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Summary. Several Trichoderma species can act as biocontrol agents and hold the 
potential to control soilborne diseases through different modes of action. Little is 
known about the colonization pattern of Trichoderma atroviride in grapevine roots and 
activation of induced systemic resistance in planta. A laboratory model was developed 
to assess root colonization and its impact on grapevine defence activation. Rootstock 
cuttings from 1-year-old dormant canes were inoculated with conidium suspensions of 
T. atroviride T-77 or T. atroviride USPP T1, and host and inoculum colonisation were 
assessed after 21 d. The two strains of T. atroviride were re-isolated from the treated 
plants (from 70% of the roots and 20% of crowns). Colonization rates did not depend 
on the Trichoderma strain or rootstock cultivar. However, up-regulation of targeted 
defence genes was dependent on the inoculated Trichoderma strain and rootstock cul-
tivar. Furthermore, in leaves of rootstock cultivars ‘US 8-7’ and ‘Paulsen 1103’, genes 
were up-regulated which encode for PR proteins involved in plant defence or produc-
tion of stilbenic phytoalexins. Trichoderma atroviride T-77 was transformed with tdTo-
mato fluorescent protein to allow visualization by confocal laser scanning microscopy. 
These results give new insights into the mechanisms of grapevine-Trichoderma interac-
tions, and allow detection of establishment of potential biocontrol agents within host 
tissues.

Keywords. Vitis spp., Trichoderma spp., defence response.

INTRODUCTION

The worldwide drive for environmentally sustainable practices has influ-
enced methods used to control plant diseases. Disease management needs to 
decrease reliance on synthetic chemicals and increase use of biological control 
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agents (BCAs) (Edreva, 2004; Woo et al., 2014). Tricho-
derma species are widely used and well-known BCAs. 
Sixty percent of fungal available biocontrol products con-
tain Trichoderma species (Verma et al., 2007), as individ-
ual species or species mixtures (Harman et al., 2004).

Trichoderma species are saprophytic fungi common-
ly found in soil, while some can also be endophytes in 
plants. Endophytes can colonize healthy plant tissues 
without causing host symptoms or losses, and have min-
imal environmental impacts. The mechanisms of action 
of Trichoderma spp. as BCAs include mycoparasitism 
(Harman et al., 2004), secretion of mycolytic enzymes 
(Reino et al., 2007), competition for limiting resources 
(Harman et al., 1993; Haran et al., 1995; Howell, 2006) 
and/or production of antibiotic metabolites (Harman 
and Kubicek, 2002; Vinale et al., 2006; Mutawila et al., 
2016b). Trichoderma species also have positive effects on 
their hosts, including growth enhancement and resist-
ance activation (Harman, 2006; Vinale et al., 2008a; 
Gallou et al., 2009; Parrilli et al., 2019).

Activation of host defence genes by Trichoderma 
is an important component of biological control. As 
Trichoderma colonizes plants, endogenous compounds 
are released that lead to the recognition by the hosts and 
triggering of host defence reactions (Lorito et al., 1994; 
Viterbo and Chet, 2006; Woo et al., 2006; Brotman et 
al., 2008; Vinale et al., 2008b; Morán-Diez et al., 2009; 
Hermosa et al., 2013; Salas-Marina et al., 2015; Contre-
ras-Cornejo et al., 2016; Guzmán-Guzmán et al., 2017; 
Mendoza-Mendoza et al., 2018; Nogueira-Lopez et al., 
2018). The different Trichoderma antagonisms, mecha-
nisms and soil habitats make these fungi ideal candi-
dates in controlling soilborne diseases.

Blackfoot disease (BFD) of grapevines is soilborne, 
and affects nursery grapevine plants and vines in newly 
established vineyards, causing economic losses in most 
grapevine industries (Halleen et al., 2004; 2006a; Grama-
je and Armengol, 2011; Probst et al., 2012; Úrbez-Torres 
et al., 2014). Management of BFD relies on integrated 
programmes that include the use of hot water treatments 
(HWT), cultural practices and BCAs (Gramaje et al., 
2010; Úrbez-Torres et al., 2014; Halleen and Fourie, 2016). 
Application of Trichoderma for control of BFD has given 
variable results (Fourie et al., 2001; Fourie and Halleen, 
2006; Halleen et al., 2007; dos Santos et al., 2016; Halleen 
and Fourie, 2016; Berlanas et al., 2018; Gramaje et al., 
2018). Improved understanding of host colonization and 
resistance activation by Trichoderma would aid utilisa-
tion of this biocontrol fungus for BFD control.

