propagation process, and in the field 
(Gramaje and Armengol, 2011; Cardoso et al., 2013). 
The presence of pathogens during several steps of nurs-
ery processes has also been observed with several Bot-
ryosphaeriaceae species associated with Botryosphaeria 
dieback in New Zealand. In a study of three commer-
cial nurseries, 33 to 100% of canes contained detectable 
amounts of Botryosphaeriaceae on the surfaces of the 
canes, and 15 to 68% of canes were internally infected 
with these fungi (Billones-Baaijens et al., 2013b). In a 
separate study in New Zealand, three of ten apparently 
healthy ‘3309’ mother grapevines and two out of ten 
‘101-14’ grapevines were internally infected with Botryo-
sphaeriaceae in nursery mother blocks. External infec-
tion rates in plant bark were also high, with the bark 
in one out of three shoots infected in one grapevine. 
Therefore, it was suggested that these Botryosphaeriaceae 
remained latent in the bark of dormant cuttings, which 
may be a potential route of infection and spread dur-
ing nursery propagation (Billones-Baaijens et al., 2015). 
These results also indicate that disease control should 
begin in mother blocks from which scion and rootstock 
material is obtained, and precautions should also be 
taken during the propagation processes, in which there 
are several possible avenues of spread of these pathogens. 
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Current best practices for the prevention of transmis-
sion have been outlined (Gramaje and Armengol, 2011; 
Waite et al., 2018). In addition to adopting these best 
practices, rootstocks are a promising avenue to reduce 
transmission. Berlanas et al., (2019) found that ‘161-
49C’, ‘140 Ru’, ‘1103P’, and ‘110R’had lower abundance of 
“Cylindrocarpon”-like asexual morphs, compared to ‘41B’ 
rootstocks.

Rootstock and scion resistance to GTD fungi

In grapevines infected with Botryosphaeria dieback 
pathogens, it has been shown that some scion varie-
ties are more susceptible than others to these patho-
gens (Úrbez-Torres and Gubler, 2009). Studies in New 
Zealand vineyards showed ‘Sauvignon Blanc’, with 83% 
incidence of infection, was more susceptible to species of 
Botryosphaeriaceae compared to ‘Pinot noir’, which had 
42% incidence (Baskarathevan et al., 2012). Similarly, 
‘Shiraz’ and ‘Sauvignon Blanc’ had greater susceptibil-
ity to D. seriata (pathogen recovery 12 to 21 mm from 
inoculation sites, while ‘Green Veltliner’ and ‘Mus-
cadelle’ were less susceptible (pathogen recovery 8 to 
17 mm from inoculation sites (Sosnowski et al., 2017c). 
Pintos et al., (2018) showed that ‘Savagnin’ grafted plants 
had greater Botryosphaeria dieback pathogen infections 
(66%) than other cultivars.

Rootstock susceptibility to Black foot has also been 
evaluated, and among the screened rootstocks, a major-
ity were found to be susceptible, in particular ‘110R’. 
This rootstock was the most susceptible to infection by 
Ilyonectria liriodendri (Halleen, Rego & Crous) Chaver-
ri & C. Salgado and Ilyonectria macrodidyma (Halleen, 
Schroers & Crous) P. Chaverri & C. Salgado, which are 
considered the main pathogens of Black foot. These 
results were similar to those for susceptibility of ‘110R’ 
to P. chlamydospora (Zanzotto et al., 2008; Alaniz et al., 
2010; Nguyen, 2013). ‘SO4’, ‘Freedom’, and ‘Riparia Glo-
rie’ were also susceptible to I. liriodendri and I. macro-
didyma, while ‘44-53’ and ‘St. George’ were more toler-
ant to these fungi (Nguyen, 2013). Susceptibility of dif-
ferent rootstocks to co-infection of Black foot pathogens 
and those causing either Petri disease or Botryospha-
eria dieback should be studied further, along with the 
impacts of nematode damage on rootstocks infected by 
GTD pathogens.

Symptom expression of grapevines infected with 
Esca and/or Petri disease pathogens may be influenced 
by scion variety, with ‘Merlot’ found to be very tolerant 
to Esca disease (1.5 to 3.6% incidence), while ‘Cabernet 
Sauvignon’ was less resistant (20.2 to 27.8% incidence) 
(Christen et al., 2007). Andreini et al., (2009) showed 

that ‘Trebbiano’ and ‘Sangiovese’ grapevines were found 
to have lower disease incidence than ‘Cabernet Sauvi-
gnon’, which is probably one of the most affected culti-
vars. Several other studies have noted varying degrees of 
susceptibility between rootstocks and scions; however, 
the factors influencing scion and rootstock susceptibility 
remain unknown (Edwards and Pascoe, 2004; Edwards 
et al., 2007a, 2007b). A detached cane assay study con-
ducted by Martinez-Diz et al. (2019) found variations in 
colonization of xylem tissues among 20 cultivars, vary-
ing from 3 to 34 mm when infected with P. chlamydo-
spora and 9 to 48 mm when infected with P. minimum.  
Gramaje et al. (2010) showed that 1-year-old rootstocks 
of ‘110R’ and ‘140Ru’ were very susceptible to P. chla-
mydospora, Phaeoacremonium spp., and Cadophora spp., 
while ‘161-49C’ was the most tolerant rootstock to these 
pathogens. ‘Fiano’ and ‘Sauvignon Blanc’ scions graft-
ed onto ‘SO4’ rootstock, which is intolerant to drought 
stress, displayed increased disease incidence compared 
to when grafted onto ‘1103P’ rootstock, which is more 
drought tolerant (Murolo and Romanazzi, 2014). These 
results are similar to those of Cardoso et al. (2006), in 
that scion and/or rootstock resistance to abiotic or biotic 
stress factors may influence disease susceptibility. This 
requires further investigation, however.

