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1 Introduction

Time-frequency representations play a central role in the analysis, synthesis, coding
and processing of sound signals. In this context, the most commonly used representation
is the Phase Vocoder [Dol86], which derives from sampling the Short-Time Fourier
Transform (STFT), usually at uniformly spaced time and frequency sampling points in
the time-frequency plane. This results in a covering or tessellation of the time-frequency
plane with atoms or logons of equal duration and uniform nominal bandwidth. However,
non-uniform resolution is desirable in several applications. For example, the analysis
and synthesis frequency bands can be adapted to a perceptual scale, achieving clear
advantages in synthesis and coding due to the direct psycho-acoustic relevance of each
component. In synthesis-by-analysis schemes, the frequency bands can be adapted to
characteristics of the signal suggested, for example, by the frequencies of the partials of
the tones, which in many instruments, such as the piano in the low register or percussions,
are not harmonically related. Another example is the representation of transient and
stationary parts of sounds: close to the wideband onsets of sounds one definitely desires
to allocate finer time resolution while in stationary segments, where the innovation rate
of the signal is low, one would like to allocate coarser time resolution at the advantage
of a finer frequency resolution, e.g., to be able to precisely track vibrato or glissando.

It is rather easy to construct non-uniform time windows that overlap-add to 1.
For example, in the case of the half-length overlapping windows in Fig. 1, one can
symmetrically alter the two overlapping segments of the windows so that these continue
to overlap-add to 1, leading to windows with asymmetrical trailing and leading portions,
as shown in Fig. 2. The necessary alteration is easily achieved by proportionally
stretching or shrinking the overlapping segments. Equivalently, the time axis or, rather,
its significance with respect to the signal and windows, can always be remapped by
means of a one-to-one map, rescheduling time instants to other time instants in a process
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Fig. 1: Uniform time windows overlapping-add to 1.

known as time warping. In the previous example, this results in a piecewise linear time
warping characteristic shown in Fig. 3. In general, the time warping map can be any
increasing function of the real axis. Time adaptation can be driven by transient detection
and can be smoothly performed according to a prescribed curve.

Similarly, non-uniform frequency bands can always be thought of as obtained from
uniform bands through a frequency map, i.e. a monotonically increasing function
remapping the frequency axis, as shown in Fig. 4. In certain cases, e.g. critical bands,
the frequency map is given by experimentally fitted curves. In other cases, such as in
the vibration of stiff strings or bars, the frequency map is derived from wave dispersion
characteristics. Just like light travels with frequency dependent velocity in certain media,
so does mechanical displacement propagate in thick strings or rods. Often the map is
only specified at a finite number of points; a continuous curve can always be obtained
by interpolation of the fitting points in an arbitrary fashion; therefore, the map can be
assumed to be smooth. The application of a frequency map is known in filter design as
frequency warping.

The process of adapting time and frequency resolutions of the analysis-synthesis
scheme of the Vocoder can be thought of as a deformation of the time-frequency
plane according to signal and/or perception. The atoms of the resulting time-frequency
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Fig. 2: Example of non-uniform time windows overlapping-add to 1.

representation differ in (essential) duration and bandwidth. Since time and frequency
are not independent variables, care must be taken in that frequency warping also affects
time just as time warping also affects frequency.

Moreover, especially in sound processing and transformation applications, one
usually requires perfect reconstruction. However, if one operates with bounded and
invertible deformations of the time-frequency plane, variable time-frequency atoms can
be obtained from uniform atoms completely representing the signal, which automatically
provide perfect reconstruction.

In this paper, based on recently developed results [Vel+11; EC07; EDM12], we
address the problem of building perfect reconstruction structures for the time-frequency
representation of signals that allow for arbitrary selection of bands specified according
to a frequency map. Mathematically this amounts to constructing flexible frames that
allow for parametric selection of the frequency bands of their atoms. Frames are sets
of functions that completely specify any signal. They are overcomplete, just like using
three or more coordinates to represent a 2D vector (but notice that the space of signals
has infinite dimensions).

The paper is organized as follows. In this section we continue by reviewing the STFT
and its sampling, illustrating the basics of Gabor and warped Gabor frames and their
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Fig. 3: Piecewise linear time warping map.

associated dual frames to be employed in the reconstruction of the signal. In Section
2 we introduce the new concept of nonuniform Gabor frames and their dual frames
designed by means of frequency warping. In Section 3 we illustrate some applications
of the methods and in Section 4 we draw our conclusions.

1.1 The Three Souls of the Short-Time Fourier Transform

One way to characterize a sound signal in time-frequency is to take short and
possibly overlapping time segments of the signal and analyze them in frequency. The
Short-Time Fourier Transform (STFT) is obtained by sliding in time a window over the
signal and by taking the Fourier transform of each windowed portion of the signal. In
general, the window does not need to have finite duration and could be any function
with a certain time decay. For a continuous-time signal s and a real window g the STFT
takes on the form of the following integral:

S
g

(⌧, ⌫) = [Q
g

s] (⌧, ⌫) =

Z
s(t)g(t� ⌧)e�j2⇡⌫(t�⌧)dt, (1)

where j =

p�1 is the imaginary symbol. The STFT operator Q
g

brings the time
signal s to its description S

g

in a time-frequency plane, where ⌧ represents time and
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Fig. 4: Example of frequency warping map, mapping uniform bands (ordinate) into
nonuniform bands (abscissa).