Grapevine rootstocks usually have American Vitis 
spp. origins, and include V. riparia, V. berlandieri, V. 
champinii, V. aestivalis, V. riparia or (sometimes) Musca-

dinia rotundifolia. This makes study of rootstock disease 
resistance difficult, because plant genomes could differ 
dependent on the rootstock cultivar. To date, molecular 
protocols developed for the study of Vitis resistance are 
rarely optimized for rootstocks.

Trichoderma species can activate either systemic 
acquired resistance (SAR) and/or induced systemic resist-
ance (ISR) in host plants (Segarra et al., 2007; Shoresh et al., 
2010; Rubio et al., 2014; Martínez-Medina et al., 2017; Man-
ganiello et al., 2018). ISR activated by Trichoderma species 
induces a state of priming by increasing the plant immune 
activation, leading to rapid and effective defence responses 
against pathogens in distal plant parts (Segarra et al., 2009; 
Lorito et al., 2010; Pieterse et al., 2014; Conrath et al., 2015; 
Martínez-Medina et al., 2017). Mutawila et al. (2016a) 
showed that Trichoderma species triggered the activation of 
defence genes in an artificial system of grapevine cells. Di 
Marco and Osti (2007) showed that systemic activation of 
host resistance by Trichoderma root treatments of nursery 
vines reduced necrotic areas of Botrytis cinerea-inoculated 
grapevine leaves. Nevertheless, plant reactions when colo-
nized by Trichoderma, at molecular and biochemical lev-
els, are still not well understood (Contreras-Cornejo et al., 
2016; Guzmán-Guzmán et al., 2017).

Endophytic growth and activation of grapevine root-
stock defence genes by Trichoderma is not known, and 
these would aid understanding of the efficacy of this 
biocontrol fungus. Knowledge of root colonization and 
defence activation is an essential first step in evaluating 
potential use of Trichoderma spp. as BCAs for BFD or 
other diseases in nurseries and new vineyards. The aim 
of the present study was to increase understanding of 
the internal establishment of T. atroviride and activation 
of grapevine defence genes in different rootstock culti-
vars. The objectives were: i) to investigate the coloniza-
tion by T. atroviride of different rootstock cultivars; and 
ii) to assess activation of host defence genes during col-
onization. This knowledge will help to ensure potential 
BCAs are well-established within host plants to prevent 
pathogen infections.

MATERIALS AND METHODS

Evaluation of Trichoderma atroviride colonization of root-
ed rootstock plants by re-isolation

Fungal isolates

Trichoderma atroviride isolate T-77 and T. atroviride 
isolate USPP T1 (Department of Plant Pathology, Stel-
lenbosch University) were grown on Potato Dextrose 
Agar (PDA, 39 g L-1) and subcultured every 21 d. Tricho-
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derma atroviride T-77 is a commercial inoculum that 
was originally isolated from grapevine roots and is the 
component of Eco77® (Plant Health Products). Isolate 
USPP T1 originated from grapevine shoots.

Plant material

One-year-old dormant canes of the grapevine root-
stock cultivars ‘Richter 110’ (V. berlandieri × V. rupes-
tris), ‘US 8-7’ (Jacquez: V. aesativalis × V. cinerea × V. 
vinifera and ‘Richter 99’) and ‘Paulsen 1103’ (V. berland-
ieri × V. rupestris) were collected from a nursery mother 
block near Wellington, South Africa. The cuttings were 
disinfected by soaking a didecyldimethylammonium 
chloride compound (Sporekill®) for 1 h followed by hot 
water treatment for 45 min at 50°C. The basal end of 
each two-bud cutting was dipped in 4-indole-3-butyric 
acid powder and rooted in a perlite-filled mist bed main-
tained at 26°C under daylight conditions. The cuttings 
were watered for 10 s every 15 min for the first 5 weeks, 
then reduced to 2 min twice each day for 1 week. The 
rooted cuttings were then transplanted into perlite-con-
taining cups after 6 weeks. Plants were then maintained 
for 1 week, receiving water ad libitum to avoid potting 
stress, before application of experimental treatments.

