Phytopathologia Mediterranea

The international journal of the Mediterranean Phytopathological Union

Citation: Lorenzini M., Cappello M.S., Perrone G., Logrieco A., Zapparoli G. (2019) New records of *Penicillium* and *Aspergillus* from withered grapes in Italy, and description of *Penicillium fructuariae-cellae* sp. nov.. *Phytopathologia Mediterranea* 58(2): 323-340. doi: 10.14601/Phytopathol_Mediter-10619

Accepted: June 115, 2019

Published: September 14, 2019

Copyright: © 2019 Lorenzini M., Cappello M.S., Perrone G., Logrieco A., Zapparoli G. This is an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/pm) and distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

Editor: Dimitrios I. Tsitsigiannis, Agricultural University of Athens, Greece. **Research Papers**

New records of *Penicillium* and *Aspergillus* from withered grapes in Italy, and description of *Penicillium fructuariae-cellae* sp. nov.

MARILINDA LORENZINI^{1,*}, MARIA STELLA CAPPELLO², GIANCARLO PER-RONE³, Antonio LOGRIECO³, GIACOMO ZAPPAROLI¹

¹ Università degli Studi di Verona, Dipartimento di Biotecnologie, 37134 Verona, Italy

² Istituto di Scienze delle Produzioni Alimentari, CNR, 73100 Lecce, Italy

³ Istituto di Scienze delle Produzioni Alimentari, CNR, 70126 Bari, Italy

*Corresponding authors: lorenzini.marilinda@gmail.com

Summary. *Penicillium* and *Aspergillus* are common pathogenic fungi of grapes, that occur frequently on withered berries used in the Italian passito wine production. Members of these genera isolated from withered grapes were identified using molecular and morphological approaches. The isolates were examined by amplification of internal transcribed spacer region, β -tubulin, calmodulin and RNA polymerase II second largest subunit. *Penicillium bilaiae, Aspergillus pallidofulvus* and *A. puulaauensis* are reported for the first time from *Vitis vinifera*. Two *Penicillium* isolates showed a distinct phylogenetic position and different morphological characteristics from *P. bissettii* and *P. vasconiae*, the two most closely related species. These isolates are assigned to the new species *Penicillium fructuariae-cellae*, that is here described. An *in vitro* pathogenicity assay was carried out to evaluate the infectivity to grape berries by *Penicillium* and *Aspergillus* isolates recovered in this study. All examined isolates colonized the berries when artificially inoculated, but to a lesser extent than *Botrytis cinerea*. This suggests that these fungi may contribute, with other pathogenic species, to the onset of post-harvest diseases of grapes.

Keywords. Saprophytic/pathogenic fungi, grapes, phylogeny, taxonomy, post-harvest diseases.

INTRODUCTION

Fungal contamination of grapes causes severe and economically important losses for world food and beverage industries. Table, wine and raisin grapes can be infected by several species of fungi, on grapevines and/or during postharvest processes. Grapes for Italian passito wine production are particularly vulnerable to fungal infections, during withering carried out in fruit drying rooms (*fruttaio*) (off-vine withering) (Mencarelli and Tonutti, 2013).

Penicillium and *Aspergillus* spp. are among the most frequent saprophytic fungal pathogens on withered grapes (Torelli *et al.*, 2006; Lorenzini *et al.*, 2016; Stefanini *et al.*, 2017). Their presence is very important since they are causal agents of bunch rot and can be mycotoxin producers (Torelli *et al.*, 2006; Somma *et al.*, 2012). In addition, grape contamination by these fungi can lower the quality of the resulting wines. The detrimental effects of withered grapes infected by *P. expansum* and *P. crustosum* on the quality of Amarone wine, a dry red passito wine, has recently been documented (Zapparoli *et al.*, 2018).

During previous surveys on fungi associated with withered grapes (Lorenzini *et al.*, 2016, 2018), eight species of *Penicillium* (*P. adametzoides*, *P. expansum*, *P. crocicola*, *P. crustosum*, *P. glabrum*, *P. griseofulvum*, *P. oxalicum* and *P. ubiquetum*) and five species of *Aspergillus* (*A. flavus*, *A. sydowii*, *A. tubingensis*, *A. uvarum* and *A. welwitschiae*) were identified by phylogenetic analyses. The placements of two isolates (*Penicillium* sp. P3 and *Aspergillus* sp. AS100) were not clear enough for reliable species delimitations.

In the present study, isolates P3 and AS100 were phylogenetically and morphologically analyzed to clarify their taxonomic positions. Three isolates of *Penicillium* and *Aspergillus*, recovered from withered grapes during the current survey, were also identified. These fungi belonged to species that are reported for the first time from *Vitis vinifera*. Two isolates were assigned to a new species of *Penicillium*. The pathogenicity of fungi isolated from grape berries was also assayed.

MATERIALS AND METHODS

On the basis of our previous studies (Lorenzini *et al.*, 2016; 2018) carried out on grape berries of the Garganega and Corvina varieties, collected from fruit-drying rooms located in two Northern Italian winemaking areas (Soave and Valpolicella), five representative strains of *Aspergillus* and *Penicillium* were isolated and identified. Three isolates recovered from withered grapes in this study (designated Pdb1, Pls8 and ASIs13) were isolated according to Lorenzini *et al.* (2016). The other two isolates (P3 and AS100) were obtained during a previous sampling (Lorenzini *et al.*, 2016). These isolates are deposited at the Westerdijk Fungal Biodiversity Institute (CBS, Utrecht, the Netherlands) and ITEM Agro-Food Microbial Culture Collection of the Institute of Science and Food Production (CNR-ISPA, Bari, Italy) (Table 1).

DNA was extracted from pure culture of each isolate as previously described (Lorenzini and Zapparoli, 2014). Each DNA extract was used to amplify the internal transcribed spacer (ITS) region, using primers ITS1/ITS4 (White *et al.*, 1990), partial β -tubulin gene (*benA*), using primers Bt2a/Bt2b (Glass and Donaldson, 1995), partial calmodulin gene (*CaM*), using primers cmd5/cmd6 (Hong *et al.*, 2006), and parts of the second largest subunit of RNA polymerase II (*rpb2*), using primers fRPB2-5F2/fRPB2-7C (Liu *et al.*, 1999). The amplified products were purified using the NucleoSpin Gel and PCR Cleanup Kit (Macherey-Nagel), and were sequenced in both directions using the same primers applied for amplification (Eurofins Genomics, Edersberg, Germany). The generated sequences were deposited at GenBank (Table 2).

Combined and individual analyses were conducted using the partial DNA sequences of five isolates recovered from withered grapes, and other reference taxa belonging to the genus Penicillium (sections Lanatadivaricata and Sclerotiora) and Aspergillus (A. versicolor clade and section Circumdati), retrieved from GenBank (Table 2). Maximum Likelihood (ML) analysis of the combined data sets was performed using MEGA7 v. 7.0.25 software. The combined data sets were analysed as three or four distinct partitions. For each individual data set, the most optimal substitution model was calculated in MEGA7 (Kumar et al., 2016) using the Akaike Information Criterion (AIC). Maximum Likelihood analyses of the individual data sets were also conducted using MEGA7, and robustness of the trees was evaluated by 1,000 bootstrap (BS) replicates. A second measure for statistical support was performed using Bayesian Evolutionary Analysis Sampling Trees (BEAST) Version v1.10.1, 2002-2018 (Drummond and Rambaut, 2007), and the previously obtained most optimal substitution model was used in the analyses. The Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a random tree topology. Burn-in was set to 25%

Table 1. Fungus isolates recovered from withered grape berries in this study.

Specie	Isolate designation	CBS number	ISPA number	Grape variety
Penicillium fructuariae-cellae	Р3	CBS 145110 ^T	ITEM 18276 ^T	Corvina
Penicillium fructuariae-cellae	Pdb1	CBS 145111	ITEM 18277	Garganega
Penicillium bilaiae	Pls8	CBS 145112	ITEM 18278	Garganega
Aspergillus pallidofulvus	ASls13	CBS 145108	ITEM 18279	Garganega
Aspergillus puulaauensis	AS100	CBS 143103	ITEM 18280	Corvina