⌫ frequency. With respect to the classical definition, in (1) we have introduced the
irrelevant but useful phase factor ej2⇡⌫⌧ . With this phase factor the Fourier transform
contained in the STFT is reset at the center of the window, i.e. the instant t = ⌧ , for any
⌧ , rather than being referred to the time t = 0.

The STFT is equivalently obtained by filtering the signal s with a continuum of
bandpass filters whose impulse responses are obtained by modulating the time reversed
window ^

g(t) = g(�t), i.e.

S
g

(⌧, ⌫) = s(⌧) ⇤ ^
g
⌫

(⌧) =

Z
s(t)

^
g(⌧ � t)ej2⇡⌫(⌧�t)dt, (2)

where the symbol ⇤ denotes convolution and

^
g
⌫

(t) = M
⌫

^
g(t) =

^
g(t)ej2⇡⌫t. (3)

The symbol M
⌫

is referred to as the modulation operator, which multiplies a function
by a complex sinusoid of frequency ⌫.

Convolution in time corresponds to multiplication in the frequency domain. There-
fore, denoting by ˆS

g

(', ⌫) the Fourier transform of the STFT S
g

(⌧, ⌫) with respect to
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the first argument ⌧ , we have:

ˆS
g

(', ⌫) = ŝ(')ĝ('� ⌫), (4)

where we have used the facts that the Fourier transform of the time-reversed window
equals the complex conjugate of the Fourier transform of the window and that modulation
in time corresponds to frequency shift of the Fourier transform. Thus, an alternative
way of computing the STFT is to take the Fourier transform of the signal, multiply it
for the conjugate Fourier transform of the modulated window and then compute the
inverse Fourier transform. Most often the window g is chosen to be symmetric, i.e.
g(t) = g(�t), in which case g and ^

g coincide and ĝ is a real function.
Defining the time-shift operator T

⌧

such that T
⌧

f(t) = f(t� ⌧), it is possible to
write (1) as follows:

S
g

(⌧, ⌫) =

Z
s(t)T

⌧

M
⌫

g(t)dt, (5)

where the overbar symbol denotes complex conjugation: a+ jb = a� jb. Defining the
scalar product in the space of finite energy signals (the space L2

(R)) as follows:

hf, gi =
Z

f(t)g(t)dt, (6)

from (5) one can see that
S
g

(⌧, ⌫) = hs,T
⌧

M
⌫

gi , (7)

which makes it possible to interpret the STFT as the scalar product of the signal with
the time-shifted modulated versions T

⌧

M
⌫

g of the window g.
Thus, the STFT has at least three souls: it is the Fourier transform of windowed

portions of the signal, it is the convolution of the signal with modulated versions of the
window and it is the scalar product of the signal with time-shifted modulated versions of
the window. These three souls can be exploited in the applications, for the computation
of the STFT and for its sampling, as shown in the next section.

1.2 Sampling the Short-Time Fourier Transform: Gabor Frames

The STFT leads to a 2D representation of a 1D signal. Due to the addition of an extra
dimension, the representation is very likely to be redundant. For example, if the window
is bandlimited, the output of each filter whose impulse response is a modulated version
of the window is bandlimited; therefore it can be sampled in time. As a result, the STFT
can be reconstructed from its values at a discrete set of time instants ⌧

n

. Similarly, if
the window has finite length, each windowed portion of the signal has finite duration;
therefore the STFT can be reconstructed from its samples at a discrete set of frequency
points. Several other possibilities are available.

Sampling does not necessarily eliminate redundancy, it may just reduce it. The
redundancy of the transform also implies that not all 2D functions are valid STFT of a
signal: the values of the STFT are interdependent and cannot be assigned arbitrarily.
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Similar considerations apply to the problem of reconstructing the signal itself from
the knowledge of its STFT. In fact, since the STFT is the Fourier transform of windowed
segments of the signal, taking the inverse Fourier transform of the STFT will leave us
with windowed portions of the signal, a lot of them! Even if time is sampled in the time-
frequency plane, reconstruction of the signal is still possible with minor requirements
on the window provided that the time samples are sufficiently dense.

In more general terms, one would like to sample both time and frequency in the
time-frequency plane without losing information. The scalar product soul (7) of the
STFT comes in handy in this type of questions. Given the set of projection coefficients

S
g

(⌧
n

, ⌫
q

) =

⌦
s,T

⌧nM⌫qg
↵
, n, q 2 Z, (8)

obtained by sampling the STFT on a grid of points {(⌧
n

, ⌫
q

) |n, q 2 Z} in the time-
frequency plane, one would like to know if it is possible to reconstruct the signal. Which
are the classes of windows that guarantee perfect reconstruction? Which are feasible
sampling grids? Which is the reconstruction algorithm? Given that the set of functions�
T

⌧nM⌫qg
 
n,q2Z is not generally orthogonal and it might not even be complete, these

questions raise a mathematical problem, which we will first explore in finite dimensional
spaces of vectors by way of an example drawn from linear algebra.