Colonization by Trichoderma atroviride

Rootstocks inoculation

Plants of ‘Richter 110’, ‘US 8-7’ and ‘Paulsen 1103’ 
were inoculated by drenching with conidium suspen-
sions of either T. atroviride T-77 or T. atroviride USPP 
T1 (final concentration of 1 × 106 conidia mL-1) into 
the perlite. Inoculum was freshly prepared on the day 
of inoculation. Trichoderma atroviride cultures were 
grown on PDA plates for 2 weeks before covering each 
plate with 5 mL of tap water and scraping the culture 
to collect conidia. The resulting conidium suspension 
was filtered through a double layer of sterile cheesecloth 
and adjusted to the required concentration after count-
ing with haemocytometer. Seventy-five plants were used 
per treatment, and a total of 225 plants were inoculated. 
For each trial, each plant was inoculated with 100 mL of 
conidium suspension or 100 mL of sterile water for the 
control plants.

Re-isolation of Trichoderma atroviride

Roots were harvested for re-isolations 21 d after 
inoculation. The roots were then rinsed with water 

and surface sterilized (30 s in 70% ethanol, 1 min in 
3.5% sodium hypochlorite and 30 s in 70% ethanol), to 
ensure that re-isolated fungi originated from the inner 
root tissues of the plant and not from rhizospheres. 
Four pieces of roots were plated onto each Petri plate 
containing PDA amended with streptomycin (40 mg.L-1; 
PDA+) and two plates were used per plant. Four small 
sections from the internal tissue of the crown were 
plated onto one PDA+ plate per plant. The plates were 
then incubated at room temperature in day light condi-
tions. Fungal growth from roots of each rootstock was 
determined as proportion (%) of the isolated segments 
colonized. Infection by Trichoderma isolates was scored 
based on the number of root pieces or crowns colonized 
on the plates.

Evaluation of Trichoderma atroviride colonization of root-
ed rootstock plants using an Agrobacterium-transformed T. 
atroviride isolate

Agrobacterium transformation of Trichoderma atroviride 
with tdTomato fluorescent protein

Agrobacterium tumefaciens AGL-1 was used as 
host for plasmid pBHt2-tdTom (Caasi et al., 2010). 
This strain contains a gene coding for a tdTomato 
(orange-red) fluorescent protein, under control of the 
Pyrenophora tritici-repentis toxA promoter, the hygro-
mycin phosphotransferase hph for selection of fungal 
transformants, aminoglycoside phosphotransferase, 
and the kanamycin resistance marker for selection of 
bacterial transformants. Transformation was based on 
an optimized protocol from Gorfer et al. (2007). Brief-
ly, the Agrobacterium vector was induced in a mini-
mal medium (AtIND) containing acetosyringone (3’, 
5’-dimethoxy-4’-hydroxy-acetophenone 200 μM; AS) 
and kanamycin (50 mg mL-1). Trichoderma atroviride 
T-77 conidia were inoculated into the AtIND medium, 
after induction of the Agrobacterium. After 2 d , 200 
μL of medium containing Agrobacterium and T. atro-
viride T-77 were plated on a thin layer of MoserIND 
medium. Once the fungal thalli developed enough 
(2–3 d), they were overlayed with a layer of Moser 
medium supplemented with 200 mg L-1 of hygromycin 
B. Transformants that crossed the selection layer were 
plated onto selective PDA and checked for fluores-
cence. Single conidium isolations were then repeated 
three times onto PDA plates supplemented with hygro-
mycin B (200 μg L-1) to avoid chimeras. The transfor-
mation of T. atroviride T-77 was confirmed by confocal 
laser microscopy.
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Confocal laser microscopy

Confocal laser microscopy was performed at the 
Confocal & Light Microscope Imaging Facility, UCT 
(University of Cape Town), using a LSM880 Airyscan 
(Carl Zeiss) and a Fast Airyscan module confocal. The 
EC “Plan-Neofluar”20×/0.5 M27 objective was used for 
low magnification at a zoom factor of 1. The objective 
used for high magnification was LCI “Plan-Apochro-
mat”63×/1.4 Oil DIC M27 with a zoom factor of 1. A 
561 nm solid-state red laser was used with emission 
detection from 566 nm to 609 nm, with 2% laser pow-
er and a pinhole size of 74 μm. The maximum intensity 
projections were obtained by capturing and processing 
Z-stacks. The imaging software ZEN 2.3 SP1 (Carl Zeiss) 
was used to process the images.