optical number Lotative Lotative Lotative Lotative Literative Lotative Literative Literative <thliterative< th=""> <thliterative< th=""> <</thliterative<></thliterative<>			MIIN IIMIINCES	
Aspergible section Circuidat A geogles A different Indy GU721090	scauty ITS β-tubul	ITS β-tubulin C	in Calmodulin r	rpb2
A. defines NTCC MNA-4773 ¹ Led litter lab GU72109 Ef60141 Ef60141 Ef60149 Ef60149 <thef60139< th=""> Ef6013 Ef60140</thef60139<>				
A antronus NRL 301 n n Hendlow Fe60131 Fe60130 Fe6013	GU721090 GU721(GU721090 GU721092 (92 GU721091	
A bridgeri NR.H. 1300 ⁷ ni ni pieto 13 Pieto 13 <th< td=""><td>EF661411 EF6613</td><td>EF661411 EF661320</td><td>20 EF661379</td><td></td></th<>	EF661411 EF6613	EF661411 EF661320	20 EF661379	
A corrensis NRL 3567^{1} ni ni Fl9J572 NRL 3567^{1} ni Fl9J572 NRL 3567^{1} ni Fl9J572 NRL 3567^{1} Fl9J5 Fl9J5 <td>EF661404 EF6613</td> <td>EF661404 EF661335</td> <td>35 EF661358</td> <td></td>	EF661404 EF6613	EF661404 EF661335	35 EF661358	
A degene NRRL 48.0 ⁷ ni EF66144 EF66144 EF66149 EF66135 EF60135	FJ491572 AY8199	FJ491572 AY819977	77 FJ491534	
A. $freenit NRL 407+ Soil India Ef60140 Ef60140 Ef60143 Ef60143 $	EF661414 EF6613	EF661414 EF661349	49 EF661390	·
A. insufficida NRRL 613F Soil Venezuela Ef661430 Ef66135 Ef60132	EF661409 EF6613	EF661409 EF661341	41 EF661382	ı
A. mufatus NRBL 5103 [†] Soil India EF601423 EF601325	ila EF661430 EF6613	EF661430 EF661353	53 EF661396	,
A. muricantsNRL 35674° Grassland soilPhilippinesEF66143EF66143EF661436EF661436EF661435EF661435EF661435EF661432EF661432EF661432EF661432EF661432EF661432EF661432EF661432EF661432EF661432EF661324EF661	EF661425 EF6613	EF661425 EF661326	26 EF661391	ı
A. medbridgeri NRL 1307 ¹ Soil USA EF661410 EF661345 EF661342 EF661324	nes EF661434 EF6613	EF661434 EF661356	56 EF661377	,
A occulus CBS 1373.30 ⁺ Air sample Netherlands KJ775443 KJ775601 KJ775 A occulus NRU, 472 ⁺ NRU, 472 ⁺ N H661429 EF661323 EF66132 EF661323 EF661323 EF661323 EF66132 EF661323 EF66132 EF66132 <t< td=""><td>EF661410 EF6613</td><td>EF661410 EF661345</td><td>45 EF661359</td><td>,</td></t<>	EF661410 EF6613	EF661410 EF661345	45 EF661359	,
A cohraceopendijornis NRRL 472^7 Scab lesion Brazil EF661429 EF661320 EF661330 EF661330 EF661330 EF661331 EF661331 EF661331 EF661331 EF661331 EF661331 EF661332 EF661332 <thef661332< th=""> EF661332 EFF</thef661332<>	inds KJ775443 KJ7750	KJ775443 KJ775061	51 KJ775239	
A ochracus NRL 398 [†] ni Ef661419 Ef661321 Ef661331 Ef661332 Ef661332 Ef661332 Ef661331 Ef661332 Ef661332 <thef661331< th=""> <thef661332< th=""> <t< td=""><td>EF661429 EF6613</td><td>EF661429 EF661350</td><td>50 EF661388</td><td>,</td></t<></thef661332<></thef661331<>	EF661429 EF6613	EF661429 EF661350	50 EF661388	,
A ostianus NRL 420 ^T ni EF661421 EF661421 EF661323 EF661325 EF661333 EF661325 EF661325 EF661356 E175743 E75743 E75743 E75743 E75743 E75743 E75743 E75743 E75743 E75743 E7661176 E0014101 E7661176 E1014101 E7661176	EF661419 EF6613	EF661419 EF661322	22 EF661381	
A. pallidofutus NRL 478 ^T ni EF66132 EF66132 <thef6132< th=""> <thef6132< th=""></thef6132<></thef6132<>	EF661421 EF6613	EF661421 EF661324	24 EF661385	
A. pallidylubus* ITEM 18279 = CBS 145108 Vitis vinifera Italy FJ491580 AY819962 FJ491580 AY819988 FJ491580 AY819962 FJ491580 AY819526 FJ77547 KJ7754741 KJ775474 KJ77547 KJ775437 KJ775437 KJ775437 KJ775437 KJ775437 KJ775437 KJ775437 KJ775437 KJ775437 KJ77566 KJ775437 KJ77566 KJ775437 KJ775437 KJ775436 KJ775436 KJ775436 <thkj775436< th=""> KJ775436 <t< td=""><td>EF661423 EF6613</td><td>EF661423 EF661328</td><td>28 EF661389</td><td></td></t<></thkj775436<>	EF661423 EF6613	EF661423 EF661328	28 EF661389	
A. persit NRL 35669 ^T Toenail Italy FJ91580 AY 819962 FJ91590 AY 819962 FJ9155 K1775055 K1775056 K1775056 <thk177556< th=""> <</thk177556<>	MK039437 MK045:	VIK039437 MK045335 N	35 MK045340	
A. peudoelegansCBS 112796 ^T SoilCosta RicaF]491590AY819962F]4915A. peudoelegansUTHSCSA DI15-13 ^T Lung biopsy-LT574713LT574748LT57475A. peudosclerotiorumUTHSCSA DI15-13 ^T Lung biopsy-LT574713LT574765K177505A. pulvericolaCBS 137327 ^T DinoNRRL 6562 ^T (outgroup)SoilKenyaEF661176EU014101EF66137A. robustusNRRL 456 ^T DTO 297B3 ^T DTO 297B3 ^T AY819984F]49158AY819984F]4915A. roscoglobulosusNRRL 415 ^T DTO 297B3 ^T DTO 297B3 ^T ArentCBS 1377EF66137EF66137A. schoriorumNRRL 415 ^T AppleUSAEF661400EF661337EF66137A. schoriorumNRRL 415 ^T AppleUSAEF661400EF661347EF66137A. schoriorumNRRL 415 ^T Sesame seadDenmarkK1775437K177503K17750A. schoriorumNRRL 616 ^T NRRL 616 ^T Human lungUSAEF661403EF661347EF661347A. schoriiNRRL 616 ^T NRRL 616 ^T Sesame seadDenmarkK1775437K1775063K177506A. schoriiNRRL 616 ^T NRRL 616 ^T Sesame seadDenmarkK1775437K177506K1775A. schoriiNRRL 616 ^T NRRL 61203Human lungUSANR96582N896582N896582A. subrannanianiiNRRL 61203EF661303Av876Av876Av876Av866 <tr< td=""><td>FJ491580 AY8195</td><td>FJ491580 AY819988</td><td>88 FJ491559</td><td></td></tr<>	FJ491580 AY8195	FJ491580 AY819988	88 FJ491559	
A. peudosclerotiorumUTHSCSA DII5-13 ^T Lung biopsy-LT574713LT574748LT574748LT574748LT574745K175546K1755455K175547K175546K1755455K175547K175546K175547K175545K175555K175547K175546K175555K175555K17555K175547K175555K175555K175555K175555K1775547K1775556K1775565K1775556K1775556K1775565K1775665K1775565K1775665K1775565K1775665K1775565K1775665K1775565K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775665K1775666K177566	ica FJ491590 AY8195	FJ491590 AY819962	62 FJ491552	
A. $puhrericola$ CBS 137327 ^T Indoor hauseMicronesia $K_{T775440}$ $K_{T775440}$ $K_{T775440}$ $K_{T775440}$ $K_{T775447}$ $K_{T775447}$ $K_{T775447}$ $K_{T775447}$ K_{T77565} K_{T775} A. $roseoglobulosus$ NRRL 456 ^T Decaing leavesBahamas $F_{1}4915$ A A B $EF661176$ $EU014101$ $EF6613$ A. $roseoglobulosus$ NRRL 456 ^T Decaing leavesBahamas $F_{1}4915$ A A B B A B A. $sdevotiorum$ NRRL 415 ^T Decaing leavesBahamas $F_{1}4915$ A B <	LT574713 LT5747	LT574713 LT574748	48 LT574783	
A. robustusNRRL 636^{T} (outgroup)SoilKenyaEF661176EU014101EF66113A. roseoglobulosusNRRL 456^{T} Decaing leavesBahamasF] 491583 AY 819984F] 4915 A. roseoglobulosusDTO $297B3^{T}$ Decaing leavesBahamasF] 491583 AY 819984F] 4915 A. salwaensisDTO $297B3^{T}$ SoilQatarKJ 775447 KJ 775956 KJ 7752 A. selevotiorumNRRL 415^{T} AppleUSAEF661400EF661337EF6613A. sesmicolaCBS 137324^{T} Sesame seadDenmarkKJ 775437 KJ 775053 KJ 7752 A. steyniiNRRL 3567^{T} Sesame seadDenmarkKJ 775437 KJ 7753053 KJ 7752 A. steyniiNRRL 6161^{T} Shelled brazil nutsCanadaEF661303EF6613EF6613A. subramanianiiNRRL 6161^{T} Shelled brazil nutsCanadaEF661303EF661339EF6613A. subramanianiiNRRL 6127 Grean bean coffeeIndiaEF661303EF661339EF6613A. ustrantiniiNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661329EF6613A. westandensisNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661329EF6613A. ustradensisNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661329EF661329A. westandensisCBS 137321^{T}Antropogum sorghumSouth AfricaNRL 237434 KJ 775366 K 7775	sia KJ775440 KJ7750	KJ775440 KJ775055	55 KJ775236	,
A. roseoglobulosusNRL 4565TDecaing leavesBahamasF]49153AY 819984F]4915A. roseoglobulosusDTO 297B3TSoilQatarKJ77547KJ775056KJ77505A. sclenotiorumNRRL 415TSoilQatarKJ775447KJ775053KJ775056A. sclenotiorumNRRL 415TAppleUSAEF661400EF661347EF6613A. sclenotiorumCBS 137324 ^T Sesame seadDenmarkKJ775437KJ775053KJ775053A. sclenotiorumNRRL 6161Grean bean coffeeIndiaEF661400EF661347EF661347A. subramaianiNRRL 6161Grean bean coffeeIndiaEF661403EF661347EF661347A. subramaianiNRRL 6161Grean bean coffeeIndiaEF661403EF661347EF661347A. subramaianiNRRL 6157Grean bean coffeeIndiaEF661403EF661347EF661347A. subramaianiNRRL 1374 ^T = CBS 112803Andropogum sorghumUSAJN8853798JN896582JN8965A. westerdijkiaeNRRL 3174 ^T = CBS 112803Antropogum sorghumSouth AfricaEF661427EF661329EF6613A. westerdijkiaeNRRL 4387NRRL 4388 ^T Antropogum sorghumSouth AfricaKJ77544KJ775066KJ7752A. westerdijkiaeNRRL 4388 ^T niniNRL 13742EF661329EF661329EF66132A. westerdijkiaeNRRL 4388 ^T niniNRL 13742EF661329EF652304EF652304A. amoenus <td>EF661176 EU0141</td> <td>EF661176 EU014101</td> <td>01 EF661357</td> <td></td>	EF661176 EU0141	EF661176 EU014101	01 EF661357	
A. salwaensis DTO 297B3 ^T Soil Qatar KJ775447 KJ77506 KJ77556 KJ77556 KJ77556 KJ77556 KJ775565 KJ775565 KJ775565 KJ775565 KJ775565 KJ775565 KJ775565 KJ775563 KJ775565 KJ775656 KJ77556 KJ77556 KJ77556 KJ77556 KJ77556 KJ77556 KJ775566 KJ7755 A. westerdijkiae NRRL 3174 ^T = CBS 112803 Antropogum sorghum South Africa EF661427 EF661329 EF661329 EF66132 A. westerdijkiae NRRL 3174 ^T CBS 137321 ^T Antropogum sorghum South Africa KJ	s FJ491583 AY8195	FJ491583 AY819984	84 FJ491555	
A. sclerotiorumNRL 415"AppleUSAEF661400EF661337EF661339EF661329EF661329EF66133	KJ775447 KJ7750	KJ775447 KJ775056	56 KJ775244	
A. sesamicola CBS 137324 ^T Sesame sead Denmark K]775437 K]775063 K]77505 K]77506 K]77505 K]77506 K]77505 K]77505 K]77506 K]77505 K]77506 K]77505 K]77506 K]77505 K]77506 K]	EF661400 EF6613	EF661400 EF661337	37 EF661384	
A. steyniiNRL 3567^{T} Grean bean coffeeIndiaEF66116EF661347EF661347EF661347A. subramanianiiNRRL 6161^{T} Shelled brazil nutsCanadaEF661403EF661393EF6613A. unteriNRRL 62425^{T} (outgroup)Human lungUSAJN853798JN896582JN8965A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661329EF6613A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaKJ77544KJ775066KJ7755A. westerdijkiaeNRRL 483^{T} niniNR_137462EF652304EF652A. austroafricanusNRRL 233^{T} niSouth AfricaNR_135443JN83363JN8546A. austroafricanusNRRL 233^{T} niNNNNNN	k KJ775437 KJ7750	KJ775437 KJ775063	53 KJ775233	,
A. subramanianiNRL 6161^{T} Shelled brazil nutsCanadaEF661403EF661339EF66133A. subramanianiNRRL 62425^{T} (outgroup)Human lungUSAN853798N896582N8965A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westerdijkiaeCBS 137321^TAir sampleNetherlandsKJ775434KJ775066KJ7753A. westerdirAmoenusNRRL 4838^{T} niNRL 137462 EF652304EF6523A. austroafricanusNRRL 233^{T} niSouth AfricaNR_135443N853963N8540A. ustroafricanusNRRL 233^{T} niNNNNNN	EF661416 EF6613	EF661416 EF661347	47 EF661378	,
A. tanneriNRL 62425^{T} (outgroup)Human lungUSAJN853798JN896582JN896582JN896582A. westerdijkiaeNRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westlandensisCBS 137321^{T} Air sampleNetherlandsKJ775434KJ775066KJ7752A. westlandensisCBS 137321^{T} Air sampleNetherlandsKJ775434KJ775066KJ7752A. westlandensisCBS 137321^{T} Air sampleniNrL 137462 EF66122A. westlandensisNRRL 4838^{T} niNR_137462EF652304EF6522A. austroafricanusNRRL 233^{T} niNR_135443JN853963JN8546A. ustroafricanusNRRL 233^{T} niNN_135443JN853963JN8546	EF661403 EF6613	EF661403 EF661339	39 EF661397	
A. westerdijkiaeNRRL $3174^{T} = CBS 112803$ Andropogum sorghumSouth AfricaEF661427EF661329EF6613A. westlandensisCBS 137321^{T} Air sampleNetherlandsKJ775434KJ775066KJ7752A. westlandensisCBS 137321^{T} Air sampleNetherlandsKJ775434KJ775066KJ7752A. westlandensisCBS 137321^{T} Air sampleNetherlandsKJ775434KJ775066KJ7752A. westlandensisNRRL 4838^{T} niNR_137462EF652304EF6522A. austroafricanusNRRL 233^{T} niSouth AfricaNR_135443JN853963JN8546A. ustroafricanusNRRL 233^{T} ni11N.N.N.N.	JN853798 JN8965	JN853798 JN896582 J	82 JN896583	
A. westlandensis CBS 137321 ^T Air sample Netherlands KJ775434 KJ775066 KJ7752 A. versicolor clade A. versicolor clade ni ni NR_137462 EF652304 EF6523 A. anoenus NRRL 4838 ^T ni NR_137462 EF652304 EF6523 A. austroafricanus NRRL 233 ^T ni South Africa NR_135443 JN853963 JN8544	frica EF661427 EF6613	EF661427 EF661329	29 EF661360	
A. versicolor clade ni ni NR_137462 EF652304 EF6523 A. amoenus NRRL 4838 ^T ni NR_137462 EF652304 EF6523 A. austroafricanus NRRL 233 ^T ni South Africa NR_135443 JN853963 JN8540	inds KJ775434 KJ7750	KJ775434 KJ775066	56 KJ775230	
A. amoenus NRL 4838 ^T ni ni NR_137462 EF652304 EF6523 A. austroafricanus NRRL 233 ^T ni South Africa NR_135443 JN853963 JN8546				
A. austroafricanus NRRL 233 ^T ni South Africa NR_135443 JN853963 JN8546	NR_137462 EF6523	VR_137462 EF652304	04 EF652392	,
TATA TATA TATA TATA TATA TATA TATA TAT	frica NR_135443 JN8539	VR_135443 JN853963	53 JN854025	,
A. creber USA INKL 58592 ⁴ IN855980 JN854	NR_135442 JN8539	VR_135442 JN853980	80 JN854043	,

Table 2. Isolates used in phylogenetic analyses.