1.2.1 Redundant Representations in Finite Dimensions and Duality

In finite dimensional euclidean vector spaces one can reconstruct any vector from
its projections over a sufficient number – at least equal to the dimension of the space –
of well chosen directions (for example the Cartesian axes). The projection coefficients
are given by the scalar products of the vector over the vectors describing the directions.
As a matter of fact, reconstruction is possible even if the vectors are not orthogonal
(basis and dual basis or biorthogonal bases) and even if, obviously, the set of directions
is redundant (for example three suitable directions in a 2D space).

Consider the example shown in Fig. 5(a), where one would like to specify a two-
dimensional vector v in terms of the scalar products taken along the three directions
 1,  2 and  3. Clearly, any two of these directions are linearly independent so that
any subset of two directions would suffice to specify v. In particular, the set { 1, 2}
forms an orthogonal basis so that one could immediately write v = c1 1 + c2 2, where
c
k

= hv, 
k

i =  T

k

v are the scalar products of the vector along the first two directions,
where the symbol T denote transposition. Writing the components of all vectors in terms
of the Cartesian coordinate system given by the axes  1 and  2, one can put this trivial
result in matrix-vector form:

 1 =


1

0

�
,  2 =


0

1

�
, c =


c1
c2

�
=


 T

1

 T

2

�
v =


1 0

0 1

�
v. (9)

Thus, c = Hv, where, in this case, H is the 2x2 identity matrix I2. Clearly, the original
vector v can be recovered by matrix inversion:

v = H�1c =

h
˜ 
(o)
1

˜ 
(o)
2

i
c = c1 ˜ 

(o)
1 + c2 ˜ 

(o)
2 , (10)
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Fig. 5: Example of redundant representation in a 2D vector space; (a) Original vector
and three possible directions for projection and (b) Reconstruction of the vector with
dual basis (gray) and with dual frame (black)

where we have denoted by ˜ 
(o)
1 and ˜ 

(o)
2 the columns of H�1. However, in this case,

H�1
= H = HT

= I2 so that the directions for extracting the analysis coefficients c
and those to recover the vector v from these coincide: ˜ 

(o)
1 =  1 and ˜ 

(o)
2 =  2 for

orthogonal bases.
Consider as representative, instead, the scalar products of v along the directions

{ 2, 3}. These two directions are not orthogonal but still linearly independent. In
matrix-vector form we have:

 2 =


0

1

�
,  3 =

 �1

�1

�
, c =


c2
c3

�
=


 T

2

 T

3

�
v =


0 1

�1 �1

�
v (11)

where, as before, we wrote the components of all vectors in terms of the Cartesian
coordinate system given by the axes  1 and  2. Here again we have c = Hv, but H
is not the 2x2 identity matrix. The original vector v can still be recovered by matrix
inversion: v = H�1c, but, in this case, H�1 6= HT . In fact,

H�1
=


0 1

�1 �1

��1

=

 �1 �1

1 0

�
=

h
˜ 
(b)
2

˜ 
(b)
3

i
. (12)

Thus,
v = c2 ˜ 

(b)
2 + c3 ˜ 

(b)
3 6= c2 2 + c3 3 (13)

and one can refer the two sets { 2, 3} and { ˜ (b)
2 , ˜ 

(b)
3 }, respectively, as basis and dual

basis. The analysis coefficients are obtained by taking the scalar products of the vector
along the basis elements and the reconstruction is possible via expansion over the dual
basis. The dual basis and the relative reconstruction of the vector v = [1, 1]T , where
from (11) c2 = 1 and c3 = �2, are represented by the gray lines and vectors in Fig. 5(b).

Since they are derived, respectively, from the rows of the matrix H and from the
columns of its inverse, i.e.,

h
˜ 
(b)
2

˜ 
(b)
3

i   T

2

 T

3

�
=


1 0

0 1

�
, (14)
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it is easy to see that basis and dual basis satisfy the cross-orthogonality property:D
 
n

, ˜ 
(b)
m

E
= �

n,m

, n,m = 2, 3, where �
n,n

= 1 and �
n,m

= 0 for n 6= m; for this
reason they are called biorthogonal bases. They form bases for the same vector space
and their role can even be interchanged while preserving perfect reconstruction.