Experimental design and re-isolation from rootstock 
plants

Plants of ‘Richter 110’, ‘US 8-7’ and ‘Paulsen 1103’ 
each with six fully developed leaves, were inoculat-
ed with conidium suspensions of T. atroviride strain 
T-77::tdTomato (finale concentration of 1 × 106 conidia 
mL-1) for confocal laser microscopy and re-isolation. 
Each plant was inoculated with 100 mL of the conidium 
suspension, or 100 mL of water for the control plants. In 
total, 96 plants were inoculated, 36 plants for the con-
trol and 60 for the treatment with the conidium suspen-
sion. After 3, 7, 10 and 21 d post inoculation (dpi), re-
isolations were carried out from the roots and crowns of 
the plants (as described above). Trichoderma atroviride 
T-77::tdTomato was confirmed by making slides of the 
cultures and visualisation with an epifluorescence Zeiss 
Axioscope microscope (Carl Zeiss). Colonization by T. 
atroviride T-77::tdTomato was scored based on the fre-
quency of occurrence in plates, not number of plant 
pieces.

Induced systemic responses in leaves by Trichoderma atro-
viride root colonization

Experimental design

The plants of ‘Richter 110’, ‘Paulsen 1103’ and ‘US 
8-7’ used to determine host defence activation in leaves 
were the same as those used for the colonization experi-
ment (above). The top fully developed leaf from each of 
five plants were harvested at 21 dpi and then combined 
as one repeat of one treatment, resulting in a total of 
three biological repetitions. The leaves were then stored 
at -80°C for later analysis.

RNA extraction, cDNA synthesis and qPCR from leaves

Frozen leaves (-80°C) were ground in liquid nitro-
gen with a mortar and pestle. Total RNA was extracted 
from 150 mg of ground leaf material using the RNeasy 
Plant Mini Kit (QIAGEN, Germany) following the man-
ufacturer’s instructions, and was quantified at 260 nm 
wavelength using a NanoDrop™ 1000 Spectrophotometer 
(Thermo Fisher Scientific). Residual genomic DNA was 
removed by DNase1 digestion on an extraction column 
with the RNase-free DNase set (QIAGEN) at 25°C for 
15 min during the RNA extraction. cDNAs were syn-
thesized from 0.5 μg of DNase-treated RNA using the 
iScript™ Reverse Transcription Supermix for RT-qPCR 
(Bio-Rad). Real-time PCRs were carried out on a CFX96 
Real Time System C1000 Touch™ Thermal Cycler (Bio-
Rad). qPCR reactions were each carried out in a reaction 
buffer containing 2× iQ SYBR® Green Supermix, 0.2 mM 
of forward and reverse primers, and 10 ng of reverse 
transcribed RNA, in a final volume of 20 μL. Thermal 
cycling conditions were as follows: 30 s at 95°C fol-
lowed by 40 cycles of 15 s at 94°C, 30 s at 60°C, and 30 
s at 72°C. The defence genes and primer pairs associated 
with defence in Vitis vinifera (Vv) used for quantitative 
real-time PCR are listed in Table 1. The study included 
genes encoding for a wide range of defence reactions 
including VvCAM that encodes for cell signalling and 
calcium fluxes and VvSOD for reactive oxygen species 
(ROS) metabolism. VvPR2, VvCHIT4C and VvPR6 are 
related to the production of different pathogenesis-relat-
ed proteins (PR proteins), and VvLTP to the production 
of lipid transfer proteins and the PR14 proteins. VvPAL 
is associated with the phenylpropanoid pathway, VvA-
CO1 with the ethylene pathway, VvLOX9 with the jas-
monic pathway and VvSTS with the stilbene pathway. 
The data obtained were analyzed using CFX Manager 
Software (Bio-Rad). The results obtained for each gene 
of interest were normalized to the expression of two ref-
erence genes, VvEF1-y, an elongation factor 1 gene, and 
VvActin encoding actin proteins. Induction ratios com-
pared to the controls were calculated according to Hel-
lemans et al. (2007), as:

Induction ratio = [(1+E)ΔCT(REF1)×(1+E)ΔCT(REF2)]0,5

Gene expression was considered significant at an 
induction ratio of 4. The calculation takes the PCR effi-
ciency (E) as well as the ΔCT, representing the difference 
between the Ct of the negative control and the Ct of the 
sample. For each sample, tests were carried out with two 
technical repetitions (the Ct results from two data values) 
and three biological repetitions (five leaves from five plants 
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were used for each repetition). PCR amplification tests 
were each conducted in 20 μL final volume (10 μL of Taq 
DNA Polymerase Master Mix 2x [AMPLIQON], 1 μL of 
forward and reverse VvActin primers, 2 μL of cDNA and 6 
μL of sterile water), to verify the quality of the cDNA.