325

Species Narial identification Source Loality TIS F-tubulin Calmodia A problement NRL 227 Solid USA FF82349 FF82349 FF82345			
A. Optification NRR. 227' Soil USA Effectation Effec	anıyITS β-tubulir	lin Calmodulin	rpb2
A, functions NIRL 139" Due fruit USA Effectable Effectable <theffectable< th=""> Effectable<td>EF652440 EF65226</td><td>.64 EF652352</td><td></td></theffectable<>	EF652440 EF65226	.64 EF652352	
A. givenumentant A. givenumentant Display Stream Indoor air dark Indoor air sample UK UK <thuk< th=""> UK <thuk< th=""></thuk<></thuk<>	EF652449 EF65227	73 EF652361	
A hordgongensis HK149 ⁶ Human null Hong Kong Kong <th< td=""><td>ia KJ775553 KJ775080</td><td>86 KJ775357</td><td></td></th<>	ia KJ775553 KJ775080	86 KJ775357	
Λ_i pineorial NRI, 135440 NR5400	1g AB987907 LC00055	52 LC000565	
A multicolar NIL 477 ⁴ (ourgoup) ni ni nick2377 Efec337 Efec337 Efec337 Efec337 Efec337 Efec337 Efec336	NR_135444 JN85400	07 JN854046	
A. photuberus NRL 1365 ⁷ Brined ment UK NRL 13553 Fier2324 Fier2324 Fier2324 Fier2324 Fier2324 Fier2324 Fier2324 Fier2324 Fier33245 Fier3326 Fier3336 Fier3326 Fier3336 Fier3336 Fier3336 Fier3336 Fier3336 Fier3336	EF652477 EF65230	01 EF652389	
A. pundaarensis NRRI 35611 ^T Dead hardwood branch USA NR.13544 NR.35745 NR.35745 NR.35795 NR.35705 NR.35471 NR.35471 NR.35471 NR.35471 NR.35471 NR.35471 NR.35470 NR.45401 NR.44011 NR.44111 NR.44011 NR.44011 NR.44011 NR.44011 NR.44011 NR.44011 NR.44011 NR.440111 NR.440111 NR.440111 NR.440111 NR.440111 NR.440111 NR.44011111101 NR.4401111 NR.4401111 <td>NR_135353 EF65228</td> <td>.84 EF652372</td> <td></td>	NR_135353 EF65228	.84 EF652372	
A. pundamensis ITEM 18280 = CBS 145103 Fruit of Vitis vinifora Ialy MK03438 MK043348 KU043345 KU033545 KU033546 KU033547 KU033546 KU33547 KU33547 KU33547 KU33547 KU33547 KU33547 KU33547 KU33547 KU33547 KU34547 KU33547 KU33547 KU34547 KU34557	NR_135445 JN85397	79 JN854034	
A. abdoreit NRL 250 [†] ni n FE652450 EF6523450 EF652320 EF652302 EF652320 EF652302 EF652302 EF652302 EF652302 EF652302 EF652305 EF652305 EF652305 EF652305 EF652305 EF652305 EF652305 EF652365 EF652356 EF652365 EF652342 EF652342 EF652345 E	MK039438 MK04533	336 KU554606	,
A. tabacints NRL, 4791 [†] ni ni ni ni ni NR_33370 EF653202 EF653202 EF65342 EF652343 EF653448 N853970 N85401 A. verenants NRL 13147 [†] USA NR_13544 N853970 N85401 A. verenants NRL 13147 [†] USA NR_13544 N853970 N85401 A. version NRL 13147 [†] USA NR_135446 N853970 N85401 A. version NRL 13147 [†] USA Evoty Cost E662344 E662345 E662356 A. version NRL 13149 [†] Coffice berry India NR_111502 GU981656 KF29635 Paridihum CV 37 = CBS 135126 [†] Soil Ivory Cost KT38732 KT38735 KT38735 Parancarrence CBS 113419 [†] Leaf litter Colombia GU981659 KF29645 KY49503 KY49512 Parancairence CBS 113419 [†] Leaf litter Colombia South Africa NR_138736 KT38736 KT38736 KT38736 KT38736 </td <td>EF652450 EF65227</td> <td>74 EF652362</td> <td></td>	EF652450 EF65227	74 EF652362	
A. termessensis NRL 13150 [†] Ex toxic dairy feed USA NR_135447 NR53976 NR5401 A. versicular NRL 13147 [†] D. Six clairy feed USA NR_135447 NR5403 NR5401 A. versicular NRL 13147 [†] D. Six clairy feed USA NR_135447 NR5403 NR5401 A. versicular NRL 13147 [†] Coffice berry India NR_135346 NR5403 NR5403 Pericilium section Landta-diverticata CBS 246.67 [†] Soil Vovy Coast NR_111502 GU981656 KT89775 Particilium section Landta-diverticata CBS 246.67 [†] Soil Vovy Coast NR_111502 GU981656 KT89755 R ambipiburia CBS 246.67 [†] Soil Vovy Coast NR_111502 GU981656 KT88775 R ambipiburia CBS 246.67 [†] Acidic soil Colombia KT95903 KT959514 KT95953 R ambipiburia CV 37 = CBS 149505 Learers Parama KT887745 KT88774 KT8877 R ambipiburia CA33255 [†] Learers	NR_135361 EF65230	02 EF652390	,
A. vertenatus NRL 13147 ⁺ Toxic dairy feed USA RK_135448 IN85400 IN8400 IN8400 IN8400 IN841.238 ⁺ In85400 IN8400 IN8400 IN841.3899 ⁺ In85401 In86400 IN8401 In86400 IN8401 In86400 IN8401 In84701 In4401 In4401 In4401 In4401 In4401 In4401 In4401 In4401 In4401 In4101 In41018 In44018 In44018 <td>NR_135447 JN853970</td> <td>'76 JN854017</td> <td>,</td>	NR_135447 JN853970	'76 JN854017	,
A. versicolor NRL 238 [†] ni USA EF652442 EF652266 EF652265 EF652266 EF652265 EF652957 Collected number of the second nu	NR_135448 JN85400	03 JN854014	
A.subversicolor NRL 5899 [†] Coffee berry India NR.135446 IN833970 IN833970 IN833970 IN833970 IN833970 IN833970 IN83732 IN83732 IN83732 IN33733 IN33733 <thiii3373< th=""> IIII3373 <th< td=""><td>EF652442 EF65226</td><td>66 EF652354</td><td>,</td></th<></thiii3373<>	EF652442 EF65226	66 EF652354	,
Pericilium section Landar-divericata Pericilium section Landar-divericata P ebidjanum CBS 246.67 ^T Soil Ivory Coast NR_111502 GU981650 KF29639 P annulatum CBS 246.67 ^T Soil Soil NR_111502 GU981650 KF29639 P annulatum CV 37 CBS 113149 ^T Lear litter Colombia GU981597 KT38773 KT38773 P annulatum CV 37 CBS 113149 ^T Lear litter Colombia GU981597 KT38773 KT38776 P annucarense CBNC 31879 ^T EBS 144505 Acific soil China NR_1138303 K7495112 GU981629 KF29637 P barstinemee CGMC 31877 CBS 144505 Soil China KT495112 GU981629 KT88776 P barstineme CGMC 31877 Canada KT887845 KT88786 KT88776 P brefeldinum CBS 235.57 ^T Hurnan alimentary tract NR CJ333 KV04158 KT88736 KT88776 P brefeldinum CBS 235.67 ^T Hurnan alimentary tract NR CJ	NR_135446 JN853970	70 JN854010	
P. abidjanum CBS 246.67 ^T Soil Ivory Coast NR_111502 GU981650 KF29635 P. ammlatum CV 37 = CBS 133126 ^T Eaves Panama KT887872 KT887833 KT88773 KT887833 KT88773 KT887833 KT88773 KT88773 KT887733 KT88773 KT887733 KT88773 KT887733 KT88773 KT887733 KT887733 KT887733 KT887733 KT88773 KT887733 KT887733 KT887733 KT887733 KT887733 KT887733 KT887733 KT887733 KT88773 KT887733 KT887733 KT88773 KT887733 KT88773 KT995113 KT41414 KT88773 KT99512 KY49492 KT88774 KT887743 KT88774 KT887743 KT88774 KT88774 <t< td=""><td></td><td></td><td></td></t<>			
P. amphipolaria DAOMC 25051 T EXAS 2555 = CBS 140997 Leaves Panama KT887872 KT887833 KT887733 KT89703 KT495112 KT49494 P isostition CV 37 = CBS 13577 = CBS 144951 CBS 1131497 Colombia G1081537 G0916129 KT89774 P isostition CS 3187797 CBS 1347951 CS 140972 Soil Colombia KT49512 GU981629 KT89776 P isostitionum CS 253.557 Human alimentary tract II GU981580 GU981629 KT88776 P isostitionum CBS 433.817 Nuts of Carry confijornus Brazil MAT1361 GU981630 KT98776 P isostitionum CBS 233.817 Nuts of Carry confijornus Brazil KT18774 KT88776 KT88776 P camponotum CBS 441 RA	ast NR_111502 GU98165	550 KF296383 JN	N121469
P. annulatum CV 37 = CBS 135126 [†] Soil South Africa NR_138303 JX091514 JX14154 P. araracuarense CBS 113149 [†] Leaf litter Colombia GU981597 GU981597 GU981597 Kt93503 K7495103 K7495112 K7495103 K7495103 K7495112 K7495103 K7495103 K7495103 K7495103 K7495103 K7495103 K7495103 K7495112 K749503 K7495112 K749503 K7495112 K749503 K7495112 K7495112 K7495112 K749503 K7887786 K7887787 K7887786 K7887787 <td< td=""><td>KT887872 KT88783</td><td>333 KT887794</td><td>na</td></td<>	KT887872 KT88783	333 KT887794	na
P. austrosinense CBS 113149 ^T Leaf litter Colombia GU981597 GU981642 KF29537 P. austrosinense CGMCC 3.18797 ^T = CBS 144505 Acidic soil China KY 495003 KY 495102 KY 495003 KY 495112 KY 494949 P bissettii DAOMC 167011 ^T = KAS1951 = CBS 144505 Soil Canada KT 887845 KT 88776 KT 88776 P broiselianum CBS 253.55 ^T DAOMC 167011 ^T = KAS1951 = CBS 140972 Soil Canada KT 95712 GU981629 AB6785 P brejeldianum CBS 235.81 ^T Human alimentary tract in GU981580 GU981629 AB65785 P camponotum CBS 235.81 ^T Human alimentary tract in GU981580 GU981629 AB65785 P camponotum CBS 235.81 ^T Human alimentary tract in GU981580 GU981629 AB65785 P camponotum KAS2177 = DAOMC 250557 ^T = CBS 140922 Ants KT 887847 KT 88775 P captoratum CBS 14457 TB Ants KT 877875 KT 8777575 P capoprotum	rica NR_138303 JX09151 ⁴	14 JX141545 KI	KF296410
P. austrosinenseCGMCC 3.18797 ^{$++++1505$} Acidic sollChinaKY 495003KY 495102KY 495102KY 495102KY 495003KY 495112KY 49503KY 495112KY 49503KY 495112KY 49503KY 495112KY 49503KY 49512KY 49503KY 49512KY 49503KY 49512KY 49512KY 49503KY 49512KY 49512KY 49503KY 49512KY 49543KY 49544KY 495	GU981597 GU98164	542 KF296373 KI	KF296414
P. bissetti DAOMC 167011 ⁺ = KAS1951 = CBS 140972 Soil Canada KT887845 KT88785 KT88776 KT88775 P. brefeldianum CBS 253.55 ^T Herbarium specimen Brazil AF178512 GU981629 AB66785 P. brefeldianum CBS 253.55 ^T Human alimentary tract ni GU981580 GU981629 AB66785 P. brefeldianum CBS 235.81 ^T Human alimentary tract ni GU981580 GU981629 AB66785 P. camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT887855 KT887716 GU981660 KF29635 P. cararectum CBS 443.75 ^T DAOMC 250534 ^T Nuts of <i>Carya cordiformis</i> Canada KT887847 KT887786 KT88776 P. cararectum CBS 140974 Fx010 ^T Fruit of <i>Vitis vinifera</i> Italy MK0453.3 MK0453.3 P. cararectum CBS 145110 ^T Fruit of <i>Vitis vinifera</i> Italy MK039435 MK0453.33 MK0453.3 P. fuctuariae-cellae ITEM 18277 = CBS 145110 ^T Fruit of <i>Vitis vinifera</i> Italy MK039435	KY495003 KY49511	12 KY494943 KY	CY495061
P brasilianum CBS 233.55 ^T Herbarium specimen Brazil AF178512 GU981629 AB66785 P brefeldianum CBS 235.81 ^T Human alimentary tract ni GU981580 GU981580 GU981623 AB66785 P camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT88755 KT88775 KT88775 P camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT88755 KT887816 KT88775 P caperatum CBS 140974 KAS217 CBS 140974 KT887847 KT887847 KT88776 P catacutum CBS 140970 Nuts of Carya cordiformis Canada KT887847 KT887808 KT88764 P fructuariae-cellae ITEM 18276 ^T = CBS 145110 ^T Fruit of Vitis vinifera Italy MK03933 MK04533 P fructuariae-cellae ITEM 18277 CBS 145111 Fruit of Vitis vinifera Italy MK039434 KU554679 MK04533 P functuariae-cellae ITEM 18277 CBS 145111 Fruit of Vitis vinifera Italy MK03453 MK04533 <td< td=""><td>KT887845 KT88780</td><td>306 KT887767 KV</td><td>CY495055</td></td<>	KT887845 KT88780	306 KT887767 KV	CY495055
P. brefeldianum CBS 235.81 ^T Human alimentary tract ni GU981580 GU981580 GU981623 AB66783 P. camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT88755 KT887715 P. camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT88755 KT887816 KT88775 P. caperatum CBS 443.75 ^T Soil Australia KC411761 GU981660 KF29635 P. caparatum CBS 140974 KAS2147 Nuts of Carya cordiformis Canada KT88747 KT887808 KT8876 P. cataractum CBS 14910 ^T Fruit of Vitis vinifera Italy MK039434 KU55457 MK04533 P. functuariae-cellae ITEM 18277 = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039436 KT88705 KT88765 P. functuariae-cellae ITEM 18277 = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039433 MK04533 MK04533 P. cuntanee-cellae ITEM 18277 = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039434 KU559647 KF296497 <td>AF178512 GU98162</td> <td>529 AB667857 KI</td> <td>KF296420</td>	AF178512 GU98162	529 AB667857 KI	KF296420
P camponotum KAS2177 = DAOMC 250557 ^T = CBS 140982 Ants Canada KT887855 KT887816 KT887716 P caperatum CBS 443.55 ^T Soil Australia KC411761 GU981660 KF29635 P cataractum CBS 140974 = KAS2145 = DAOMC 250534 ^T Nuts of Carya cordiformis Canada KT887847 KT887847 KT887847 P cataractum CBS 140974 = KAS2145 = DAOMC 250534 ^T Nuts of Carya cordiformis Canada KC411761 GU981660 KF29635 P fructuariae-cellae ITEM 18276 ^T = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039434 KU554679 MK04533 P fructuariae-cellae ITEM 18277 = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039435 MK04533 MK04533 P cluniae CBS 214.56 ^T Soil Viti of Vitis vinifera Italy MK03533 GU981655 KF29640 KF29640 P cluniae CBS 214.45 ^T ni Ni <t< td=""><td>GU981580 GU98162</td><td>523 AB667857 KI</td><td>KF296421</td></t<>	GU981580 GU98162	523 AB667857 KI	KF296421
P. caperatum CBS 443.75 ^T Soil Australia KC411761 GU981660 KF29535 P. cataractum CBS 140974 = KAS2145 = DAOMC 250534 ^T Nuts of Carya cordiformis Canada KT887847 KT887808 KT88776 P. fractuariae-cellae ITEM 18276 ^T = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039434 KU554679 MK04533 P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 KT045333 MK04533 P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 KT045333 MK04533 P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 MK04533 MK04533 P. cluniae CBS 141.45 ^T ni NR_138293 GU981655 KF29640 KF296405 KF296405 KF296405 KF296405 KF296405 KF296405 KF296405 KF296405 KF296405 KF296411 KF296405 KF296410 KF296410	KT887855 KT88781	316 KT887777	na
P. cataractum CBS 140974 = KAS2145 = DAOMC 250534 ^T Nuts of Carya cordiformis Canada KT887847 KT887808 KT88776 P. fructuariae-cellae ITEM 18276 ^T = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039434 KU554679 MK04533 P. fructuariae-cellae ITEM 18276 ^T = CBS 145111 Fruit of Vitis vinifera Italy MK039435 KU645333 MK04533 P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 KT045333 MK04533 P. cuntae CBS 326.89 ^T Soil Spain Italy MK039435 KF296405 KF296471 KF296405 P. corruleum CBS 141.45 ^T ni NR_138293 GU981655 KF296405 K	KC411761 GU98166	560 KF296392 KI	KF296422
P. fructuariae-cellae ITEM 18276 ^T = CBS 145110 ^T Fruit of Vitis vinifera Italy MK039434 KU554679 MK0453 P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 MK045333 MK0453 P. cluniae CBS 326.89 ^T Soil Spain KF29640 KF29640 </td <td>KT887847 KT88780</td> <td>308 KT887769</td> <td>na</td>	KT887847 KT88780	308 KT887769	na
P. fructuariae-cellae ITEM 18277 = CBS 145111 Fruit of Vitis vinifera Italy MK039435 MK04533 GU981655 KF29640 K	MK039434 KU55467	579 MK045337 MI	AK520927
P. cluniae CBS 326.89 ^T Soil Spain KF296406 KF296471 KF296471 KF296465 KF296471 KF296455 KF296455 KF296455 KF296455 KF296455 KF296455 KF296455 KF296455 KF296455 KF296456 KF296457 KF296457 KF296457 KF296457 KF296457 KF296457 KF296457 KF296457 KF296457 KF296456 KF296457 KF296456 KF296457	MK039435 MK04533	333 MK045338 MI	1K520928
P. coeruleum CBS 141.45 ^T ni ni NR_138293 GU981655 KF29635 P. cremeogriseum CBS 223.66 ^T Soil Ukraine NR_111505 GU981624 KF29640 P. cremeogriseum CBS 223.66 ^T Soil Ukraine NR_111505 GU981624 KF29640 P. curticaule CV2842 = CBS 135127 ^T Soil South Africa F]231021 JX091526 JX14153 P. daleae CBS 211.28 ^T Soil Poland NR_111503 GU981649 KF29638 D. chim/hon/ninuoco CBS 328 50 ^T Soil Ianan GT1081587 GT1081587 GT108158 Z05120	KF296406 KF29647	71 KF296402 KI	KF296424
P. cremeogriseum CBS 223.66 ^T Soil Ukraine NR_111505 GU981624 KF29640 P. curticaule CV2842 = CBS 135127 ^T Soil South Africa FJ231021 JX091526 JX14153 P. daleae CBS 211.28 ^T Soil Poland NR_111503 GU981649 KF29638 D. achimilanologious CBS 211.28 ^T Soil Poland NR_111503 GU981649 KF29638	NR_138293 GU98165	555 KF296393 KI	KF296425
P. curticale CV2842 = CBS 135127 ^T Soil South Africa F]231021 JX091526 JX14153 P. daleae CBS 211.28 ^T Soil Poland NR_111503 GU981649 KF29638 D. schimulonologiouss CBS 328 50 ^T Soil Ianan C11081587 C11081587 C1108153 CY06150	NR_111505 GU98162	524 KF296403 KI	KF296426
P daleaeCBS 211.28 ^T SoilPolandNR_111503GU981649KF29635 D schimuloucliniouseCRS 328 50 ^T SoilIananCI1081587CI1081587	ica FJ231021 JX091520	26 JX141536 Kl	KF296417
D schimulonalianous CRS 328 50 ^T Sail Ianan GI 1081 587 GI 1081 63 X 2061 20	NR_111503 GU98164	549 KF296385 KI	KF296427
1 cumunum num burne $CD0.020.02$	GU981587 GU9816	63 KX961269 K3	CX961301