Consider now the set of all three directions { 1, 2, 3} shown in Fig. 5(a). Taking
the scalar products of the vector v over these directions yields:

c =

2

4
c1
c2
c3

3

5
=

2

4
 T

1

 T

2

 T

3

3

5v =

2

4
1 0

0 1

�1 �1

3

5v = Hv. (15)

In this case, the matrix H is 3x2 and, not being square, it does not have an inverse
in the usual sense. However, provided that the determinant of the 2x2 matrix HTH
is nonzero, one can find a 2x3 matrix ˜H such that ˜HH = I2. In fact, one can let ˜H
be the left pseudoinverse of the matrix H, defined as ˜H =

�
HTH

��1
HT . We have:

˜HH =

�
HTH

��1
HTH = I2. Therefore, the elements to reconstruct v from the

coefficients c can be identified as the columns of the pseudoinverse matrix ˜H. In our
example we have:

⇥
˜ 1

˜ 2
˜ 3

⇤
= H̃ =


2 1

1 2

��1 
1 0 �1

0 1 �1

�
=

1
3


2 �1 �1

�1 2 �1

�
, (16)

which yields the components in the Cartesian basis { 1, 2} of the three directions
{ ˜ 1, ˜ 2, ˜ 3} shown in Fig. 5(b). In the same figure, the original vector v = [1, 1]T is
constructed as the sum of the vectors v

k

= c
k

˜ 
k

, k = 1, 2, 3, where, from (15), the
coefficients are c1 = 1, c2 = 1 and c2 = �2.

The redundant set of directions { 1, 2, 3} used to compute the analysis coeffi-
cients in (15) constitutes what is referred to as a frame for the vector space and the set
{ ˜ 1, ˜ 2, ˜ 3} generated in (16) for the reconstruction constitutes its dual frame. Frames
and dual frames will be more formally introduced in the next section.

Clearly, the frame analysis coefficients c
k

are not unique. In fact, the same vector in
the figure could be expressed as well by the coefficients c1 = 1 + x, c2 = 1 + x and
c2 = �2 + x for any x. We conclude that if the number of representative directions is
larger than the dimension of the space, the representation of the vector is not unique as
the directions are not independent (in a 2D space with three representative directions one
can always express at least one of the directions in terms of the other two). Moreover,
even the reconstruction algorithm is not unique, i.e., one does not need to construct
the dual frame in order to reconstruct the vector, since, as we have seen previously,
one could for example discard one of the scalar products and use only c1 and c2 to
reconstruct the vector using the orthogonal basis as in (10) or use c2 and c3 only to
reconstruct the vector using the dual biorthogonal basis as in (13), just to name two
alternative ways but the possibilities are infinite.

Even in a 2D space with available projections in multiple directions one needs to be
careful in the selection of the directions. While the vector v in Fig. 5 could be expressed
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in terms of the direction  3 only, all vectors not aligned with v require additional
representative elements. If all the representative directions are aligned, not all vectors
can be described by their projections. In fact, all components orthogonal to the aligned
directions come out of the picture: any vector orthogonal to the aligned directions will
have zero projections, all of them! To avoid this problem one can enforce the condition
that no nonzero vector in the space has zero projection on all the selected directions or,
what is the same, that the sum of the magnitudes of the scalar products of any vector with
all the representative directions is not smaller than a fraction of the norm of the vector.
In the finite dimensional case, this is equivalent to enforce that the projection matrix H
has at least rank equal to the dimensionality of the space, which in turn guarantees that
the matrix S = HTH is not singular so that the left psuedoinverse ˜H exists. Note that
in the scalar vector notation, for our three-element frame one can write:

Sv = HTHv =

⇥
 1  2  3

⇤
2

4
 T

1

 T

2

 T

3

3

5v =

3X

k=1

hv, 
k

i 
k

(17)

so that the existence of the pseudoinverse is linked to the invertibility of an operator S
acting on the vectors of the space. This operator is referred to as the frame operator. In
terms of this operator, (16) becomes:

⇥
˜ 1

˜ 2
˜ 3

⇤
= H̃ =

�
HTH

��1
HT

= S�1HT

= S�1
⇥
 1  2  3

⇤
. (18)

Thus, each element of the dual frame can be obtained by applying the inverse of the
operator S to each frame element.

The space of finite energy signals has infinite dimension. Signal expansions, e.g.,
Fourier series for a time-limited signal, are computed by taking signal projections, i.e.,
scalar products of the signal over a countable number of representative elements (e.g.,
harmonic complex exponentials). When the representative elements are not orthogonal
according to the scalar product given in (6), projections over elements other than the
representative elements is required. In this case the elements and their duals work
in symbiosis in order to analyze and synthesize the signal. For example, for a non-
orthogonal basis the right algorithm is projection on the basis and expansion over
the dual basis. However, when the representation elements are redundant, then the
algorithm is not unique since there are various sets of coefficients and even various
sets of synthesis elements that can equally represent the signal. For the same reason,
the expansion coefficients are not independent, which means that not all finite energy
sequences are valid coefficients to represent any signal in the space. The method of
projections on a set of elements and expansion over a dual set of elements still works
but one must be aware that this is just one of the infinite number of ways to obtain the
right expansion coefficients and a perfect reconstruction scheme for the signal [Mal98].
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1.2.2 Gabor Frames

In the STFT case, we are interested in representative elements of the type

G]

(g, ⌧
n

, ⌫
q

) = {T
⌧nM⌫qg : n, q 2 Z}, (19)

where g is a non-zero window function, which we refer to as the generalized Gabor

system. Conventional Gabor systems [Gab46] stem from uniform sampling of the STFT
on a time-frequency grid of points or lattice {(na, qb) |n, q 2 Z}, where a and b are
parameters controlling the density of the grid points. In the classical definition, time-
shift and modulation operators are interchanged but this can always be achieved with
irrelevant phase factors, as we did in the definition of STFT (1).