Cultivar variety may affect symptom expression in 
grapevines infected with E. lata, with studies showing 
that different cultivars were more resistant or suscepti-
ble than others to Eutypa dieback (Baumgartner et al., 
2019; Cardot et al., 2019). ‘Merlot’ was the most resist-
ant to Eutypa dieback (38% plants asymptomatic), while 
‘Ugni Blanc’ was very susceptible (87% of plants with 
symptoms) (Cardot et al., 2019). Péros and Berger (1994) 
assessed different cultivars for foliar symptoms 5- and 
10-weeks post-inoculation. ‘Cabernet Sauvignon’ was the 
most susceptible (90% of plants displaying foliar symp-
toms), followed by ‘Ugni Blanc’, while ‘Sauvignon’ was 
the least susceptible.

Research is being instigated on rootstock tolerance to 
GTD pathogens under abiotic or biotic stress conditions. 
However, further studies are required on the tolerance 
of different rootstock and cultivars to Esca disease while 
under stress (Sosnowski et al., 2017a; Sosnowski et al., 
2017b). In a field grapevine study, trunk disease sever-
ity was greater in red than white cultivars when infected 
with E. lata. ‘Petit Verdot’ had the least trunk symptom 
severity while ‘Odola’ had the greatest for red cultivars, 
while ‘Traminer’, ‘Petit Meslier’, ‘Muscadelle’, and ‘Green 
Veltliner’ displayed no trunk symptoms. Among white 
cultivars infected with E. lata ‘Sauvignon Blanc’ had 
the greatest trunk symptom severity (Sosnowski et al., 
2017c). In a follow-up detached cane assay (Sosnowski et 
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al., 2017c), E. lata was recovered 20 to 23 mm from inoc-
ulation sites in ‘Shiraz’ and ‘Sauvignon Blanc’ compared 
to 4 to 14 mm in ‘Petit Meslier’, ‘Petit Verdot’, and ‘Mus-
cadelle’ grapevines, confirming the field assessments. 
A later field inoculation experiment (Sosnowski et al., 
2017c) also showed that ‘Petit Verdot’ and ‘Muscadelle’ 
had increased resistance to pathogen colonization. Clon-
al susceptibility for ‘Shiraz’ varied between clones aged 
21 to 34 years, for ‘Sauvignon Blanc’ clones between 20 
to 44 years, and ‘Chardonnay’ clones between 18 to 45 
years, with less symptom severity in younger than old-
er grapevines. Plant age and resistance to environmen-
tal stresses in relation to pathogen resistance should be 
further explored, to determine how resistance varies as 
grapevines age.

Rootstock and scion varieties present a promising 
avenue for tolerance to GTD infection. However, further 
research is required on this subject, including host tol-
erance to infection under abiotic and biotic stress con-
ditions. Research has been conducted on rootstock per-
formance in varying growing condition, but the roles 
that abiotic and biotic stress factors play for grapevine 
latent infections by GTD pathogens in rootstocks, par-
ticularly during the first few years after planting, have 
not been explored (Fort et al., 2017; Cuneo et al., 2020). 
In particular, rootstock and scion tolerance to stress and 
symptom expression should be assessed at the regional 
levels, to determine the best rootstock selections, and 
which ones are best suited for unique stress factors 
encountered in each region.

ABIOTIC STRESS FACTORS AND GTD SYMPTOM 
EXPRESSION

Botryosphaeriaceae

Many members of the Botryosphaeriaceae are not 
host specific, but rather the environment probably plays 
a major role in host affinity (Slippers and Wingfield, 
2007; Ibrahim et al., 2017). Symptom expression in many 
different hosts has been found to coincide with periods 
of drought or other extreme weather events (Brown-
Rytlewski and McManus, 2000; Ma et al., 2001; Slippers 
and Wingfield, 2007; Golzar and Burgess, 2011; Bendix-
sen et al., 2015; Crous et al., 2017; Acimovic et al., 2018; 
Jeff-Ego and Akinsanmi, 2019). Direct evidence for stress 
induced symptom expression includes the research of 
Old et al. (1990), which showed that Neofusicoccum ribis 
(Slippers, Crous & M.J. Wingf.) Crous, Slippers & A.J.L. 
Phillips, caused larger cankers in Eucalyptus when trees 
were defoliated or attacked by insects, than where insect 
attack was absent.

Drought stress is probably the most important fac-
tor in symptom expression, and has been the most 
extensively researched out of all potential stress factors 
(Brown-Rytlewski and McManus, 2000; Slippers and 
Wingfield, 2007; Scala et al., 2019). Similarly, water stress 
which reduced leaf water potentials increased the symp-
toms caused by B. dothidea. Plants remained resistant to 
B. dothidea infection until a water potential threshold 
of -12 to -13 MPa was reached (Wene, 1979; Schoene-
weiss, 1981). However, it was necessary to sustain stem 
water potentials at less than -12 MPa for at least 3 d to 
allow for predisposition to B. dothidea, and that under 
field conditions, the effects were reversible if drought 
was not sustained. Similarly, Ma et al., (2001) in a green-
house study showed that old pistachio trees could not 
recover from the combined effects of drought stress and 
B. dothidea infection, while young trees were more resil-
ient. This may be explained by the ability of B. dothidea 
to grow rapidly when pistachio tree stem water poten-
tials were decreased from 0 MPa to -2 MPa (Ma et al., 
2001). Pusey (1989) also found that drought conditions 
resulting in leaf water potential of -3.0 MPa increased 
lesion length in peach trees. These results indicate that 
symptom expression is a combination of reduced host 
resistance due to stress and increased pathogen colo-
nization due to optimal growth conditions. Similarly, 
Cardoso et al. (2006) hypothesized that resistance in a 
dwarf cashew clone to Lasiodiplodia theobromae (Pat.) 
Griff. & Maubl. was due to indirect mechanisms relat-
ed to the drought tolerance of the clone. In grapevines, 
under drought conditions, ‘Cabernet Sauvignon’ grape-
vines infected with N. parvum had larger lesions than 
plants provided with adequate water; however, grape-
vines infected with Neofusiccocum luteum (Pennycook 
& Samuels) Crous, Slippers & A.J.L. Phillips had larger 
lesions when grown at high soil moisture levels, indicat-
ing physiological conditions induced by low moisture 
content may affect wood symptom expression, but oth-
er factors may be involved that influence lesion length 
(Galarneau et al., 2019). Qiu et al. (2016) reported simi-
lar results, where ‘Chardonnay’ grapevines infected with 
N. parvum, B. dothidea, L. theobromae, and D. seriata 
produced larger necrotic wood lesions in water stressed 
grapevines than in unstressed vines. Van Niekerk et al. 
(2011a) also showed that ‘Shiraz’ grapevines infected 
with Neofusiccocum australe (Slippers, Crous & M.J. 
Wingf.) Crous, Slippers & A.J.L. Phillips, N. parvum, L. 
theobromae, and D. seriata developed larger lesions and 
reduced shoot mass when water stressed compared with 
unstressed plants.