Table 2. (Continued).

•
~
U, U
-
=
_
.=
ب
1
-
0
~ 5
<u> </u>
\sim
~
Ψ
_
0
_
B
<u> </u>
_

			T = 2.154.		GenBank	numbers	
opecies	orain identification	source	госанцу	ITS	β-tubulin	Calmodulin	rpb2
P. ehrlichii	CBS 324.48 ^T	ni	Poland	GU981578	KF296464	KF296395	KF296428
P. elleniae	CBS 118135^{T}	Leaf litter	Colombia	GU981612	GU981663	KF296389	KF296429
P. excelsum	$HF-2015 = CCT 7772^{T}$	Nut shell	Brazil	KR815341	KP691061	KR815342	na
P. flaviroseum	$CGMCC 3.18805^{T} = CBS 144479$	Acidic soil	China	KY495032	KY495141	KY494972	KY495083
P. glabrum	CBS 125543 ^T (outgroup)			GU981567	GU981619	KM089152	JF417447
P. glaucoroseum	NRRL $908^{T} = CBS \ 138908$	Soil	USA	KF296407	KF296469	KF296400	KF296430
P. globosum	$CGMCC 3.18800^{T} = CBS 144639$	Acidic soil	China	KY495014	KY495123	KY494954	KY495067
P. griseoflavum	$CGMCC 3.18799^{T} = CBS 144525$	Acidic soil	China	KY495011	KY495120	KY494951	KY495064
P. griseopurpureum	CBS 406.65^{T}	Soil	England	KF296408	KF296467	KF296384	KF296431
P. guangxiense	$CGMCC 3.18793^{T} = CBS 144526$	Soil	China	KY494986	KY495095	KY494926	KY495045
P. hainanense	$CGMCC 3.18798^{T} = CBS 144527$	Acidic soil	China	KY495009	KY495118	KY494949	KY495062
P. infrabuccalum	$KAS2181^{T}$ = DAOMC 250537	Ants	Canada	KT887817	KT887817	KT887778	na
P. janthinellum	CBS 340.48^{T}	Soil	Nicaragua	NR_111504	GU981625	KF296401	JN121497
P. javanicum	CBS 341.48 ^T	Rut of Cammelia sinensis	s Indonesia	NR_111511	GU981657	KF296387	JN121498
P. jianfenglingense	$CGMCC 3.18802^{T} = CBS 144640$	Soil	China	KY495016	KY495125	KY494956	KY495069
P. koreense	$KACC 47721^{T}$	Soil	Korea	KJ801939	KM000846	na	na
P. laevigatum	$CGMCC 3.18801^{T} = CBS 144481$	Acidic soil	China	KY495015	KY495124	KY494955	KY495068
P. levitum	CBS 345.48 ^T	Modeling clay	USA	NR_111510	GU981654	KF296394	KF296432
P. limosum	$CBS 339.97^{T}$	Marine sediment	Japan	NR_111496	GU981621	KF296398	KF296433
P. lineolatum	CBS 188.77 ^T	Soil	Japan	NR_111500	GU981620	KF296397	KF296434
P. ludwigii	CBS 417.68 ^T	Polished rice	Japan	NR_138339	KF296468	KF296404	KF296435
P. malacosphaerulum	$CV2855 = CBS \ 135120^{T}$	Soil	South Africa	FJ231026	JX091524	JX141542	KF296438
P. mariae-crucis	CBS 271.83 ^T	Secale cereale	Spain	NR_111506	GU981630	KF296374	KF296439
P. meloforme	$CBS 445.74^{T}$	Soil	Papua New Guinea	NR_153203	GU981656	KF296396	KF296440
P. ochrochloron	$CBS 357.48^{T}$	Copper sulphate solutior	I USA	NR_111509	GU981672	KF296378	KF296445
P. onobense	CBS 174.81 ^T	Soil	Spain	NR_111497	GU981627	KF296371	KF296447
P. ortum	$CV \ 102 = CBS \ 135669^{T}$	Soil	South Africa	NR_138304	JX091520	JX141551	KF296443
P. oxalicum	CBS 219.30 ^T (outgroup)	Soil	USA	MH855125	KF296462	KF296367	JN121456
P. panissanguineum	DAOMC $250562^{T} = KAS 2209 = CBS 140989$	Termite mounds	Tanzania	KT887862	KT887823	KT887784	na
P. paraherquei	ATCC $22354 = CBS 338.59^{T}$	Soil	Japan	AF178511	KF296465	KF296372	KF296449
P. pedernalense	$CBS 140770^{T}$	Waste compost	Ecuador	KU255398	KU255396	KY494968	KY495079
P. penarojense	CBS 113178 ^T	Leaf litter	Colombia	NR_138289	GU981646	KF296381	KF296450
P. piscarium	CBS 362.48 ^T	Cod-liver oil emulsion	Norway	NR_111507	GU981668	KF296379	KF296451
P. pulvillorum	CBS 280.39^{T}	Acidic soil	UK	NR_138292	GU981670	KF296377	KF296452
P. raperi	NRRL $2674 = CBS 281.58^{T}$	Soil	UK	AF033433	GU981622	KF296399	KF296453
							(Continued)