Depending on the grid, the generalized Gabor system can be redundant or insufficient
to completely represent signals. In order to ascertain perfect reconstruction, we need the
concept of frame which generalizes the concept of basis. Frames are sets of redundant
elements that are still able to represent any finite energy signal. A sequence of functions
{ 

l

}
l2I in the Hilbert space H is called a frame, if there exist positive constants A and

B (called lower and upper frame bounds, respectively) such that

Akfk2 
X

l2I
|hf, 

l

i|2  Bkfk2 8f 2 H, (20)

where kfk2 = hf, fi is the norm square or total energy of the signal. As stated, the
finite and strictly positive frame bounds A and B must be common to all signals f
in the Hilbert space, e.g., they can be found as the greatest lower bound and the least
upper bound, respectively, of the sum in (20) divided by the norm of the signal as f ,
such that kfk > 0, varies over the entire signal space. In the above inequality we
recognize that the lower bound A guarantees that no signal has zero projection on all
the representative elements. Moreover, in infinite dimensional spaces, like the signal
space, one has to additionally require that the projections are finite or, more strictly
for the expansion sums to have proper convergence properties, that the sum of the
magnitude squares of the projection coefficients is finite, which is guaranteed by the
upper bound B in (20). In orthonormal bases one has Parseval’s equality stating that
the sum of the magnitude square projection coefficients equals the energy of the signal,
i.e.

P
l2I |hf, l

i|2 = kfk2. In frames, Parseval equality is only approximate, i.e.P
l2I |hf, l

i|2 ' kfk2 with multiplicative margins A and B. The requirements that B
is finite guarantees that the expansion of any finite energy signal in terms of the frame
does not blow up. If A = B, then { 

l

}
l2I is a tight frame, which energy-wise has the

same behavior as that of an orthogonal basis.
One can show that the existence of dual frames, which can be used for reconstruction,

is equivalent to the existence of frame bounds 0 < A,B < 1. In turn, this is equivalent
to the boundedness and invertibility of the frame operator

Sf =

X

l

hf, 
l

i 
l

. (21)
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The frame operator plays exactly the same role as the matrix operator HTH that we
used in the finite dimensional frame example of the previous section; see (17). The
canonical dual frame (

˜ 
l

), is found by applying the inverse of S to the original frame
elements, i.e. ˜ 

l

= S�1 
l

for all l. This is the infinite dimensional analogon of (18) in
the finite dimensional frame example of the previous section. For all f 2 H we then
have the following reconstruction formulae:

f =

X

l

hf, 
l

i ˜ 
l

=

X

l

hf, ˜ 
l

i 
l

.

A central property of conventional Gabor frames is the fact that the dual frame of a
Gabor frame is again a Gabor frame, generated by the dual window g̃ = S�1g and the
same lattice, i.e. the set of time-frequency points {(na, qb) |n, q 2 Z}. Note that the
property that the dual system is again a system with the same structure is a particular
property of Gabor frames. As we will see, this property is shared by nonstationary
Gabor frames in the painless setting, described in Section 2.1.

1.3 Warping Gabor Frames

Any unitary operation on a frame results in a new frame with the same frame bounds
A and B [BJ95]. A unitary operator U, the function space analogon of unitary matrices,
preserves the scalar product, i.e. hUf,Ugi = hf, gi and, in particular, it preserves
energy (norm square). Unitary operators can be applied to Gabor frames to obtain new
frames. Depending on the operator, the resulting frames are not necessarily of the Gabor
type, as the atoms are not generated by time-shifting and modulating a single window
function.

A frequency warping operator is completely characterized by a function composition
operator in the frequency domain

ŝ
w

= ŝ � ✓, (22)

where ✓ is the warping map, which transforms the Fourier transform ŝ = Fs of a signal
s into the Fourier transform ŝ

w

= Fs
w

of another signal s
w

, where F is the Fourier
transform operator. If the map ✓ is one-to-one and almost everywhere differentiable then
a unitary form of the warping operator can be defined by the frequency domain action

ŝ
w

(⌫) =
h
dU
✓

s
i
(⌫) =

q�� d✓
d⌫

��ŝ(✓(⌫)). (23)

Unitary warping ensures that while bands are stretched their amplitudes are reduced
so that the area under the magnitude square Fourier transform is the same as that of
the original, i.e., energy is preserved. In particular, when applied to a Gabor frame, the
unitary warping operator U

✓

generates the frequency warped frame {'
n,q

}
n,q2Z and

dual frame {�
n,q

}
n,q2Z:

'
n,q

= U
✓

T
na

M
qb

g,

�
n,q

= U
✓

T
na

M
qb

g̃.
(24)
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The computation of signal expansions over warped frames requires the generation of sets
of warped delayed and modulated windows. Since by warping the time shift operator is
transformed into a frequency dependent shift, the windows are not simply translated.
Moreover, in principle, the warped windows have infinite support in the time domain
even when the original window has finite support.