Other host stress factors, including freezing dam-
age, root damage from transplanting, pathogenic nema-



406 Jared Hrycan et alii

tode infestations, and suboptimal environmental condi-
tions for growth (nutrient-poor or high-salt soils, exces-
sive cold or heat) have also been associated with GTD 
symptom expression in multiple hosts. In addition to 
these associations, some research has been completed on 
freezing stress, showing similar effects to drought stress 
in Cornus sericea L. Localized cold exposure of this host 
to -30°C produced no visible signs of freeze damage, but 
colonization by B. dothidea occurred solely in the cold 
exposed areas and did not extend significantly beyond 
the margins. Similar results were also found in Sorbus 
aucuparia L. infected with B. dothidea (Wene, 1979; Sch-
oeneweiss and Wene, 1980;). Manawasinghe et al. (2018) 
also suggested that B. dothidea outbreaks in China were 
associated with other stress factors, such as increased 
temperature and pest pressure.

Ilyonectria

Several factors have been shown to affect symptom 
expression in hosts infected with Ilyonectria spp. In 
apple and ginseng, root age affects lesion severity, with 
young roots developing more severe lesions compared 
to older roots, which displayed shallow lesions (Rahman 
and Punja, 2005; Manici et al., 2018). Abiotic and biotic 
factors also probably affect symptom expression, includ-
ing root damage, acidic soils, temperature, and drought. 
(Rahman and Punja, 2005; Barbetti et al., 2007; Ruiz-
Gómez et al., 2019).

Black foot symptom expression on grapevines has 
been associated with three categories of stress factor: (1) 
nursery-related factors such as cold storage, grapevine 
defects, and low light and other conditions leading to 
low carbohydrate levels in the plants; (2) vineyard con-
ditions and plant establishment stress factors, includ-
ing nutrient deficient soils, poor soil drainage leading to 
low oxygen levels, drought, soil compaction, J-rooting, 
and other factors contributing to poor root develop-
ment and temperature extremes; and (3) biotic factors, 
including fungal pathogens, pathogenic nematodes, and 
insect pests (Stamp, 2001; Rahman and Punja, 2005; 
Halleen et al., 2006; Barbetti et al., 2007; Gramaje and 
Armengol, 2011; Nguyen, 2013; Agusti-Brisach et al., 
2019; Ruiz-Gómez et al., 2019) (Figure 4). Moreno-
Sanz et al. (2013) suggested that symptom expression 
primarily occurs when grapevines are under stress, as 
defined by hindering of normal growth and develop-
ment and photosynthesis, and causing physiological 
responses, e.g. increased stress hormones that lead to 
numerous responses that enhance plant survival at the 
expense of crop performance. As Ilyonectria spp. are 
likely weak or opportunistic pathogens, they probably 

only invade weakened or dead roots (Scheck et al., 1998; 
Halleen et al., 2006; Jankowiak et al., 2016;). These con-
clusions were further supported by Probst et al. (2012), 
who found that increased cold storage time correlated 
with increased disease incidence and severity for several 
Black foot pathogens. Partial defoliation also decreased 
root dry weight and increased disease severity resulting 
in increased canker development in young grapevines 
infected with I. destructans, which was probably due to 
reduced carbohydrate levels (Brown et al., 2012). This is 
similar to the results of Old et al. (1990) stated above. 

Phaeomoniella chlamydospora and Phaeoacremonium 
species

Several stress factors have been associated with, or 
are thought to influence, symptom expression from Esca 
and Petri disease pathogens, including biological factors 
such as nematode or other fungal pathogens, and abi-
otic factors such as cold exposure, and those associated 
with poor soil quality including low water and nutri-
ent supply, extreme pH, and excess salt (Stamp, 2001; 
Corino et al., 2004; Oliveira et al., 2009; Oliveira et al., 
2013; Fischer and Ashnaei, 2019). Drought has received 
the most attention. In young grapevines, wood symptom 
expression, plant growth, and likely survival of grape-
vines infected with Esca and/or Petri disease pathogens 
depends on sufficient water supply to avoid stress (Fis-
cher and Kassemeyer, 2012). In two separate studies 
conducted in Australia, ‘Cabernet Sauvignon’ and ‘Zin-
fandel’ grapevines were infected with P. chlamydospora 
and subjected to either an irrigation regime that resulted 
in no measurable water stress, 50% irrigation, or 25% 
irrigation. While stomatal conductance and leaf water 
potentials were both progressively reduced in the 50% 
and 25% irrigation regimes, for both non-infected and 
P. chlamydospora infected grapevines, in each irriga-
tion treatment the infected grapevines displayed greater 
stomatal conductance and less leaf water potential com-
pared to non-infected grapevines. Furthermore, ‘Char-
donnay’ grapevines displayed grater leaf water potentials 
than ‘Cabernet Sauvignon’ and ‘Zinfandel’, which may 
indicate ‘Chardonnay’ is more tolerant of P. chlamydo-
spora infection (Edwards et al., 2007a, 2007b). On pota-
to dextrose agar (PDA) amended with either potassium 
chloride or sucrose to generate osmotic water potentials 
between -0.3 and -8.3 MPa, two out of three isolates of 
P. chlamydospora grew at down to -8.3 MPa (Whiting 
et al., 2001), indicating that the the fungus could grow 
in severely water-stressed plant tissues. Results by Lima 
et al. (2017) indicated that a combination of water stress 
and Esca infection increased xylem sap nutrient concen-
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Figure 4. Abiotic and biotic stress factors hypothezised to contribute to grapevine trunk disease fungal development and symptom expres-
sion. A. Leaf scorching as a result of severe vine water stress. B and C. Leaves of young vines showing nutrient deficiency. D. Leaf deformi-
ties caused by herbicide damage. E. Severe over-cropping during the first years of vineyard establishment (courtesy of D. Gramaje, ICVV, 
Logroño, Spain). F. Winter damage and/or spring frost may favor disease development. G. J-rooting as a result of poor planting conditions. 
H. Low vigour vines caused by a nematode infestation. I. Ring nematode (Mesocriconema xenoplax) feeding on a root by introducing the 
stylet (black arrow). J. Close up of the ring nematode head. K. Leaf galls caused by erineum mite (Colomerus vitis). High levels of insect 
damage could increase vine stress. L. Grapevine crown gall caused by Agrobacterium vitis. M. Grapevine showing grapevine leaf roll symp-
toms caused by Grapevine leafroll-associated virus 3. Grapevines affected by biotic stress factors (fungal, bacterial or virus diseases) may 
favour GTD fungal infections, wood colonization and symptom expression.
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trations, allowing for increased growth of the pathogens. 
In contrast, heavy rainfall from fruit set until veraison 
were associated with increasing Esca foliar symptoms, 
reducing grape quality (Calzarano and Di Marco, 2018). 
These results show that water stress may not be the only 
water status condition in grapevines that favour Esca 
development.