Statistical analyses

For Trichoderma re-isolation and RT-qPCR gene 
expression analyses, data evaluation was performed with 
R 3.6.1. Software (R Development Core Team, 2016) 
through a multifactorial ANOVA, and multiple compari-
son of the means with the Tukey test (P ≤ 0.05).

RESULTS

Evaluation of Trichoderma colonization of rooted rootstock 
plants by re-isolation

The inner roots of all three tested rootstock cultivars 
were efficiently colonized at 21 dpi by both Trichoderma 
strains.  The re-isolation percentages showed that the 

strains T-77 and USPP T1 colonized the plant parts to a 
similar extent, at an average of 70% in roots and 20% in 
the crowns (Figure 1). The roots were significantly more 
colonized than the crowns. The average colonization 
percentages for both strains for the roots were 78% for 
‘Richter 110’ and ‘Paulsen’, and 74% for ‘US 8-7’. The col-
onization percentages for the crowns were 25% for ‘Rich-
ter 110’, 30% for ‘Paulsen’ and 19% for ‘US 8-7’. How-
ever, there were no statistically significant differences in 
root and crown colonization by the T. atroviride strains 
between the three rootstocks.

Evaluation of Trichoderma colonization of rooted rootstock 
plants using an Agrobacterium-transformed T. atroviride

Trichoderma atroviride T-77 was successfully trans-
formed. The transformant T. atroviride T-77::tdTomato 
expressed the expected intensity of fluorescence. Myce-
lium and conidia were observed from pure cultures (Fig-
ure 2), allowing to test the ability of this strain to colo-
nize rootstock roots. Observations in planta were ham-
pered by the hardening of roots and required specialized 

Table 1. Sequences of the primer pairs derivative of Vitis vinifera and used for RT-qPCR.

Gene (Target) Primer sequencesa Reference Gene ID/
Gene bank accession

VvEF1-y
(Elongation factor 1)

F : 5’-CAAGAGAAACAATCCCTAGCTG-3’
R : 5’-TCAATCTGTCTAGGAAAGGAAG-3’ Rossdeutch et al., 2016 VIT_12s0035g01130

VvActin
(Actin)

F : 5’-CTTGCATCCCTCAGCACCTT-3’
R : 5’-TCCTGTGGACAATGGATGGA-3’ Rossdeutch et al., 2016 VIT_04s0044g00580

VvCAM
(Calmodulin)

F : 5’- TATTCCAGTAGTTTGGGTTGGTAGTG-3’
R : 5’-AAGAAGCACCAAACAAGAAAGGAG-3’ Perazzolli et al., 2010 GR911644.1

VvSOD
(Superoxide dismutase)

F : 5’-TGCCAGTGGTAAGGCTAAGTTCA-3’
R : 5’-GTGGACCTAATGCAGTGATTGA-3’ Stempien et al., 2018 AF056622

VvPR2
(PR protein 2)

F : 5’-GGGGAGATGTGAGGGGTTAT-3’
R : 5’-TGCAGTGAACAAAGCGTAGG-3’ Bellee et al., 2017 AF239617

VvCHIT4C
(Acidic class IV chitinase)

F : 5’-GTGTGTCCGGGAAGGATTACT-3’
R : 5’-TCAAGCCATCAAACCCAATGC-3’ Mutawila et al., 2016a XM002275480

VvPR6
(PR protein 6)

F : 5’-AACCATTAAGAGGGAGAATCCTCA-3’
R : 5’-CACGGACCCTAGTGCAGTAAA-3’ Mutawila et al., 2016a XM002284411

VvLTP
(PR protein 14)

F : 5’-CTGGCATCAATTTCGGTCTT-3’
R : 5’-AAGGCTGAGTGGTCCAAGTG-3’ Bruisson, 2015 NM_001281191.1

VvACO1
(Aconitase 1)