Alternately, in the computation, one can inversely warp the signal [EC98] and
project it onto a conventional Gabor frame. The direct computation of frequency
warping consists in taking the Fourier transform of the signal, reassigning frequencies
by means of the warping map and taking the inverse Fourier transform.

Filter chain structures for the time-domain computation of frequency warping are
also available [EC98]. However, one has to keep in mind that frequency warping is in
general a non-causal operation. Approximations of the frequency warping operator,
which allow for online computation, are presented in [EC07; Eva08].

Taking the Fourier transform of the first set of functions in (24) we notice that

ˆ�
n,q

(⌫) =
q

d✓

d⌫

ĝ (✓(⌫)� qb) e�j2⇡na✓(⌫). (25)

The first two factors correspond to the Fourier transform of the unitarily warped mo-
dulated window

q
d✓

d⌫

ĝ (✓(⌫)� qb). The last factor shows frequency dependent time
shifts: after warping, the original uniform multiple of a time shifts are altered by the
phase delay ✓(⌫)/⌫. These in-band frequency dependent delays tend to hide or destroy
the time structure of the signals, which is a negative factor in signal visualization and
synthesis. By means of discrete-time inverse frequency warping acting on the STFT
time index n one can revert the frequency dependent delays to in-band constant delays.
However, since discrete-time frequency warping implies periodic warping maps, exactly
redressing of the delays is possible only in particular cases, e.g. when the analysis
window g is bandlimited.

Using the bandlimitedness of the windows assumption, also referred to as the
painless case, in the next section we introduce families of frequency warped frames that
directly show constant in-band delays.

2 Warped Frames with Constant In-Band Delay

In this section we describe frames with arbitrarily assignable bandwidths, which are
inspired by the warped frames but have better or more intuitive properties for sound
and music computing, i.e. avoiding the presence of in-band frequency dependent delays
resulting from frequency warping the time shift operator.

2.1 Building Generalized Gabor Frames with Arbitrary Frequency

Bands

As described in Section 1.2, Gabor frames are obtained by uniformly time shifting
and modulating a unique time window '. Here we consider a generalization of Gabor
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frames that admits a different window '
q

and different time shift ⌧
q

for each frequency
channel indexed by q. In other words, the time-frequency atoms of the representation
are the functions

'
n,q

(t) = T
n⌧q'q

(t) n, q 2 Z (26)

where the modulation is implicit in the windows, i.e., as q varies, the Fourier transforms
of the windows '̂

q

occupy different frequency bands. Moreover, the bandwidths are
allowed to be different and the center frequencies of the bands are not necessarily harmo-
nically related. A frame with frequency channel dependent time shift was introduced in
[EC07] and employed in a computationally efficient approximation for warping signals.
Properties and applications of generalized Gabor frames having nonuniform frequency
resolution were studied in [Vel+11].

The frequency bands of the functions '̂
q

are allowed to overlap. Intuitively, a
necessary condition for the invertibility of the representation is that there are no gaps or
zeros in the total superposition of frequency bands. As we will see, together with the
boundedness of the superposition, this is precisely the condition for the set of functions
in (26) to form a frame. In this way, using suitable synthesis windows one can achieve
perfect reconstruction by means of overlap-add in the frequency domain.

Considering the frequency domain interpretation (4) of the STFT in Section 1.1,
it is clear that if the windows are bandlimited – which requires them to have infinite
time support – then for any analysis frequency ⌫ the transform produces bandlimited
components. Clearly, these components can be sampled at a sufficient rate not smaller
than the total bandwidths without hindering perfect reconstruction. Sampling continues
to be possible when the bandwidths of the various components are different as in (26).

Formally, in order to ascertain perfect reconstruction, one has to show that (26) con-
stitutes a frame. As remarked in Section 1.2, this is equivalent to study the invertibility
and boundedness of the frame operator

Sf =

X

n,q

hf,'
n,q

i'
n,q

(27)

associated with (26). Taking the Fourier transform of each side in (27), one arrives at
the following Fourier representation for the frame operator:

cSf(⌫) =
X

q

1
⌧q

X

m

ˆf
⇣
⌫ � m

⌧q

⌘
'̂
q

⇣
⌫ � m

⌧q

⌘
'̂
q

(⌫) (28)

in which the Fourier transform of the signal ˆf(⌫) appears together with its frequency
aliased versions ˆf

⇣
⌫ � m

⌧q

⌘
for m 6= 0.