Diatrypaceae

It is well known that precipitation plays a role in E. 
lata distribution and frequency of occurrence. How-
ever, the effects of environmental conditions on symp-
tom expression are not well understood. In a survey 
in France, the incidence and frequency of Eutypa die-
back varied among different regions, indicating that 
climatic conditions, particularly temperature regimes 
which varied among regions, were major causes of dif-
ferences in Eutypa occurrence (Guérin-Dubrana et al., 
2013). Magarey and Carter (1986) also found E. lata to 
be restricted to geographical locations where annual 
rainfall exceeded 350 mm, or in vineyards subject to 
overhead watering systems, indicating that precipitation 
affects E. lata distribution. Likewise, winter precipita-
tion may be an additional requirement for the full devel-
opment of E. lata in particular regions (Petzoldt et al., 
1983; van Niekerk et al., 2011b; Úrbez-Torres et al., 2019).

Guérin-Dubrana et al. (2013) and Sosnowski et al. 
(2007a) found that symptom expression and severity were 
influenced by climactic conditions in different regions. 
In Australia, E. lata isolates obtained from regions with 
intermediate climate had greater effects on symptom 
expression in a shadehouse experiment (Sosnowski et 
al., 2007a). These isolates may have had greater viru-
lence due to more favourable climactic conditions in the 
shade-house compared to the field. In a separate study in 
Australia, grapevines grown in extreme temperature and 
moisture conditions had increased foliar symptoms, but 
internal wood staining was not related to disease sever-
ity (Sosnowski et al., 2007a; Sosnowski et al., 2011). This 
is consistent with other reports on Botryosphaeriaceae, 
that indicate wood staining does not relate to coloniza-
tion rates or correspond to foliar symptoms, but may be a 
consequence of wounding (Travadon et al., 2013). Grape-
vines infected with E. lata also displayed decreased leaf 
water potential compared with non-infected grapevines 
when exposed to moisture deficits, suggesting that the 
pathogen increased sensitivity to water stress which may 
facilitate symptom development (Sosnowski et al., 2011). 
Decreased leaf water potentials may be due to Eutypa 
dieback pathogens occluding the xylem vessels, but this 
needs to be confirmed (Sosnowski et al., 2011).

Diaporthe

Host stress may also affect the transition from the 
endophytic to pathogenic phase. Hulke et al. (2019) 
found a correlation between increased disease incidence 
of Phomopsis stem blight of sunflowers and climate data 
over two decades. Diaporthe citri F.A. Wolf, J. Agric. 
also has been suggested to cause increased symptom 
expression in yuzu trees (Citrus ichangensis × Citrus 
reticulata var. austera) under adverse weather condi-
tions (Kim et al., 2015). However, investigations into the 
effects of stress on Diaporthe symptom expression are 
recent and limited, especially with grapevines.

ROLES OF BIOTIC STRESS FACTORS ON GTD 
SYMPTOM EXPRESSION

Though still limited, the number of studies investi-
gating the roles that abiotic stress factors play in GTD 
symptom expression and disease progression is far 
greater than those investigating effects of biotic factors. 
Among the few studies available, two biotic factors have 
been identified: nematodes and other fungal pathogen 
interactions. In addition, few studies have primarily 
focused on the roles of biotic factors on GTD caused by 
Ilyonectria fungi.

Parasitic nematodes affecting Ilyonectria symptom expres-
sion

Plant parasitic nematodes have been shown to affect 
disease development and symptom expression across 
a range of pathosystems (Powelson and Rowe, 1993; 
LaMondia, 2003; Cao et al., 2006), but data are scarce 
on their interactions with Ilyonectria spp. (Hastings and 
Bosher, 1938; Booth and Stover, 1974; Sutherland, 1977; 
Rahman and Punja, 2005).

While not involving Ilyonectria, bacterial canker of 
Prunus species fruit and nut trees provides an example 
of how nematodes can influence development and sever-
ity of a disease of woody perennials. Ring nematode 
infestation of roots has been shown to increase lesion 
length of bacterial canker in peach, caused by Pseu-
domonas syringae van Hall, (Cao et al., 2005; Cao et al., 
2006). Ring nematode infestations lead to nitrogen defi-
ciency in peach trees, which was suggested as the mech-
anism for nematodes increasing susceptibility to infec-
tion (Cao et al., 2011). The effects of nitrogen deficiency 
on disease severity, measured by lesion length are mixed, 
however, with Cao et al. (2011) finding no association 
between host nitrogen levels and lesion length in peach, 
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while in a separate study, Cao et al. (2013) showed that 
nitrogen fertilization led to significantly decreased lesion 
lengths in almond trees. The mechanisms for nitrogen 
fertilization effects were not determined, but it was sug-
gested that the nitrogen may decrease nematode popula-
tions in the soil or by indirect effects such as increased 
host vigour.