F : 5’-GCCGGTTTGAAGTTCCAGGCCA-3’
R : 5’-ACTCAAACTGTGGCAATGGGACCC-3’ Bellee et al., 2018 XM_002273394.1

VvLOX9
(Lipoxygenase)

F : 5’-CCCTTCTTGGCATCTCCCTTA-3’
R : 5’-TGTTGTGTCCAGGGTCCATTC-3’ Perazzolli et al., 2010 AY159556

VvSTS
(Stilbene synthase)

F : 5’-AAGGGTCCGGCCACCATCCT-3’
R : 5’-ACGCAGTCATGTGCTCGCTCT-3’ Mutawila et al., 2016a XM002268806

VvPAL
(Phenylalanine ammonia-lyase-like)

F : 5’-GGTGAGCTTCACCCCTCCAGGT-3’
R : 5’-GGAGCTGCAGGGGTCATCAATGT-3’ Mutawila et al., 2016a XM002281763

a Primer efficiency of 1.8 used for all the sets of primers.
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sectioning of plant material, so assessments of coloniza-
tion were made based on re-isolation of the fluorescent 
strain.

Re-isolations of T. atroviride T-77::tdTomato were 
carried out (described above) from roots and crowns at 
the different time points: 3, 7, 11 and 21 dpi. Whereas T. 

atroviride T-77::tdTomato was absent from the control 
plants, it was present in all three cultivars after 3 dpi in 
the roots and crowns (Table 2). Colonization of roots 
was from 80% to 100%, and of crowns from 20% to 60%. 
After 21 dpi, colonization in the roots was 80% to 100% 
and 60% in the crown. However, in the roots and the 
crowns, the colonization was not significantly different 
(P ≤ 0.05, Tukey Contrasts) between the three cultivars 
or between the four periods post-inoculation.

Systemic response in leaves induced by Trichoderma atro-
viride root colonization

Firstly, primers designed for Vitis vinifera were evalu-
ated to assess gene expression of rootstocks. Expression 
of defence related genes was assessed at 21 dpi in paral-
lel with re-isolations for the two T. atroviride strains (Fig-
ure 3). In ‘Paulsen 1103’, only the defence genes encoding 
for PR proteins (VvPR6) and stilbene synthase (VvSTS) 
were significantly induced by both Trichoderma strains, 
although the induction was greater with T. atroviride T-77 
than with T. atroviride USPP T1 (Figure 3 B). In ‘US 8-7’ 
leaves, VvChit4c, VvLTP, VvACO1 and VvSTS were sig-
nificantly up-regulated, but only by T. atroviride USPP T1 
(Figure 3 C). For ‘Richter 110’, no modulation of defence 
gene expression was detected after 21 dpi (Figure 3A).

DISCUSSION

Several Trichoderma species are well known BCAs, 
and these could have potential for use against grapevine 
trunk diseases via root applications. To use a BCA to 
prevent pathogen infection, the mechanisms of grape-
vine-BCA interactions and establishment of the poten-
tial BCA inside host plants must be well understood. 
However, how Trichoderma species colonize grapevine, 
and how they react on molecular or biochemical levels, 
are not well-understood. In the present study, a proto-
col to inoculate Trichoderma on grapevine was develop 
under laboratory conditions, to investigate coloniza-
tion of roots and bases of grapevine rootstock plants by 
Trichoderma, and the abilities of these fungi to activate 
host defence in leaf tissues.

Strains of Trichoderma have been found to inhabit 
root systems of many plant species (Shoresh et al., 2010; 
Hermosa et al., 2012). However, to our knowledge there 
has been no laboratory study confirming early colo-
nization of grapevine roots by these fungi. Trichoder-
ma spp. readily colonize roots in field applications, as 
reported by Fourie et al. (2001), where less BFD patho-
gens were isolated from grapevine roots after treatment 

Figure 1. Mean proportions (%) of re-isolations of Trichoderma 
atroviride T-77 and T. atroviride USPP T1 from the grapevine 
rootstock cultivars ‘Richter 110’, ‘Paulsen 1103’ and ‘US 8-7’. Re-
isolations were made from plant roots and crowns 21 d post-inoc-
ulation. Each of the data points shows the average of 25 replicates 
(five biological replicates and five technical replicates). Error bars 
indicate standard deviations of the means. Different letters accom-
panying the means indicate significant differences (P ≤ 0.05; Tukey 
Contrasts).