If the frame operator is invertible one can show that upper and lower frame bounds
can be determined and that a dual frame {�

n,q

}
n,q2Z can be provided as follows

�
n,q

= S�1'
n,q

(29)
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In fact, in these circumstances, we have

f = S�1Sf =

X

n,q

hf,'
n,q

iS�1'
n,q

=

X

n,q

hf,'
n,q

i�
n,q

(30)

In the frequency domain, inversion of the frame operator requires means to cancel the
frequency aliased versions of ˆf , which may be complex to achieve in the general case.
In the so called “painless” case [DGM86], the windows are chosen to have compact
support in the frequency domain, i.e. bandlimited, and the time shifts ⌧

q

are chosen so
that in (28) the product

'̂
q

⇣
⌫ � m

⌧q

⌘
'̂
q

(⌫) = 0 for m 6= 0 (31)

That is, the aliased versions of each window have no overlap with the window itself.
This is simply achieved by selecting

⌧
q

6 1

B
q

(32)

where B
q

is the total bandwidth or length of the support of '̂
q

(⌫), where we assume
that the support is an interval. As announced, in each band, the sampling rate 1/⌧

q

has
to be not smaller than the total bandwidth B

q

.
In the painless case, the Fourier representation of the frame operator (28) becomes

cSf(⌫) = ˆf (⌫)
X

q

1
⌧q
|'̂

q

(⌫)|2 (33)

This shows that the frame operator is diagonalized by the Fourier transform in the
painless case:

cSf =

ˆ� ˆf, (34)

with eigenvalues
ˆ� =

X

q

1
⌧q
|'̂

q

|2 (35)

See [Dör01; DGM86; Bal+11] for detailed proofs of the diagonality of the frame operator
in the described setting.

As shown in the next section, the bandlimited windows assumption provides great
simplifications for the definition of frames with arbitrary band allocation.

2.2 Dual Warped Frames

For use in the reconstruction formula, a dual frame associated with (26) can be
generated by inverting the frame operator, according to (29). While in general the
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inversion of the operator S poses a problem in numerical realization, we know that
under certain conditions, often fulfilled in practical applications, S is diagonal, in time
or frequency domain, as described in the previous section.

We employ windows with adaptive, compact bandwidth and choose the time-shift
parameters dependent on the bandwidth of each window: the time-sampling points have
to be chosen dense enough to guarantee (32). From (34), since the frame operator
associated with (26) is diagonalized by the Fourier transform then it assumes the
following form:

Sf = F�1
[

ˆ� ˆf ] = F�1
[

ˆ�] ⇤ f. (36)

From (34) and (35) it follows immediately that the frame operator is invertible
whenever there exist real numbers numbers A and B such that the inequalities

0 < A 
X

q

1

⌧
q

|'̂
q

|2  B < 1 (37)

hold almost everywhere. From (36) it follows that the inverse of the frame operator has
the following form:

S�1f = F�1
[

ˆf/ˆ�] = F�1
[1/ˆ�] ⇤ f. (38)

For the Fourier transform of the frame elements we have:

'̂
n,q

(⌫) = F ⇥
T
n⌧q'q

⇤
(⌫) = e�j2⇡⌫n⌧q '̂

q

(⌫) = M�n⌧q '̂q

(⌫). (39)

Thus, applying (29), the dual frame is given by the elements

�
n,q

:= F�1


M�n⌧q

✓
'̂
q

�
ˆ�

◆�
= T

n⌧qF�1


'̂
q

�
ˆ�

�
. (40)

As a result, in order to obtain the synthesis windows �
q

, one needs to filter the analysis
windows with the frequency response 1/ˆ�. As for the analysis, the synthesis frame
elements are obtained by frequency channel dependent time-shifting by integer multiples
of ⌧

q

.
Based on the implementation of nonstationary Gabor frames performing adaptivity

in the time domain, the above framework permits a fast realization of frequency-adaptive
Gabor frames directly in the frequency domain, by considering the Fourier transform of
the input signal. The transform coefficients S

n,q

= hf,'
n,q

i take the form

S
n,q

= h ˆf,M�n⌧q '̂q

i, (41)

and can be calculated, for each q, from the FFT of the signal with a number of opera-
tions solely determined by the support of '̂

q

. Similarly, reconstruction is realized by
applying the windows M�n⌧q �̂q, where �̂

q

= '̂
q

/ˆ�, in a simple overlap-add process
in the frequency domain. Whenever perfect reconstruction is necessary, the transform
parameters must be chosen, such that conditions (32) and (37) are satisfied.
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2.3 Designing Frames with Arbitrary Band Allocations by Means of

Frequency Warping

In this section a design procedure for frames with arbitrary allocation of frequency
bands is described, which is based on frequency warping. In [Vel+11] the design of
“painless” frames with compact support in the frequency domain and arbitrary band
allocation was approached by scaling the Von Hann window in the frequency domain.
The main advantage of the warping approach is that the bands can be allocated following
a curve, the warping map, that can be derived from physical or perceptual characteristics
of the signal. Another advantage is that by frequency warping one can obtain tight
frames with arbitrary band allocation. While tight frames can also be obtained from the
original design by reassigning the windows as follows

'̂
q

 '̂
qrP

k

1
⌧k

|'̂
k

|2
,

the denominator introduces in-band ripple due to the imperfect overlap of the original
windows at transition bands. The design based on warping eliminates the need for
re-normalization and allows for smooth transition bands. It can be performed starting
from any tight uniform Gabor frame.