Hastings and Bosher (1938) showed that growth of 
seedlings of several hosts was inhibited by a combined 
treatment of root lesion nematodes (Pratylenchus pra-
tensis) (de Man) Filipjev and I. destructans to a greater 
extent than either pathogen or nematode alone. Rah-
man and Punja (2005) also found that development of 
root rot in ginseng was contingent on minor wounds, 
which could occur from nematode damage. This was 
also shown for root rot in clovers, where increased stress 
symptoms occurred when root systems were damaged 
(Barbetti et al., 2007). Sutherland (1977) inoculated 
Douglas fir seedlings with dagger nematodes (Xiphine-
ma bakeri Williams) and I. destructans, separately or 
in combination, and showed that while the nematode 
caused corky root symptoms on its own, the combined 
inoculation did not give a synergistic interaction. 

In vineyards, several genera of plant parasitic nema-
todes are ubiquitous, including root-knot nematodes 
(Meloidogyne Goeldi), ring nematodes (Mesocriconema 
xenoplax Andrassy), root lesion nematodes (Pratylenchus 
Filipjev), and dagger nematodes (Xiphinema Cobb) (Sto-
rey et al., 2017) (Figure 4). Recently research has begun 
to focus on nematode/pathogen relationships. Rahman 
et al., (2014) assessed population densities of the ring 
nematode (Mesocriconema xenoplax (Raski) Loof & De 
Grisse) and the citrus nematode (Tylenchulus semipene-
trans Cobb) under symptomatic and non-symptomatic 
vines infected with Ilyonectria spp. Nematode popula-
tion densities did not differ between the symptomatic 
and asymptomatic vines. However, this study was con-
ducted during a drought period, which is not consid-
ered conductive to the spread of Ilyonectria spp. or to 
the buildup of nematode populations, and was carried 
out with ‘Ramsey’ rootstock, which is resistant to ring 
nematodes. Similarly, co-infections of Black foot patho-
gens with other pathogenic fungi have also been associ-
ated with an increase in disease incidence and severity 
(Probst et al., 2012).

Fungal pathogen interactions and infection thresholds

The interactions between Ilyonectria spp. and other 
fungal pathogens has been documented in apples. For 
apple replant disease (ARD), a combination of I. mac-
rodidyma and Pythium irregulare Buisman reduced 

seedling growth when compared to single inoculations 
of each pathogen (Tewoldemedhin et al., 2011). Braun 
(1991) also measured reductions in plant weight and size 
when apple trees were co-inoculated with P. irregulare 
and Thelonectria lucida (Höhn.) P. Chaverri & C. Salga-
do, which had previously been shown to be pathogenic 
to apple seedlings (Jaffee, 1982).

Research on effects of co-infections on expression 
of GTDs has recently increased. Young ‘Chardonnay’ 
grapevines infected with pathogens causing Botryospha-
eria dieback and Black foot gave more severe decline 
compared to single pathogen inoculation, while ‘Sauvi-
gnon Blanc’ grafted onto ‘101-14’ infected with Petri dis-
ease and Black foot pathogens also had increased disease 
incidence and severity than with single pathogen infec-
tions (Probst et al., 2012; Whitelaw-Weckert et al., 2013). 
This is important, because co-infections with Black foot 
and Botryosphaeria dieback pathogens, and especial-
ly with those causing Black foot and Petri disease, are 
common in nurseries and young vineyards (Halleen and 
Petrini, 2003; Halleen et al., 2007a; Úrbez-Torres et al., 
2014a; 2014b).

Fungal interactions in infected grapevines probably 
affect disease development. Several Basidiomycetes, par-
ticularly Fomitiporia species, have been associated with 
Esca symptoms in old grapevines, and are commonly 
associated with P. chlamydospora and Phaeoacremonium 
spp. (Fischer, 2002; Fischer and Kassemeyer, 2003; White 
et al., 2011; Cloete et al., 2014;). Fischer and Kassemeyer 
(2003) isolated F. mediterranea M. Fisch., along with P. 
chlamydospora and Phaeocremonium spp. from symp-
tomatic tissues. In addition to F. mediterranea, other 
species of Hymenchaetales Oberw, have been associated 
with Esca symptoms, including species in Fomitiporella 
Murrill, Inocutis Fiasson & Niemela, Inonotus P. Karst., 
and Phellinus Quél. (Cloete et al., 2015a; Cloete et al., 
2015b). This has led to the hypothesis that some Basidi-
omycetes are involved in the development of Esca symp-
toms, but has yet to be confirmed (Gramaje et al., 2018). 
Similar to Ilyonectria spp. co-infections with other GTD 
pathogens discussed above, the presence of Basidiomy-
cetes may act as inciting factors in symptom expression. 
However, further research is required to demonstrate 
specific roles that Basidiomycetes play in Esca disease of 
grapevines.

While environmental and biotic triggering factors 
are likely to be important, threshold fungal concentra-
tions within grapevines may also affect the switch from 
endophyte to pathogen. Inoculation of up to 104 conidia 
mL-1 suspensions of N. luteum increased lesion lengths, 
but greater inoculum concentrations decreased lesion 
lengths (Amponsah et al., 2014). This contrasts with B. 
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dothidea, where spore concentrations up to 106 conidia 
mL-1 gave increasing lesion lengths in non-wounded 
peach bark (Pusey, 1989). Reduced lesion length may be 
due to competition in small inoculation sites, which was 
3 mm diam. In this case, further research into effects of 
spore concentration on disease severity and grapevine 
mortality has been suggested (Amponsah et al., 2014). 
Additionally, differences were observed in virulence 
among different isolates of individual species of Botryo-
sphaeriaceae (Úrbez-Torres and Gubler, 2009). Second-
ary metabolites produced by different GTD fungi, such 
as Eutypines produced by E. lata, are known to be phy-
totoxic (Andolfi et al., 2011). Other species producing 
secondary metabolites include P. chlamydospora and 
several Botryosphaeriaceae involved in Botryosphaeria 
dieback (Andolfi et al., 2011). However, the roles these 
secondary metabolites play in symptom expression and 
differences in virulence, in particular among the oth-
er GTD fungi, are unclear. In addition, how secondary 
metabolites may respond in grapevines under either abi-
otic or biotic stress needs to be elucidated.