Figure 2. Confocal microscope image of Trichoderma atroviride 
T-77::tdTomato mycelia and conidia.
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with Trichoderma species. In the present study, the 
ability of Trichoderma to colonized grapevine root tis-
sues was evaluated with two T. atroviride T. atroviride 
strains inoculated onto three grapevine rootstock cul-
tivars. After 21 dpi, approx. 70% of roots and 20% of 
crowns of inoculated plants were colonized by both 
strains. The lower colonization in crowns than in roots 
could be explained by the growth of T. atroviride from 
the roots to the crowns, but the infections could also 
have occurred directly into the crowns since these host 

tissues were not completely callused. The amount of 
colonization in the roots and crowns of the rootstock 
plants was neither dependent on the cultivar nor the T. 
atroviride strain. The T. atroviride transformed with 
tdTomato allowed assessment of colonization using re-
isolations and confocal laser microscopy. Protocols for 
visual observation in planta need to be optimized. The 
results showed that T. atroviride successfully colonized 
the roots and crowns of grapevine plants after 3 dpi, and 
colonization was similar in the three studied cultivars.

Table 2. Numbers of plants from which Trichoderma atroviride T-77::tdTomato were re-isolated from roots and crowns after 3, 7, 10 or 21 d 
post-inoculation (dpi).

Cultivar
Incidence in roots (per plant)a Incidence in crowns (per plant)a

3 dpi 7 dpi 10 dpi 21 dpi 3 dpi 7 dpi 10 dpi 21 dpi

‘Richter 110’ 4 5 5 5 1 5 3 3
‘Paulsen 1103’ 5 5 5 5 2 4 3 3
‘US 8-7’ 5 4 5 5 3 5 4 3

a Five plants for each treatment and time point.

Figure 3. Mean gene induction ratios for different gene expressions (as indicated from RT-qPCR) in the leaves of grapevine rootstock cul-
tivars ‘Richter 110’ (A), ‘Paulsen 1103’ (B) and ‘US 8-7’ (C) after 21 d after inoculations with Trichoderma atroviride T-77 (grey bars) or T. 
atroviride USPP T1 (black bars). Individual data points are means of two technical and three biological replicates. Error bars indicate stand-
ard deviations of the means. Different letters accompanying the means indicate significant differences (P ≤ 0.05; Tukey Contrasts).
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This study has demonstrated rapid and high frequen-
cies of colonization of grapevine roots by T. atroviride. 
However, several studies have showed low levels of field 
colonization of grapevine rootstocks by Trichoderma 
species. Ferrigo et al. (2017) reported low amounts of 
colonization of ‘Richter 110’ roots after a T. atroviride 
soil inoculation. However, these treatments were effec-
tive in controlling disease caused by Agrobacterium vitis. 
Berlanas et al. (2018) applied Trichoderma root dips to 
‘Richter 110’ plants for 24 h, and colonization rate was 
less than 1% 2 months after inoculation.

After determining that the potential BCA was estab-
lished in its host, the interactions with the host were 
assessed. The mechanism by which plants perceive T. 
atroviride is not well understood. Beneficial microbes 
only induce limited levels of host immune systems after 
recognition during local colonization of roots. Defence 
responses are activated in plant hosts due to Microbe-
Associated Molecular Patterns (MAMPs) and Damage-
Associated Molecular Patterns (DAMPs) perceived as 
danger indicators (Boller and Felix, 2009). Trichoderma 
spp. secrete structural proteins and secondary com-
pounds that act as MAMPs, and their secreted enzymes 
that act against plant host cell walls operate as DAMPs 
(Hermosa et al., 2013). In recent studies of the Tricho-
derma genome, it was demonstrated that the genome 
could encode for potential effector proteins that assist 
plant colonization (Mendoza-Mendoza et al., 2018; 
Nogueira-Lopez et al., 2018). Furthermore, Trichoderma 
spp. have been shown to form attachment structures that 
are similar to appressoria that penetrate through pro-
duction of cellulolytic and proteolytic enzymes (Brot-
man et al., 2008; Contreras-Cornejo et al., 2016). These 
attachment structures were probably the results of the 
germinating conidia identified in the present study 
using confocal laser microscopy. Once recognized by 
hosts, Trichoderma spp. prime the plant defence systems 
(Guzmán-Guzmán et al., 2018), and induce expression of 
defence genes, which confer local resistance (site inhabit-
ing resistance) in roots and ISR against pathogens in dis-
tal plant parts (Pieterse et al., 2014).