Character	Ctenin idontification	Contract			GenBank	numbers	
operies		2001100	посани	STI	β -tubulin	Calmodulin	rpb2
P. reticulisporum	NRRL $3447 = CBS \ 122.68^{T}$	Soil	Japan	AF033437	GU981665	KF296391	KF296454
P. rolfsii	$CBS 368.48^{T}$	Pineapple	USA	JN617705	JU981667	KF296375	KF296455
P. rubriannulatum	$CGMCC 3.18804^{T} = CBS 144641$	Acidic soil	China	KY495029	KY495138	KY494969	KY495080
P. simplicissimum	$CBS372.48^{T}$	Flannel bag	South Africa	NR_138290	GU981632	KF296368	JN121507
P. singorense	DTO $133C6 = CBS \ 138214^{T}$	House dust	Thailand	KJ775674	KJ775167	KJ775403	na
P. skrjabinii	CBS 439.75 ^T	Soil	Russia	NR_111498	GU981626	KF296370	EU427252
P. soliforme	$CGMCC 3.18806^{T} = CBS 144482$	Acidic soil	China	KY495038	KY495147	KY494978	KY495047
P. stolkiae	NRRL 5816 = CBS 315.67 ^T (outgroup)	ni	ni	NR_121233	JN617717	AF481135	JN121488
P. spiliferum	$CGMCC 3.18807^{T} = CBS 14483$	Acidic soil	China	KY495040	KY495149	KY494980	KY495090
P. subrubescens	$DTO188-D6 = CBS \ 132785^{T}$	Soil	Finland	KC346350	KC346327	KC346330	KC346306
P. svalbardense	CBS 122416^{T}	Glacial ice	Greenland	GU981603	KC346325	KC346338	KF296457
P. tanzanicum	DAOMC $250514^{T} = KAS 1946 = CBS 140968$	ni	Tanzania	KT887841	KT887802	KT887763	KY495066
P. terrarumae	CBS 131811 ^T	Soil	China	KC346349	KC346326	KC346339	KC346316
P. vanderhammenii	$CBS126216^{T}$	Leaf litter	Colombia	NR_137577	GU981647	KF296382	KF296458
P. vasconiae	$CBS 339.79^{T}$	Soil	Spain	NR_138291	GU981653	KF296386	KF296459
P. viridissimum	$CGMCC 3.18796^{T} = CBS 14484$	Acidic soil	China	KY495004	KY495113	KY494944	KY495059
P. wotroi	CBS 118171 ^T	Leaf litter	Colombia	GU981591	GU981637	KF296369	KF296460
P. yunnanense	$CGMCC 3.18794^{T} = CBS 14485$	Acidic soil	China	KY494990	KY495099	KY494930	KY495048
P. zonatum	CBS 992.72 ^T	Coastal marsh soil	USA	NR_111501	GU981651	KF296380	KF296461
Penicillium section Sclerot	iora						
P. adametzii	$CBS 209.28^{T}$	Soil	Canada	NR_103661	JN625957	KC773796	I
P. adametzioides	CBS 313.59 ^T	Soil	Japan	JN686433	JN799642	JN686387	I
P. alexiae	DTO $118H8^{T}$	Soil	Tunisia	KC790400	KC773778	KC773803	I
P. amaliae	$CV \ 1875 = CBS \ 134209^{T}$	Protea repens	South Africa	JX091443	JX091563	JX141557	I
P. angulare	$CBS 130293^{T}$	Polypore on dead conife	r USA	KC773828	KC773779	KC773804	I
P. arianeae	$DTO 20B8^{T}$	Soil	Netherlands	KC773833	KC773784	KC773811	I
P. austrosinicum	HMAS $248734^{T} = CGMCC 3.18410$	ni	ni	NR_153272	KX885041	KX885051	I
P. bilaiae	NRRL 3391^{T}	Soil	Ukraine	NR_111679	JN625966	JN626009	I
P. bilaiae	ITEM $18278 = CBS 145112$	Fruit of Vitis vinifera	Italy	MK039436	MK045334	MK045339	I
P. brocae	CBS 116113 ^T	Coffee berry	Mexico	NR_111868	KC773787	KC773814	ı
P. cainii	$DAOM 239914^{T}$	Nuts of Juglans nigra	Canada	NR_{120000}	JN686366	JN686389	I
P. choerospondiatis	HMAS $248813^{T} = CGMCC 3.18411$	ni	ni	NR_153274	KX885043	KX885053	ı
P. daejeonium	$CNU \ 100097 = KACC \ 46609^{T}$	Grape fruit	South Korea	JX436489	JX436493	JX436491	I
P. exsudans	HMAS $248735^{T} = CGMCC 3.18412$	ni	ni	NR_153273	KX885042	KX885052	ı
P. guanacastense	DAOM 239912 ^T	Gut of caterpillar	Costa Rica	NR_111673	JN625967	JN626010	

Table 2. (Continued).

M. Lorenzini et alii

Table 2. (Continued).

Charles	Stroin Houtification	Controo	1 مصانیب		GenBank	numbers	
operies	911 and 100 million 100 million	2001106	тосащу	ITS	β -tubulin	Calmodulin	rpb2
P. herquei	CBS 336.48 ^T	Leaf of Agauria pirifolia	France	JN626101	JN625970	JN626013	
P. hirayamae	CBS 229.60 ^T	Milled rice	Thailand	JN626095	JN625955	JN626003	
P. jacksonii	DAOM 239937 $^{\mathrm{T}}$	Forest soil	Australia	NR_111675	JN686368	JN686391	
P. johnkrugii	DAOM 239943 ^T	Forest soil	Malaysia	NR_111676	JN686378	JN686401	,
P. jugoslavicum	CBS 192.87 ^T	Seed of <i>Helianthus</i> annuus	Ex Yugoslavia	NR_120269	KC773789	KC773815	I
P. lilacinoechinulatum	CBS 454.93 ^T	Soil	Japan	KC773837	KC773790	KC773816	
P. malachiteum	CBS 647.95 ^T	Soil	Japan	NR_120271	KC773794	KC773820	,
P. mallochii	DAOM 239917 ^T	Caterpillar	Costa Rica	NR_111674	JN625973	JN626016	
P. maximae	NRRL 2060^{T}	Cellophane	USA	NR_121343	KC773795	KC773821	,
P. restingae	$MS-2014 = URM 7075^{T}$	Soil	ni	KF803354	KF803349	KF803352	,
P. sanshaense	HMAS $248820^{T} = CGMCC 3.18413$	ni	ni	NR_153276	KX885050	KX885060	
P. sclerotiorum	NRRL 2074^{T}	Air	Indonesia	JN626132	JN626001	JN626044	,
P. vanoranjei	$DTO 99H6^{T}$	Soil	Tunisia	KC695696	KC695686	KC695691	
P. verrucisporum	HMAS $248819^{T} = CGMCC 3.18415$	ni	ni	KX885069	KX885049	KX885059	,
P. viticola	$FKI-4410 = JCM \ 17636^{T}$	Grape	Japan	AB606414	AB540174	AB540173	
P. levitum	CBS 345.48 ^T (outgroup)	ni	ni	NR_111510	GU981654	KF296394	ı
* Strains studied in this p	aper are in bold type;						

5

- Sequences not used in this study;

 $^{\rm T}={\rm Ex}$ -type strain; ni = no information about the source and locality; na = not available

ATCC, American Type Culture Collection (Manassas, VA); CBS, Westerdkjik Fungal Biodiversity Institute (Utrecht, the Netherlands); DTO, Applied and Industrial Mycology Department Collection, Westerdkjik Fungal Biodiversity Institute (Utrecht, Netherlands); NRRL, Agriculture Research Service Culture Collection (Peoria, NY); UTHSCSA, University of Texas Health Science Center (San Antonio, TX); HKU, University of Hong Kong, (Hong Kong, China). ITEM, Agro-Food Microbial Culture Collection of Institute of Science and Food Production (ISPA) (Bari, Italy); JCM, Japan Collection of Microorganism (Saitama, Japan); CGMCC. Chinese General Microbiological Culture Collection Center (Beijing, China); URM, University Recife Mycology Culture Collection (Recife, Brazil); KACC, Korean Agricultural Culture Collection (Suwon, South Korea); CCT, Coleção de Cultura Tropical (Campinas, Brazil); DAOMC, Canadian Collection of Fungal Cultures (Ottawa, Canada); DAOM, Canadian National Mycological Herbarium (Ottawa, Canada). and Tracer v. 1.5.0 (Rambaut and Drummond, 2009) was used to confirm the convergence of chains. The phylograms obtained through the ML analyses were used for presenting the data. Phylograms were redrawn from the tree files using FigTree v1.4 2006-2012. Bootstrap values less than 70% and posterior probability (pp) values less than 0.95 were removed from the phylograms. All ambiguous positions were removed for each sequence pair. Evolutionary analyses were conducted in MEGA7. All isolates of Aspergillus and Penicillium (Pdb1, P3, Pls8, ASls13 and AS100) were inoculated onto Czapek yeast extract agar (CYA), yeast extract sucrose agar (YES), creatine sucrose agar (CREA) (Visagie et al. 2014) and malt extract agar (MEA, 2% w v⁻¹ malt extract, 0.1% w v¹ peptone, 2% w v¹ dextrose, 1.5% w v¹ agar) at 25°C in the darkness. The colony diameters (mm) were measured daily for 7 d (three replicate plates for each isolate) and the experiments were performed twice. The colony diameters were also measured on CYA at 15, 30 and 37°C. The cultural characteristics and micro-morphology of each strain was examined on CYA, YES and MEA after 7, 14 or 30 d at 25°C. Colony morphology was also examined on CREA after 7 d incubation.

Growth tests for the fungal isolates were carried out under acidic, neutral and alkaline conditions, as reported by Diao *et al.* (2018).

Preparations for microscopy were made from colonies grown on CYA, YES and MEA after 7, 14 or 30 d. Lactic acid (60% v v⁻¹) was used as mounting fluid and excess conidia were washed away with ethanol (70% v v⁻¹). ethanol. Characters were recorded and analyzed using stereomicroscopy (Leica EZ4D, Leica Microsystems). Measurements of fungal components were carried out using light microscopy (Leica DM750) equipped with camera module (Leica ICC50W). Lengths and widths were determined for 20 conidiophores, metulae and phialides, 50 conidia, 20 cleistothecia and 30 ascospores (when present) from each isolate.