CLIMATE CHANGE AND VITICULTURE PRACTICES: 
IMPACTS ON ABIOTIC AND BIOTIC STRESS FACTORS 

AND GTD SYMPTOM EXPRESSION

The predicted effects of climate change vary from 
variations in average temperatures and precipitation, 
to extreme weather events such as flooding or droughts 
(Dixon, 2012; Ali, 2013). Several projections have pre-
dicted increasing global temperatures and variations in 
precipitation, as well as expressing concerns about these 
changes affecting global food security. Temperature 
increases associated with climate change are expected to 
increase occurrence of heat waves, agricultural droughts, 
and river floods, which will likely impact grape-growing 
regions (Arnell et al., 2019). Environmental stress fac-
tors such as drought, temperature increases, and salin-
ity are of concern for plant health, particularly relating 
to climate change (Ahuja et al., 2010). Grapevines are 
sensitive to climate change, particularly temperature, 
which may put them at increased risk in major grape-
growing regions such as the Mediterranean basin (Gior-
gi and Lionello, 2008; Biasi et al., 2019). In addition to 
likely crop stress due to climate change, it is expected 
that these climate changes will lead to increased patho-
gen incidence in crops, due to improved survivability in 
milder winters, altering the geographic distribution of 
pathogens, and possible modifications in host resistance 
to pathogens and plant-pathogen relationships (Dixon, 
2012). In particular, climate change may affect grape-

vines grown in optimal grape-growing regions such as 
California, where increasingly mild winters may prevent 
latent bud hardening and pests and pathogens reduced 
by cold winters may increase (Dixon, 2012). Similar 
effects have been observed for Fusarium infections in 
maize, where mild winters resulted in increased biomass 
of Fusarium in maize debris while frost-thaw cycles 
reduced biomass and reduced risks of infection (Lukas 
et al., 2014). Extreme weather conditions such as drought 
may impact plant defenses, and increased temperatures 
may lead to plant stress in summers when temperatures 
peak. However, predictions on effects of climate change 
on plants are difficult to confirm, as experiments are 
typically carried out in controlled environments rather 
than in the field (Elad and Pertot, 2014).

Water deficit irrigation

Some viticulture practices employed to improve 
grape and wine quality may be stress factors with unin-
tended consequences for GTD’s. One example which 
requires further investigation is regulated deficit irri-
gation, which involves maintaining water deficits for 
particular seasonal development periods. For wine 
grapes, deficit irrigation is often employed from after 
fruit set until veraison, when normal irrigation recom-
mences (Chaves et al., 2010; Intrigliolo and Castel, 2010; 
Santesteban et al., 2011). Deficit irrigation possibly 
increases grape and wine quality (Acevedo-Opazo et al., 
2010; Santesteban et al., 2011), although there are con-
flicting reports on the effectiveness of regulated deficit 
irrigation for improved quality of grapes in all situations 
(Hepner et al., 1985; Acevedo-Opazo et al., 2010; Chaves 
et al., 2010; Santesteban et al., 2011; Lauer, 2012). Úrbez-
Torres (personal communication) observed a differ-
ence in GTD incidence on mature ‘Cabernet Sauvignon’ 
vineyards grown for different wine quality in Chile. 
Vineyard blocks grown for premium quality wines at 
high elevation with poor soils and subjected to a severe 
water deficit irrigation to improve quality, showed a 
much greater incidence of Botryosphaeria dieback than 
other blocks cultivated for the production of bulk table 
wines grown in valleys on fertile soils and subjected to 
no water deficit irrigation. Although these observations 
require explanation, they are consistent with the hypoth-
esis that water stress may enhance GTD development. 
In contrast, Sosnowski et al. (2016), studying ‘Cabernet 
Sauvignon’ in South Australia to assess effects of water 
stress on pruning wound susceptibility to E. lata and D. 
seriata, showed that water stress did not increased sus-
ceptibility to pruning wound infections. Their results 
indicated that drought and deficit irrigation practices 
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were not likely to contribute to increased prevalence of 
GTD in vineyards. Regulated deficit irrigation for grape-
vines involves moderate water stress, but the effects of 
this stress on GTD symptom expression and disease 
development are unclear. These should be further inves-
tigated as a potential grapevine health concern for plants 
that may contain asymptomatic infections (Santesteban 
et al., 2011; Tarara and Perez Peña, 2015).

Vine pruning and training practices

Travadon et al., (2016), in a study in France assessed 
incidence of Esca on ‘Syrah’ ‘Mourvèdre’ vines grafted 
onto ’140Ru’ rootstocks, to assess effects of minimal 
pruning and spur pruning on a bilateral cordon sys-
tem. Both cultivars displayed more symptomatic vines 
when spur pruned than those that had minimal prun-
ing. Mean necrosis was likewise greater (35%) for spur 
pruned vines than those receiving minimal pruning 
(21%). Similar results were obtained in California, Unit-
ed States of America, in ‘Cabernet Sauvignon’ responses 
to Eutypa dieback symptoms, with minimal pruning 
in the summer producing less dieback than the prun-
ing of dormant vines or using the Sylvoz system (Gu et 
al., 2015). Lecomte et al. (2012) observed that vineyards 
with the Lyra training system had foliar symptoms in 
56% of grapevines, but also had a low proportion of 
trunks affected. This indicated that the long cordons 
of the Lyra training system may have been one of the 
causes. In a follow-up study in France, it was con-
firmed that different training practices affected Esca 
foliar symptom severity. Grapevines with short cordons 
had more severe symptoms than grapevines with long 
cordons. In addition, plants which were pruned less 
had less severe symptoms than those that were heav-
ily pruned (Lecomte et al., 2018). These surveys only 
recorded foliar symptoms, but the results were simi-
lar to those of Travadon et al. (2016), who recorded 
decreased necrosis in minimally pruned grapevines. 
While these results are promising, further research is 
required for other GTD fungi, particularly for those 
causing Black foot, Botryosphaeria dieback, and Pho-
mopsis. Furthermore, the effects of pruning and train-
ing practices require further investigation to deter-
mine if and/or how they influence wood necrosis. In 
addition, grapevines under different pruning regimes 
and training systems may respond differently to stress 
conditions, and thus may develop GTD symptoms dif-
ferently. No studies have been reported on this subject, 
but these would likely provide greater understanding of 
these interactions, which would improve management 
of GTD under different pruning and training systems.