Development of a system to assess activation of 
grapevine defence genes after Trichoderma conidium 
drenching required considerable optimization. The 
extraction of mRNA from roots was abandoned after 
several failed attempts. Obtaining mRNA from roots is 
known to be difficult, most probably due to inhibitors 
present within the extraction. Extraction of mRNA from 
leaves is more reliable and this allowed demonstration 
of ISR by induction of defence genes in the leaves after 
only the roots were inoculated with T. atroviride T-77 
or T. atroviride USPP T1 conidium suspensions. Induc-

tion of defence genes was studied after 21 dpi. Differ-
ences between rootstock cultivars were demonstrated. 
In leaves of ‘Richter 110’, no modulation of expression 
of the targeted genes was observed in response to T. 
atroviride inoculation with either of the fungus strains. 
This was confirmed by a separate assay (unpublished 
data), in which no impact of T. atroviride inoculation 
was detected for expression of defence genes at 10 dpi. 
Absence of induction in ‘Richter 110’ by T. atroviride 
could be explained by low sensitivity of the cultivar. In 
leaves of ‘US 8-7’, up-regulation was detected for the 
defence genes VvChit4c and VvLTP encoding two PR 
proteins, VvACO1 encoding a protein involved in ethyl-
ene pathway synthesis, and VvSTS encoding a stilbene 
synthase. However, the expression of these genes was 
only induced in leaves of grapevine plants inoculated 
with strain USPP T1, suggesting that the modulation 
of defence gene expression is dependent on the Tricho-
derma strain. In leaf tissues of ‘Paulsen 1103’, two genes 
(VvPR6 and VvSTS) were up-regulated by both strains of 
Trichoderma. However, the gene expression was slightly 
greater when induced by strain T-77 than strain USPP 
T1. Furthermore, these results can be correlated with 
information on rootstock susceptibility to pathogens. 
Sieberhagen (2017) inoculated rootstock cuttings with 
conidium suspensions of different pathogens, includ-
ing those causing BFD, to determine the resistance or 
susceptibility of grapevine rootstocks used in South 
Africa. ‘US 8-7’ and ‘Paulsen’ presented the least disease 
severity against all the pathogens tested including BFD 
pathogens, whereas ‘Richter 110’ developed the greatest 
disease severity. The high susceptibility of ‘Richter 110’ 
to BFD pathogens could explain inefficient priming by 
Trichoderma due to a lack of host defence activation, in 
comparison to ‘Paulsen 1103’ and ‘US 8-7’.

The two experiments carried out in the present study 
have demonstrated that the intensity of induction of 
defence genes was dependent on the Trichoderma strain 
and the grapevine rootstock cultivar. In both experi-
ments, the Trichoderma inoculations lead to up-regula-
tion of gene encoding PR proteins or proteins involved 
in stilbene synthesis. These compounds may represent 
an effective defense response to protect grapevine plants 
from BFD. High expression of the stilbene synthase 
gene (VvSTS) results in increased resistance responses 
to pathogens (Adrian and Jeandet, 2012). It is not cer-
tain that priming of host defence will be sufficient for 
protection against, for example, infection by black foot 
pathogens. Field experiments have shown that the use 
of Trichoderma did not consistently prevent black foot 
pathogen infections of nursery vines (Berlanas et al., 
2018; van Jaarsveld et al., 2020).



623Host defence activation and root colonization by Trichoderma atroviride

In conclusion, the present study has increased under-
standing of the mechanisms of grapevine-Trichoderma 
interactions. Knowledge of these interactions is impor-
tant to assist screening for potential biocontrol agents 
that can be used against BFD and other grapevine trunk 
diseases. Although T. atroviride similarly colonized 
the three rootstock cultivars tested, activation of host 
defence was cultivar dependent and therefore needs to 
be evaluated for more rootstock cultivars. Trichoderma 
treatments need to be evaluated in combination with 
a pathogen with measurable symptoms, in controlled 
environment experiments and in the field. This will aid 
optimization of the use of Trichoderma spp. for grape-
vine root application.
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