The five isolates were tested for their ability to cause disease on grape berries (white fresh table and red withered wine grapes). The berries were surface sterilized by immersion for 5 min in 0.5% NaOCl solution, then rinsed twice with sterile distilled water and placed in compartmentalized square culture dishes. Suspensions of conidia were prepared, adjusted to 10⁴ conidia mL⁻¹ and then inoculated by berry piercing, as reported by Lorenzini and Zapparoli (2014). Mock inoculation (controls) consisted of berries wounded and inoculated with sterile water, and a positive control consisted of berries wounded and inoculated with *Botrytis cinerea* ITEM 17200. The experiment was performed twice, each with three replicates, which each consisted of 25 berries. After 7 and 14 d at 22°C, the disease index (DI) was assessed on a scale of 0 to 4, as previously described (Lorenzini and Zapparoli, 2014). Variance analysis (ANOVA) was used for the DI data to evaluate isolate differences in pathogenicity. Tukey's multiple comparison test (Tukey, HSD) was applied to determine statistically significant differences.

RESULTS

Phylogenetic analysis

Using the BLASTn tool in GenBank, the benA, CaM, ITS and rpb2 gene sequences of Pdb1 (ITEM 18277) showed 99% similarity to Penicillium sp. P3 (ITEM 18276^T) (Lorenzini et al. 2016) for benA, greater than 89% similarity to P. bissettii and P. annulatum for CaM, greater than 98% similarity to different Penicillium species (e.g. P. janthinellum, P. reticulisporum, P. ochrochloron, P. bissettii and P. javanicum) for ITS, and 95% similarity to Penicillium sp. for rpb2. The alignment results of the benA, CaM, ITS and rpb2 gene sequences of P3 were similar to those of Pdb1. Based on these data, the phylogenetic position of both isolates (Pdb1 and P3) was evaluated using members of Penicillium section Lanatadivaricata, according to Diao et al. (2018). The ML combined phylogenetic tree (benA+CaM+ITS+rpb2) with the greatest log likelihood (-21693.88) is shown in Figure 1a. The Pdb1 and P3 isolates were grouped together (BS/pp = 100/1), and were distantly related to *P. bissettii* DOAMC 167011 and P. vasconiae CBS 339.79. Data from phylogenetic analyses using benA, CaM, ITS and rpb2 individually (data not shown) were in concordance with those based on the combine dataset. However, analyses of the combined dataset provided greater support than the individual datasets. The molecular identification of all isolates recovered in this study is based, therefore, on phylogeny from the combined dataset of gene sequences.

The comparative analysis by GenBank database of *benA*, *CaM* and ITS gene sequences of isolate Pls8 (ITEM 18278) showed 99% similarity to different strains of *Penicillium bilaiae* (section *Sclerotiora*). The phylogenetic position of Pls8 was therefore evaluated using members of *Penicillium* section *Sclerotiora*, reported by Wang *et al.* (2017). The combined phylogenetic tree (*benA*+*CaM*+ITS) with the greatest log likelihood (-11066.6111) confirmed the identification (Figure 1b), as the Pls8 (ITEM 18278) was grouped with *P. bilaiae* NRRL3391 (BS/pp = 100/1).

Comparative analysis using GenBank of *benA*, *CaM* and ITS gene sequences of ASIs13 (ITEM 18279) showed 99% similarity to *A. melleus*, *A. pallidofulvus*, *A. sulphureus* and *A. petrakii* for *benA*, 99% similarity to *A.*

enicillium sanshaense HMAS 248820

Penicillium malachiteum CBS 647 95

Penicillium herquei CBS 336.48

Penicillium choerospondiatis HMAS 248813

Penicillium verrucisporum HMAS 248819

Penicillium bilaiae ITEM 18278

Penicillium bilaiae NRRL 3391

nicillium angulare CBS 130293

Penicillium lilacinoechinulatum CBS 454 93

Penicillium arianeae DTO 20B8

Penicillium alexiae DTO 118H8

Penicillium viticola FKI-4410

Penicillium brocae CBS 116113

Penicillium cainii DAOM 239914

Penicillium jacksonii DAOM 239937

Penicillium daejeonium CNU 100097

Penicillium guanacastense DAOM 239912

icillium sclerotiorum NRRL 2074

Penicillium johnkrugii DAOM 239943

enicillium mallochii DAOM 239917

um austrosinicum HMAS 248734

Penicillium exsudans HMAS 248735

Penicillium maximae NRRL 2060

Penicillium levitum CBS 345.48

Penicillium hirayamae CBS 229.60

Penicillium vanoranjei DTO 99H6

icillium adametzioides CBS 313 59

Penicillium jugoslavicum CBS 192.87

Penicillium restingae MS-2014

Penicillium adametzii CBS 209 28

nicillium amaliae CV 1875

Figure 1. Phylogenetic tree of combined sequences of *Penicillium* spp. (a) Maximum Likelihood combined (*benA+CaM+ITS+rpb2*) tree of *P. fructuariae-cellae* ITEM 18277 (Pdb1) and ITEM 18276^T (P3) and representative taxa of *Penicillium* section *Lanata-divaricata*. *Penicillium stolkiae* CBS 315.67, *P. oxalicum* CBS 219.30 and *P. glabrum* CBS 125543 are outgroups. (b) Maximum Likelihood combined (*benA+CaM+ITS+rpb2*) tree of *P. bilaiae* ITEM 18278 (Pls8) and representative taxa of *Penicillium* section *Sclerotiora*. *Penicillium levitum* CBS 345.48 is outgroup. The BI posterior probabilities values and bootstrap percentages of the ML analysis are indicated above the nodes (BS/pp). Values less than 70% bootstrap support in the ML analysis and less than 0.95 posterior probability in the Bayesian analysis are indicated with a hyphen. Branches with high support are thickened.

0.02

pallidofulvus and different strains of *Aspergillus* sp. for *CaM*, and 99% similarity to different *Aspergillus* species (e.g. *A. ochraceus*, *A. melleus* and *A. pallidofulvus*) for ITS. Based on these results, the phylogenetic analysis was performed using the *Aspergillus* taxa of section *Circumdati*, according to Siqueira *et al.* (2017). The ML combined phylogenetic tree (*benA*+*CaM*+ITS) with the greatest log likelihood (-3612.040) showed that ASIs13 strongly belongs to *A. pallidofulvus*, as it grouped with the relevant strain, NRRL4789 (BS/pp = 100/1) (Figure 2a).

0.02

Figure 2. Phylogenetic tree of combined *benA*, *CaM* and ITS sequences of *Aspergillus* spp. (a) Maximum Likelihood tree of *Aspergillus pallidofulvus* ITEM 18279 (ASIs13) and representative taxa of *Aspergillus* section *Circumdati*. *Aspergillus robustus* NRRL 6362 and *A. tanneri* NRRL 62425 are outgroups. (b) Maximum Likelihood tree of *A. puulaauensis* ITEM 18280 (AS100) and representative taxa of *Aspergillus* species belonging to *A. versicolor* clade. *Aspergillus subversicolores* NRRL 58999 and *A. multicolor* NRRL 4775 are outgroups. The BI posterior probabilities values and bootstrap percentages of the ML analysis are indicated above the nodes (BS/pp). Values less than 70% bootstrap support in the ML analysis are indicated with a hyphen. Branches with high support are thickened.

The GenBank comparative analysis of *benA*, *CaM* and ITS sequences of AS100 (ITEM 18280) showed 99% similarity to *A. puulaauensis*, *A. versicolor* and *A. jensenii* for *benA*, and 99% similarity to different species of *Aspergillus* (e.g. *A. puulaauensis*, *A. cvjet-kovicii*, *A. tennesseensis*, *A. versicolor*, *A. jensenii* and *A. creber*) for *CaM* and ITS. In the ML combined tree (*benA*+*CaM*+ITS) with the greatest log likelihood (-3938.2941), the clustering of AS100 with *A. puulauensis* NRRL35641 was highly supported (BS/pp = 78/1), as

Figure 3. Macro-morphology of *Penicillium fructuariae-cellae* on culture media. Colony upper surfaces (top row) of ITEM 18277 (isolate Pdb1, left) and ITEM 18276^T (isolate P3, right), and reverse sides (bottom row) on CYA (a), YES (d), MEA (g) and CREA (j). Colony texture of ITEM 18277 (Pdb1) (b, e, h, k) and ITEM 18276^T (P3) (c, f, i, l) on, respectively, CYA, YES, MEA or CREA.

	Media	<i>P. fructuariae-cellae</i> ITEM 18276 ^T (P3)	<i>P. fructuariae-cellae</i> ITEM 18277 (Pdb1)	P. bilaiae ITEM 18278 (Pls8)	A. pallidofulvus ITEM 18279 (ASls13)	A. puulaauensis ITEM 18280 (AS100)
Cleistothecia*	CYA	$121-221 \times 80-194$	$74-120 \times 67-100$	-	-	-
	YES	$88-192 \times 88-178$	$126-277 \times 120-231$	-	-	-
	MEA	$124-191 \times 77-133$	$35-87 \times 25-56$	-	-	-
Ascospore	CYA	2.5-4.5	2.5-4	-	-	-
Conidiophores/Stipes	CYA	$56-200 \times 2-3$	55-313 × 2-3.5	$34-110 \times 2-3.5$	$155-760 \times 4.5-10$	$115-360 \times 4.5-7.5$
	YES	$137-413 \times 2.5-4$	$68-227 \times 2.5-5$	$26-97 \times 2-3.5$	$288-630 \times 4.5-10.5$	$168-325 \times 3.5-9.5$
	MEA	$92-129 \times 2.5-3.5^{\circ}$	$86-120 \times 2-3^{\circ}$	$31-123 \times 2-3.5$	$200-890 \times 5-9$	$190\text{-}810\times4\text{-}7$
Vescicles	CYA	-	-	3.5-5	12-30	11-19.5
	YES	-	-	2.5-4.5	20-51	15-22
	MEA	-	-	3-4	13-31	9-19
Metulae/Branches	CYA	9-16 × 2-3 (2-4)	10-47 × 2-3.5 (2-4)	-	$5.5-8 \times 2.5-4.5$	$4.5-6.5 \times 2-3$
	YES	13-24 × 2 -4 (2-3)	8.5-18 × 2-4.5 (2-4)	-	6-12 × 3-6	$3.5-7 \times 2.5-4$
	MEA	12-19 × 2.5-4 (2-4) **	10-26 × 2-4 (2-3) **	-	$7.5-10 \times 3-6$	$4-8 \times 2-3.5$
Phialides	CYA	3.5-8 × 2-3 (2-10)	4.5-10 × 2-3 (3-10)	6-9 × 2.5-3.5 (3-8)	$5-8 \times 2-3.5$	$4.5-7.5 \times 2-3.5$
	YES	7.5-15 × 2-4 (2-7)	5.5-11 × 2-3.5 (3-9)	5-10 × 2-3 (2-6)	$6-9 \times 2.5-4$	$4-7 \times 2-3.5$
	MEA	6-9.5 × 2-3 (3-5) **	5-9.5 × 2-3.5 (3-5) **	4.5-8.5 × 2-3.5 (2-4)	$6.5-8 \times 2.5-4$	$4.5-7 \times 2-3.5$
Conidia	CYA	2-3.5	2-3.5	2-3.5	2.5-4	2-3.5
	YES	2-4	2-3	2-3	2-3.5	2-3.5
	MEA	2-3.5 **	2-3.5 **	2-3.5	2.5-4.5	2-3.5

Table 3. Micromorphological characteristics of *Penicillium* and *Aspergillus* isolates after 7 d growth on different agar media. All dimensions are in µm. Numbers of metulae or phialides are indicated in parentheses.

- = structures absent; § n < 4; * measurements based on 14 d old cultures; ** measurements based on 30 d old cultures.

shown in Figure 2b. Phylogenetic analysis based on the ITS dataset placed AS100 in a group containing most of the *Aspergillus* taxa of the *A. versicolor* clade (data not shown).

Culture and morphological characteristics

Penicillium isolates Pdb1 (ITEM 18277) and P3 (ITEM 18276^T) had similar colony morphology on the different media (Figure 3). On CYA, colonies were compact, velvety, with entire margins, and were white; initially yellowish (for Pdb1) or cream (for P3) then becoming gray-green due to abundant sporulation. Spherical or suboval cleistothecia were observed, often covered with a network of hyphae. The cleistothecia matured after three or more weeks, containing evanescent asci and hyaline ascospores, which were smooth-walled and globose to subglobose (Table 3). The colonies were surrounded by diffused soluble pigment in the agar developing as a red-brown colony halos. Hyaline exudates were also observed. Reverse sides of the colonies were light brown and pale cream shades (Figures 3a, b and c).