Endophytes as potential reducers of host stress

Endophytes may increase plant tolerance to abi-
otic and biotic stresses associated with climate change 
(Chakraborty and Newton, 2011). Endophytes pos-
sibly contribute several beneficial attributes to their 
hosts, including enhanced water use efficiency leading 
to improved survival during drought, increased nutri-
ent uptake and recycling, reduced stress associated with 
temperature increases or decreases, and increased toler-
ance to soil salinity, alkalinity, and heavy metals (Lata et 
al., 2018). In two varieties of rice plants not well adapted 
to high soil salinity or drought, class 2 fungal endophytes 
enhanced host water use efficiency, and increased growth 
rates, reproductive yield, and biomass under drought and 
high salinity in greenhouse experiments. Class 2 endo-
phytes conferred cold tolerance to rice plants subjected 
to temperatures ranging from 5°C to 20°C, in a plant 
growth chamber (Redman et al., 2011). Similarly, fungal 
endophytes increased grain yields and second-generation 
seed viability in wheat subject to drought and increased 
temperature (Hubbard et al., 2014).

The use of Pythium oligandrum Drechsler is another 
example of reduction of disease progression caused by 
P. chlamydospora. In a 4-month greenhouse assay with 
‘Cabernet Sauvignon’ canes infected with P. chlamydo-
spora, colonization of roots by P. oligandrum resulted 
in up to 50% reduction of necrosis, compared to grape-
vines infected with P. chlamydospora without P. oligan-
drum (Yacoub, et al., 2016). In addition, in ‘Cabernet 
Sauvignon’, expression of several genes associated with 
P. chlamydospora infection was greater in vines with 
P. oligandrum colonization of the roots than in vines 
without P. oligandrum, suggesting that P. oligandrum 
induced resistance in grapevines. In addition, P. oligan-
drum may also reduce biotic stress by the way of fun-
gus-produced tryptamine, an auxin compound involved 
in plant growth (Floch et al., 2003; Benhamou et al., 
2012). Further studies, in particular in other grapevine 
cultivars and during prolonged intervals are required 
to determine the efficacy of P. oligandrum as a potential 
biocontrol agent. Promotion of plant growth may aid 
reduction in the effects of abiotic and biotic plant stress, 
but this requires further confirmation to determine 
what, effects this endophyte may have on grapevines 
infected with GTDs.

In grapevines, Pseudomonas fluorescens Migula pro-
moted high salinity tolerance via production of endoge-
nous melatonin in host roots, and promoted plant growth 
(Ma et al., 2016). Bacterial and fungal endophytes have 
been associated with grapevine tolerance to drought, 
high salinity, heavy metals, and high and low tempera-
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tures (Pacifico et al., 2019). These factors include associ-
ated biotic tolerance to some GTD pathogens such as P. 
chlamydospora, and N. parvum. The use of endophytes to 
reduce environmental stress should be further investigat-
ed in relation to GTD disease development, to determine 
the roles that bacterial and fungal endophytes may have.

Arbuscular mycorrhizal fungi as potential stress reducers

While not endophytes by definition, arbuscular 
mycorrhizal (AM) fungi (Glomeromycota Walker & A. 
Schüßler) colonize roots, and these organisms can reduce 
stress associated with high and low temperatures, as well 
as water stress, soil compaction, and salinity (Ellis et al., 
1985; Charest et al., 1993; Harrier and Watson, 2003; Lu 
et al., 2007; Zhu et al., 2010). Suggested mechanisms for 
increased tolerance include improved plant nutrition, 
compensation for damaged roots, competition for infec-
tion sites, alterations in root anatomy or morphology, 
alterations in the mycorrhizosphere, and activation of 
plant defenses (Azcón-Aguilar and Barea, 1997).

In addition to increased environmental stress toler-
ance, some evidence suggests that AM fungi increase 
tolerance to pathogens, in particular root pathogens, 
although the mechanisms are as yet unclear (Whipps, 
2004; Comby et al., 2017). AM fungi may also affect 
tolerance to airborne pathogens, and plants have been 
reported to have increased resistance to hemibiotrophic 
and necrotrophic fungal infection, although results have 
been varied and some have reported increased suscepti-
bility to these pathogens (Comby et al., 2017). In grape-
vines, AM fungi were shown to increase root and shoot 
biomass in ‘110R’ rootstocks infected with Armillaria 
mellea (Vahl) P. Kumm., compared to plants without 
AM fungi (Nogales et al., 2009).

In greenhouse studies, AM fungi have been shown 
to influence disease severity in hosts infected by GTD 
pathogens. Petit and Gubler (2006) inoculated Vitis rup-
estris Scheele with the AM fungus Rhizophagus irregu-
laris (Błaszk., Wubet, Renker & Buscot) C. Walker & A. 
Schüßler and I. macrodidyma, a causal agent of Black 
foot, in a controlled greenhouse environment. While 
I. macrodidyma was recovered from both AM fungus-
inoculated roots and the non-inoculated roots, grape-
vines inoculated with R. irregularis displayed decreased 
disease severity. Also, apple trees with roots inoculated 
with AM fungi had decreased symptom expression and 
increased survival when infected with N. ribis compared 
to experimental controls (Krishna et al., 2010).

However, research into the effects of AM fungi on 
disease severity has given mixed responses, and, in 
some cases, these fungi have been shown to be detri-

mental to the plant health. In ‘Riparia gloire’ rootstocks 
infected with I. liriodendri, colonization by R. irregula-
ris increased abundance of the pathogen in the roots, 
and had no effect on plant growth (Holland et al., 2019). 
Likewise, in ‘101-14’ rootstocks planted in soil inocu-
lated with I. liriodendri, a positive linear relationship 
was demonstrated between AM fungus colonization of 
roots and proportions of necrosis was found (Vukicevich 
et al., 2018). These results indicate that the use of com-
mercial AM fungi inoculants for Vitis vinifera should be 
further investigated to determine the impacts of these 
fungi on GTD development.

The use of AM fungi to reduce plant stress is a 
potential avenue of research, and should be considered 
for its potential to increase environmental stress and dis-
ease tolerances, and the mechanisms of these tolerances 
should be further investigated. This should particularly 
be in relation to the potential environmental stress and 
symptom expression relationships for many GTDs. Field 
studies are required to determine effects of AM fungi on 
health of GTD-infected grapevines in field conditions. 
Field inoculations with commercial AM fungi has also 
given inconsistent response, and inoculum may spread 
beyond the intended fields. Further research should 
therefore be conducted on the use of regionally-based 
AM fungi inoculants (Farmer et al., 2007; Kokkoris et 
al., 2019). This is of particular importance for Vitis, as 
AM fungal communities differ between grapevine rows 
and inter-row plants. This indicates that grapevines may 
select for particular AM fungal communities (Holland 
et al., 2014). Increasing the diversity of cover crops may 
increase the diversity of AM fungal communities, allow-
ing greater chances of grapevine root colonization, and 
also reduce soil-borne pathogen populations (Holland et 
al., 2014; Vukicevich et al., 2016).

CONCLUSIONS AND FUTURE DIRECTIONS

Limited research has been conducted on endophytes in 
economically important crops, particularly on their roles 
as latent pathogens. This is an increasing area of interest 
particularly in grapevines, where many GTD fungi have 
been suggested to have endophytic phases. Many of the 
hypotheses addressing transition from the endophytic to 
the pathogenic phases remain to be tested, in particular, 
the threshold model developed by Sieber (2007).

GTD as latent pathogens

The roles of Botryosphaeriaceae as potential latent 
pathogens has been well-documented particularly in 



413GTDs as latent pathogens, and stress factors that favour their development

forest trees. However, research has just begun in grape-
vines. Several Botryosphaeriaceae have been discovered 
in the asymptomatic and symptomatic grapevine wood. 
Effects of abiotic and biotic stress factors on disease 
development are still largely unknown, and research has 
only recently begun on the effect of pathogen quantities 
on symptom expression.

Likewise, the role of Ilyonectria spp. has been exam-
ined for a number of hosts, with several factors influ-
encing symptom expression. Research on Ilyonectria 
spp. in grapevines is limited, however, with the most 
studies conducted in nurseries and young vineyards 
where these pathogens are mostly found. Biotic fac-
tors affecting nematode infection of the roots and co-
infections of GTD fungi are likely to be important 
and productive areas of research. Petri disease patho-
gens in grapevine nurseries and young vineyards have 
been associated with stress factors in young grape-
vines, while Esca has been associated with biotic fac-
tors including Basidiomycete co-infections. Several abi-
otic factors have been associated with Petri disease and 
Esca. Eutypa dieback has received more research atten-
tion than other GTDs, but knowledge is limited and 
associations between symptom expression and climatic 
factors have only recently been assessed. Phomopsis 
dieback as a GTD is a new area of research, and most 
investigations of this disease have been in other hosts. 
Several species of Diaporthe have been suggested as 
latent pathogens, and their discovery in asymptomatic 
and symptomatic grapevines indicates that they are 
also latent pathogens in grapevines.

Latent pathogens in young vineyards

The roles of latent pathogens, particularly those caus-
ing Black foot and Petri disease in mother blocks, nurs-
eries and young vineyards, are of particular importance. 
Many of these pathogens are widespread, and conditions 
during nursery propagation processes are optimal for 
the latent transmission of these fungi. Young grapevines 
may also be more susceptible to disease development 
and less able to recover, compared with mature grape-
vines which display symptoms erratically. Further study 
of the stress factors which may induce disease develop-
ment is required to determine the nature of these patho-
gens, and indicate potential treatment options, including 
best planting conditions to avoid stress and the poten-
tial transition from endophytic to pathogenic phases by 
these fungi. Further study is required of abiotic stress, 
particularly in nurseries. Research on biotic stress, par-
ticularly from pathogenic nematodes and fungal interac-
tions will also be worthwhile. Recently, work has begun 

on fungal interactions in GTDs, with grapevine initially 
infected with D. seriata followed by infection by one 
of N. parvum, or P. chlamydospora. Initial results have 
shown reduced lesion lengths and changes in host physi-
ology (Wallis et al., 2019). These indicate an urgent need 
for further research, particularly focusing on fungal 
interactions involving Black foot and Petri disease path-
ogens in young grapevines.

Methods for host stress reduction

Reducing stress on grapevines is an important first 
step, but not all stress in the field can be controlled. 
Therefore, bacterial and fungal endophytes and AM fun-
gi known to enhance resistance of plants to some stress 
factors are likely to be productive research candidates. 
However, the effects of AM fungi on disease develop-
ment are variable, and regional-based approaches to AM 
fungi are recommended for further study. Rootstock 
and scion variety is also likely to be a productive area of 
study, and research is required to show how resistance of 
rootstocks to abiotic and biotic stress factors affect GTD 
development in grapevines.

While GTD fungi potentially acting as latent patho-
gens has long been the subject of speculation, recent dis-
coveries aided by molecular biology research tools have 
led to the resurrection of this hypothesis. Study on latent 
pathogens has recently commenced, and requires urgent 
focus given the growing impacts of GTDs in most grape 
production areas. Endophytic phases may lead to uncon-
trolled spread of potential pathogens throughout nurs-
eries and vineyards, and may cause harm within young 
vineyards before grape growers can recoup capital 
investments in new plantings, or may shorten the eco-
nomic lives of vineyards. Effects of climate change along 
with specific viticulture practices may further increase 
the incidence and severity of GTDs, causing increased 
economic losses. Understanding the effects of these 
stress factors and development of methods to minimize 
stress on grapevines in relation to GTD disease devel-
opment, are crucial first steps to reducing the effects 
of future climate change, and increasing the econom-
ic lifespan of vineyards containing asymptomatically 
infected grapevines.
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