The growth test revealed little variability among the isolates. The colony diameters at 25°C were 36 to 41 mm

for isolate Pdb1 and 43 to 48 mm for P3, at 15°C were 16 to 20 mm for Pdb1 and 17 to 20 mm for P3 mm, and at 30°C were 46 to 49 mm for Pdb1 and 47 to 49 mm for P3. The colony diameters at 37°C were 8 to 10 mm for Pdb1 and 10 to 13 mm for P3. On YES, the colonies were moderately deep and radially sulcate, with regular margins. The mycelium was white and pale yellow in the centre for Pdb1, or white and greenish to grayish in the centre for P3. Sporulation was moderate and pale yellow for Pdb1 and pale gray-green for P3. The cleistothecia were spherical or suboval. The colonies were surrounded by diffused soluble pigment in the agar, as a faint yellow zones surrounded by faint purpuric-brown halos. The colony textures were pubescent and exudates were not observed. The reverse sides of the colonies were orange to brown in colour (Figures 3b, e and f). The colony diameters were 43 to 50 mm for isolate Pdb1 and 42 to 46 mm for P3. On MEA, the colonies were compact, velvety, sometimes radially wrinkled, with entire and plane margins. The mycelia were whitish and non-sporulating mycelium. The cleistothecia were spherical or suboval, and hyaline exudates sometimes were observed. The reverse sides of colonies were yellow and white for Pdb1 and white to pale cream for P3 (Figures 3g, h and i). The colony diameters were 38 to 40 mm for isolate Pdb1 and

Figure 4. Micro-morphology of *Penicillium fructuariae-cellae* on CYA. Cleistothecia (a and b), ascospores (c and d), conidiophores (e to h), and conidia (i and j) of, respectively, ITEM 18277 (isolate Pdb1, top row) and ITEM 18276^T (isolate P3, bottom row). Bars = 50 μ m (a and b), or 10 μ m (c to j).

43 to 45 mm for P3. The colony diameters at 25°C after 7 d on PDA pH 4 were 37 to 40 mm for Pdb1 and 39 to 41 for P3, on ¼ strength PDA pH 7 were 35 to 38 mm for Pdb1 and 38 to 42 mm for P3, and on Horikoshi agar pH 10 were 29 to 30 mm for Pdb1 and 32 to 33 mm for P3. On CREA, the isolates grew well and produced acid (Figures 3j, k, l). On CYA and YES, conidiophores were monoverticillate or biverticillate, and a minor proportion were divaricate. Metulae were oblong and divergent, phialides were ampuliform, and conidia were smooth walled and globose to subglobose (Figure 4; Table 3). On MEA, conidiophores were rarely observed.

On CYA, colonies of P. bilaiae Pls8 were convex, with concentric folds, conidia were abundantly produced, and aerial mycelium was lanose and floccose and grey-green to white. The colony margins were margin entire and white and sporulation was heavy. Exudates were dark, superficial or embedded, and the colonies were surrounded by diffused soluble pigment into agar as faint purpuric-brown halos. The colony reverse sides were orange-yellow. On YES, colonies were heavily wrinkled, white and pubescent at the margins, green-gray in colour, and felty in the centres. The colonies sporulated heavily. The margins entire and exudates were not observed. The colonies were surrounded by soluble pigment diffused into the agar as faint yellow zones surrounded by faint purpuric-brown halos. The colony reverse sides were orange to brown. On MEA, the colonies were velutinous, floccose and raised in the centre, with villose white aerial mycelium and entire margins which were entire, low, plane and white. The colonies were; sporulating heavily, without exudates, and were surrounded by diffused soluble pigment into the agar as faint yellow zones. The reverse sides of the colonies were yellow to pale orange. Colony diameters were 22 to 26 mm on CYA, 20 to 22 mm on YES and 16 to 20 mm on MEA. On CREA, the fungal growth was weak with good acid production. On CYA, YES, and MEA the conidiophores were monoverticillate, the stipes were smooth walled and mostly globose vesiculate or subglobose to ellipsoidal. The phialides were ampulliforms and wide at the bases. Conidia were globose to subglobose (Table 3).

On CYA, colonies of A. pallidofulvus ASIs13 was velutinous, the mycelium was white, and sporulation was pale yellow to cream, without exudates. Reverse sides of colonies were light brown to brown. On YES, the colonies were moderately powdery to velutinous, the mycelium was white without exudates, and sporulation was light yellow Colony reverse sides were pale brown to yellow. On MEA, the colonies were velutinous, felty and floccose and the mycelium was white with light yellow sporulation, without exudates. Colony reverse sides were cream to pale brown. Colony diameters were 56 to 60 mm on CYA, 70 to 75 mm on YES and 55 to 61 mm on MEA. On CREA, growth was weak with no acid production. On CYA, YES and MEA, the conidiophores were biseriate, stipes were hyaline to pale brown, vesicles were globose, metulae were oblong covering entire vesicles, and phialides were ampulliform. Conidia were globose, subglobose to ovoid and smooth (Table 3).

0	T 1 (1) ()	Disease index (%) on grape berries
Species	Isolate designation	White fresh table	Red withered wine
Penicillium fructuariae-cellae	Р3	24 ± 0 a	44 ± 1 a
Penicillium fructuariae-cellae	Pdb1	$23 \pm 1 a^{1}$	44 ± 1 a
Penicillium bilaiae	Pls8	24 ± 2 a	44 ± 2 a
Aspergillus pallidofulvus	ASIs13	22 ± 1 a	47 ± 2 a
Aspergillus puulaauensis	AS100	23 ± 1 a	43 ± 1 a
Botrytis cinerea	ITEM 17200	100 ± 0 b	98 ± 1 b

Table 4. Disease index (%) on grape berries after 14 d, for three isolates of *Penicillium* (P3, Pb1b and Pls8) and two of *Aspergillus* (ASIs13 and AS100), all recovered from withered grapes, and for *B. cinerea* ITEM 17200 as positive control.

¹Values (mean of three independent measurements \pm standard deviation) with different letters are significantly different (ANOVA, Tukey HSD, P < 0.05)

On CYA, colonies of A. puulaauensis AS100 was sulcate and raised in the centre. Sporulation green to gray. Colony margins were regular, plane and white without exudates. Colony reverse sides were yellow to light orange. On YES, colonies were moderately powdery to felty, sulcate, raised in the centre, and white with green to grey and light pink shadows. Sporulation was green to gray. Colony margins were regular and no exudates were produced. Colony reverse sides were yellow to light brown. On MEA, colonies were sulcate, and raised in the centre. Mycelium was white and sporulation was light yellow. Colony margins were regular, plane and white, without exudates. Colony reverse sides were yellow to light orange. The colony diameters were 18 to 22 mm on CYA, 24 to 25 mm on YES and 18 to 20 mm on MEA. On CREA, growth was moderate growth without acid production. On CYA, YES and MEA, the conidiophores were biseriate, and stipes were smooth, and hyaline to light yellow. Vesicles were spatulate or subspherical, and metulae were oblong covering entire vesicles. Phialides were oblong from which globose or subglobose conidia developed (Table 3).

Pathogenicity assay

All *Penicillium* and *Aspergillus* isolates obtained in this study displayed ability to infect grape berries, although infection was much less than for *B. cinerea* (Table 4). Wounded inoculated berries initially showed mycelium around the inoculation sites and subsequently necrotic areas became visible, particularly in white fresh table berries. Red withered berries inoculated by *Penicillium* isolates Pdb1, P3 and Pls8 caused typical symptoms of *Penicillium* infection characterized by tufts of white and green mycelium erupting from the berry skins (Figure 5). Abundant sporulation was observed on berries infected by *A. pallidofulvus* isolate ASIs13. The pathogens were re-isolated from inoculated berries, fulfilling Koch's postulates.

Taxonomy

The phylogenetic analysis based on four different loci and the morphological analysis showed that two isolates of *Penicillium* (Pdb1 and P3) recovered from withered grapes were distinct from any known species within the *Penicillium* section *Lanata-divaricata*. Therefore, these isolates are here described as members of a new *Penicillium* species.

Figure 5. Details of the pathogenicity assay of ITEM 18277 (isolate Pdb1) (a and c) and ITEM 18276^{T} (isolate P3) (b and d) on white fresh table grapes (left) and red withered wine grapes (right).

Penicillium fructuariae-cellae Lorenzini, Zapparoli & Perrone **sp. nov.**

MycoBank: MB 831228 - Figures 3 and 4

In: subgenus *Aspergilloides*, section *Lanata–divaricata*. ITS barcode: MK039434. Alternative markers: *benA* =KU554679; *CaM* = MK045337; *rpb2* = MK520927.

Etymology. Latin, *fructuariae-cellae*, meaning fruitdrying room for grape withering, the place where two representative strains were isolated.

Type specimen. ITALY, Verona, Marano di Valpolicella, on Corvina withered grapes stored in fruit-drying room, Dec. 2013, *coll.* M. Lorenzini and G. Zapparoli, *isol.* M. Lorenzini and G. Zapparoli, P3 (holotype CBS 145110^T; ex-type strain ITEM 18276^T).

Colony morphology. Colony diameters (mm), 7 d: CYA 43-48; YES 42-46; MEA 43-45; CREA 35-37; CYA 15°C 17-20; CYA 30°C 47-49; CYA 37°C 10-13.

Colonies on CYA after 7 d at 25°C were compact, velvety; margins entire and white; sporulation abundant, conidia en masse pale gray-green; cleistothecia spherical or suboval covered with networks of hyphae; asci evanescent, ascospores hyaline, smooth-walled, globose to subglobose; soluble red-brown pigments and hyaline exudates produced; colony reverse sides pale brown and pale cream. Colonies on YES after 7 d at 25°C were moderately deep, radially sulcate, with regular margins; mycelia white and green to gray; sporulation moderate, conidia en masse pale gray-green; cleistothecia observed; soluble yellow and faint purpuric-brown pigments produced from colonies; exudates absent; colony reverse sides orange to brown. Colonies on MEA after 7 d at 25°C were compact, sometimes radially wrinkled, with entire and plain margins with velvety texture; mycelia white; sporulation poor; cleistothecia observed; hyaline exudates sometimes observed; colony reverse sides white yellow-pale cream. Colonies grew well on CREA after 7 d at 25°C, with good acid production.

Conidiophores (on CYA) monoverticillate, biverticillate, with a minor proportion divaricate; stipes smooth, 55–313 × 2–3.5 µm, metulae divergent, 2–4 per stipe or branch, 9–47 × 2–3.5 µm; phialides ampulliform, 2–10 per metula, $3.5-10 \times 2-3$ µm; conidia smooth walled, globose to subglobose, 2–3.5 µm (mean = 2.5 µm ± 0.4 µm n = 50); cleistothecia covered with a network of hyphae, 74–221 × 67–194 µm (n = 20); asci evanescent; ascospores hyaline, smooth–walled, globose to subglobose 2.5–4.5 µm (mean = 3.0 µm ± 0.4 µm, n = 30).

Other strains examined. ITALY, Verona, Montecchia di Crosara, Garganega withered grapes stored in a fruit-drying room, Nov. 2017, *coll.* M. Lorenzini and G. Zapparoli, *isol.* M. Lorenzini and G. Zapparoli, Pdb1, ITEM 18277 = CBS 145111, ITS barcode: MK039435. Alternative markers: benA = MK045333; CaM = MK045338; rpb2 = MK520928.

Notes. Penicillium fructuariae-cellae is classified in section Lanata-divaricata, and is distantly related to other *Penicillium* species. The multi-locus phylogeny placed it closed to P. bissettii KAS1951 and P. vasconiae CBS 339.79 (Figure 1a). Penicillium fructuariae-cellae produces red-brown pigments in CYA compared with P. bissettii and P. vasconiae that do not produce pigments. Penicillium fructuariae-cellae mainly differs from P. vasconiae and P. bissettii in conidiophore structure and size as it has longer conidiophores than P. vasconiae, and shorter conidiophores than P. bissetti. Penicillium fructuariae-cellae also differs from P. bissettii by having smooth stipes. Penicillium fructuariae-cellae differs from P. vasconiae in phialide shape (P. vasconiae has long tapped neck phialides) and having smooth and small conidia.

DISCUSSION

Phylogenetic analysis and morphological observations of the isolates recovered in this study from withered grapes compile the first report of *P. bilaiae*, *A. pallidofulvus* and *A. puulaauensis* from *Vitis vinifera*.

The species identification of Pls8 (ITEM 18278) as P. bilaiae was taxonomically clear due to its congruence with phylogenetic and morphological data from the P. bilaiae holotype NRRL 3391. However, isolate Pls8 showed slower growth in agar media and some micro-morphological differences (i.e. longer stipes, wider and more numerous phialides) than holotype PB-50 described by Pitt (1979) and Savard et al. (1994). Prior to the present study, P. bilaiae was detected in Portuguese grapes through morphological observations (Serra et al., 2005), a method that does not provide sufficient data for reliable identification at the species level. Penicillium bilaiae is morphologically similar to both P. alexiae and P. adametzioides (Visagie et al., 2013). Hence, the present study provides the first taxonomic evidence of the occurrence of P. bilaiae on Vitis vinifera.

The assignment of isolate ASIs13 (ITEM 18279) to *A. pallidofulvus* was confirmed by its genealogy and macromorphology, according to the description of the holotype *A. pallidofulvus* NRRL 4749 (Visagie *et al.*, 2014). However, micro-morphological observations of ASIs13 showed differences in the size of its stipes and phialides (respectively smaller and shorter for ASIs13 than the holotype), and with no production of sclerotia by ASIs13, in contrast with the *A. pallidofulvus* holotype. This species, recently introduced into section *Circumdati*, has also been isolated from green coffee beans in India and clinical samples (Visagie *et al.* 2014; Masih *et al.*, 2016). The recovery of this species from grapes and the results of pathogenicity assays show that *A. pallidofulvus* may exhibit pathogenic behaviour in grapevine. Nevertheless, further investigation is required to determine occurrence for this fungus on withered grapes and its infectivity under post-harvest environmental conditions.

The use of multi-locus phylogenetic analysis (CaM, benA and ITS) resolved the taxonomic position of isolate AS100 (ITEM 18280), identifying it as A. puulaauensis. Assignment of the isolate to this species has previously proved impossible using only the CaM gene sequence (Lorenzini et al., 2016). Moreover, AS100 and the holotype A. puulaauensis NRRL 35641 (Jurjevic et al., 2012) both showed identical colony macro- and micro-morphological characters. The recovery of A. puulaauensis from grape berries further supports its worldwide and cosmopolitan distribution, since this species has previously been reported from disparate environments including Hawaiian plants, Atlantic sponges, Italian cheese, air samples in North America and clinical samples (Jurjevic et al., 2012; Siqueira et al., 2017; Bovio et al., 2018; Decontardi et al., 2018).

Based on multi-locus phylogenetic analyses, isolates Pdb1 (ITEM 18277) and P3 (ITEM 18276^T) represented a distinct species, herein named P. fructuariae-cellae. These two isolates form a phylogenetic cluster based on benA+CaM+ITS+rpb2 combined gene genealogies, distinct from any currently described species in section Lanata-divaricata, which was recently updated with 13 new Penicillium species collected from Chinese acidic soils (Diao et al., 2018). Penicillium fructuariae-cellae is acid-preferential, like most of the new species described by Diao et al. (2018). This is a physiological characteristic congruent with the acidic habitat (grapes) from which it was isolated. Isolates of P3 and Pdb1 are distantly related to P. vasconiae CBS 339.79 (Ramírez and Martínez, 1980) and the recently described species P. bissettii (Visagie et al., 2016). Moreover, P. fructuariaecellae displays some differences in macro-morphological characteristics (e.g. colony colour, texture and pigment production) compared with related species. The pigment production by these two isolates distinguishes them from P. vasconiae and P. bissettii that produce no pigments. Penicillium fructuariae-cellae produces monoverticillate, sometimes biverticillate conidiophores, whereas P. vasconiae is strictly monoverticillate and P. bissettii is biverticillate/terverticillate. The conidiophores of P. fructuariae-cellae are longer than those of P. vasconiae (< 50 µm; Ramírez and Martínez, 1980) and shorter than conidiophores of *P. bissettii* (190–670 μ m; Visagie *et al.*, 2016). Its stipes are smooth, while in *P. bissettii* they are rough. Its phialides are also shorter than those of *P. vasconiae* (9–13 μ m; Ramírez and Martínez, 1980). As well, of *P. fructuariae-cellae* produced smaller conidia than *P. vasconiae* (4–4.5 μ m; Ramírez and Martínez, 1980). The conidial surfaces of *P. fructuariae-cellae* were smooth, while those of *P. vasconiae* are conspicuously echinulate (Ramírez and Martínez, 1980). These morphological differences together with phylogenetic information, support the uniqueness of *P. fructuariae-cellae*.

Based on the results of pathogenicity assays, the detrimental effects of these fungi on withered grapes was quite significant. Although these *Penicillium* and *Aspergillus* isolates were less pathogenic than *B. cinerea*, they could make major contributions to berry rotting. Decay of berry surfaces, like that observed on infected berries caused by each isolate due to mycelial growth and necrosis, is important for susceptibility to subsequent fungal infections by the same and other pathogens (Padgett and Morrison, 1990). Incidence and symptoms of grape diseases caused by these fungi under fruit-drying room conditions require further investigation.

In conclusion, this study describes isolates belonging to species of Penicillium and Aspergillus from withered grape berries that have not been previously reported from V. vinifera. A new species of Penicillium from this host, P. fructuariae-cellae, is herein described. The recovery of these species highlights the complexity of fungal species affecting withered grapes (Lorenzini et al., 2016; 2018). According to pathogenicity assays, P. fructuariae-cellae, P. bilaiae, A. pallidofulvus and A. puu*laauensis* are able to infect grapes but with much lower infectivity than B. cinerea, which is the most important pathogen occurring on withered grapes. It is likely that the species identified in this study are less pathogenic than other Penicillium and Aspergillus species frequently reported on withered grapes (e.g. P. expansum, P. crustosum, A. tubingensis and A. uvarum) (Lorenzini et al., 2016). Further investigations are necessary to ascertain the pathogenic role of P. fructuariae-cellae, P. bilaiae, A. pallidofulvus and A. puulaauensis under withering conditions, as well as their interaction with other causal fungal agents causing rots of grape berries.

LITERATURE CITED

Bovio E., Garzoli L., Poli A., Prigione V., Firsova D., ... Varese G.C., 2018. The culturable mycobiota associated with three Atlantic sponges, including two new species: *Thelebolus balausformis* and *T. spongiae. Fungal Systematics and Evolution* 1: 141–167.

- Decontardi S., Soares C., Lima N., Battilani P., 2018. Polyphasic identification of Penicillia and Aspergilli isolated from Italian grana cheese. *Food Microbiology* 73: 137–149.
- Diao Y-Z., Chen Q., Jiang X.-Z., Houbraken J., Barbosa R.N., ... Wu W.-P., 2018. *Penicillium* section *Lanatadivaricata* from acidic soil. *Cladistics*, 0: 1–36.
- Drummond A.J., Rambaut A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology*, 7: 214.
- Glass N.L., Donaldson G.C., 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology*, 61: 1323–1330.
- Hong S.B., Cho H.S., Shin H.D., Frisvad J.C., Samson R.A., 2006. Novel Neosartorya species isolated from soil in Korea. International Journal of Systematics and Evolutionary Microbiology 56: 477–486.
- Jurjevic Z., Peterson S.W., Horn B.W., 2012. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. *IMA Fungus* 3: 59–79.
- Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33: 1870–1874.
- Liu Y., Whelen S., Hall B.D., 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution* 16: 1799–1808.
- Lorenzini M., Zapparoli G., 2014. Characterization and pathogenicity of *Alternaria* spp. strains associated with grape bunch rot during post-harvest withering. *International Journal of Food Microbiology* 186: 1–5.
- Lorenzini M., Cappello M.S., Logrieco A., Zapparoli G., 2016. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes. *International Journal of Food Microbiology* 238: 56–62.
- Lorenzini M., Simonato B., Favati F., Bernardi P., Sbarbati A., Zapparoli G., 2018. Filamentous fungi associated with natural infection of noble rot on withered grapes. *International Journal of Food Microbiology* 272: 83–86.
- Masih A, Singh P.K., Kathuria S., Agarwal K., Meis J.F., Chowdhary A., 2016. Identification by molecular methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare *Aspergillus* species in a referral chest hospital in Delhi, India. *Journal of Clinical Microbiology* 54: 2354-2364.

- Mencarelli F., Tonutti P., 2013. Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification. John Wiley & Sons, Ltd, Chichester, UK.
- Padgett M., Morrison J.C., 1990. Changes in grape berry exudates during fruit development and their effect on mycelial growth of *Botrytis cinerea*. *Journal of the American Society for Horticultural Science* 115: 269–273.
- Pitt J.I., 1979. *The genus* Penicillium *and its teleomorphic states* Eupenicillium *and* Talalvmyces. London, Academic Press, UK.
- Rambaut A., Drummond A.J., 2009. Tracer v. 1.5. Available from: http://tree.bio.ed.ac.uk/software/tracer/.
- Ramìrez C., Martìnez A.T., 1980. Some new species of *Penicillium* recovered from the atmosphere in Madrid and from other substrata. *Mycopathologia* 72: 181–191.
- Savard M.E., Miller J.D., Blais L.A., Seifert K.A., Samson R.A., 1994. Secondary metabolites of *Penicillium bilaii* strain PB-50. *Mycopathologia* 127: 19–27.
- Serra R., Braga A., Venâncio A., 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. *Research in Microbiology* 156: 515–521.
- Siqueira J.P.Z., Sutton D.A., Gené J., García D., Wiederhold, N., ... Guarro J., 2017. Multilocus phylogeny and antifungal susceptibility of *Aspergillus* section *Circumdati* from clinical samples and description of *A. pseudosclerotiorum* sp. nov. *Journal of Clinical Microbiology* 55: 947–958.
- Somma S., Perrone G., Logrieco A., 2012. Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits. *Phytopathologia Mediterranea* 51: 131–147.
- Stefanini I., Carlin S., Tocci N., Albanese D., Donati C., ... Cavalieri D., 2017. Core microbiota and metabolome of *Vitis vinifera* L. cv. Corvina grapes and musts. *Frontiers in Microbiology* 8: 457.
- Torelli E., Firrao G., Locci R., Gobbi E., 2006. Ochratoxin A-producing strains of *Penicillium* spp. isolated from grapes used for the production of "passito" wines. *International Journal of Food Microbiology* 106: 307–312.
- Visagie C.M., Houbraken J., Rodriques C., Silva Pereira C., Dijksterhuis J., ... Samson R.A., 2013. Five new *Penicillium* species in section *Sclerotiora*: a tribute to the Dutch Royal family. *Persoonia* 31, 42–62.
- Visagie C.M., Varga J., Houbraken J., Meijer M., Kocsube S., ... Samson S.A., 2014. Ochratoxin production and taxonomy of the yellow aspergilli (*Aspergillus* section *Circumdati*). Studies in Mycology 78: 1–61.
- Visagie C.M., Renaud J.B., Burgess K.M.N., Malloch D.W., Clark D., ... Seifert K.A., 2016. Fifteen new species of *Penicillium*. *Persoonia* 36: 247–280.

- Wang X.C., Chen K., Zeng Z.Q., Zhuang W.Y., 2017. Phylogeny and morphological analyses of *Penicillium* section *Sclerotiora* (Fungi) lead to the discovery of five new species. *Scientific Reports* 7: 8233.
- White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR Protocols: a Guide to Methods and Applications* (M.A. Innis, D.H. Gelfand,

J.J. Sninsky and T.J. White eds.), Academic Press San Diego, CA, USA, 315–322.

Zapparoli G., Lorenzini M., Tosi E., Azzolini M., Slaghenaufi D., ... Simonato B., 2018. Changes in chemical and sensory properties of Amarone wine produced by *Penicillium* infected grapes. *Food Chemistry* 263: 42–50.