To approach the frequency warping based design, consider a nonnegative symmetric
window ˆh(⌫) in the frequency domain satisfying the requirement

X

q

ˆh2 (⌫ � bq) = 1 (42)

for a certain b > 0. Several well-known windows satisfy (42). For example one can
select the square root of the Von Hann window, i.e. the cosine window

ˆh(⌫) =

( q
2
K

cos

⇡⌫

�

if � �

2 6 ⌫ < +

�

2

0 otherwise
(43)

where � > 0 is the total bandwidth of the window and K > 1 is an integer. The cosine
window satisfies (42) for b = �/K.

The frequency support of each of the windows ˆh
q

(⌫) = ˆh(⌫ � bq) is the intervalh
bq � �

2 , bq +
�

2

i
.

In order to construct windows with nonuniform bandwidth one can start by prescri-
bing a monotonically increasing, one-to-one, map ✓ of the frequency axis, which we
assume henceforth to be an almost everywhere differentiable odd function of frequency.
In practical applications, the map can be inspired by physical or perceptual characteri-
stics. Otherwise, if only the desired center band frequencies ⌫

q

are prescribed, one can
build a smooth continuous map by interpolation from the pairs (⌫

q

, bq).
To each of the functions h

q

= F�1
[

ˆh
q

] we apply a nonunitary warping operator W
✓

built as the operator U
✓

in (23) without the square root derivative factor. As a result, the



108 ARBITRARY PHASE VOCODERS BY MEANS OF WARPING

uniformly spaced windows ˆh
q

are transformed to the nonuniformly spaced frequency
domain windows

ĝ
q

(⌫) = \W
✓

h
q

(⌫) = ˆh
q

(✓(⌫)) = ˆh(✓(⌫)� bq) (44)

Since (42) holds for any ⌫ then warping preserves the constant overlap-add property:
X

q

ĝ2
q

(⌫) =
X

q

ˆh2 (✓(⌫)� bq) = 1 (45)

The frequency domain shapes of the original windows are smoothly altered by the
warping map so that the nonuniformly stretched windows blend nicely into each other.

The center frequencies ⌫
q

of the warped windows are the solutions of the equations
✓(⌫)� bq = 0 that is:

⌫
q

= ✓�1
(bq) (46)

since the map is invertible. Similarly, the band edge frequencies ⌫±
q

are solutions of the
equations ✓(⌫)� bq = ±�/2, i.e.,

⌫±
q

= ✓�1
⇣
bq ± �

2

⌘
(47)

Comparing (45) with (35) and (37), we see that by letting

'̂
q

=

p
⌧
q

ĝ
q

(48)

with the warped windows one can achieve

ˆ�(⌫) =
X

q

1
⌧q
|'̂

q

(⌫)|2 = 1 (49)

That is, tight frames with unit frame bounds A = B = 1 can be generated with the
warped uniform windows, in which case the dual frame {�

n,q

}
n,q2Z coincides with the

frame {'
n,q

}
n,q2Z.

The atoms of the frame and dual frame can be generated by time-shifting the inverse
Fourier transforms of the windows as in (26). Since the supports of the warped windows
are the intervals h

✓�1
⇣
bq � �

2

⌘
, ✓�1

⇣
bq + �

2

⌘i
(50)

in order to fulfill (32) one needs to select

⌧
q

6 1

✓�1
⇣
bq + �

2

⌘
� ✓�1

⇣
bq � �

2

⌘ (51)

We remark that, if the bandwidth ⌫ of the original window h is small, then

✓�1
⇣
bq + �

2

⌘
� ✓�1

⇣
bq � �

2

⌘
⇡ �

d✓�1

d⌫

����
⌫=bq

= �

 
d✓

d⌫

����
⌫=✓

�1(bq)

!�1 (52)
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Thus, for the largest values of allowed time-shifts we have

⌧
q

⇡ ✓0(✓�1
(bq))

�
=

✓0(✓�1
(bq))

Kb
(53)

Hence, if the map is identical, ✓(⌫) = ⌫, we have ⌧
q

b ⇡ 1/K as in the uniform Gabor
case with redundancy overlap factor K.

In the warped case, the time-shifts are proportional to the approximate frequency
dependent time-stretching of the narrow band windows due to frequency warping, which
are given by group delay ✓0 evaluated at the center bands. Moreover, the normalization
factors in (48) can be interpreted as proportional to the square root of the derivative
of the warping map ✓ evaluated at the center bands of the warped windows, which
approximately restores the normalization factor of the unitary warping operator (23) to
the nonunitarily warped windows.

3 Applications and Examples

The flexibility in time-frequency tiling achieved by the arbitrary band vocoder descri-
bed in this paper paves the way to several applications in sound and music computing,
coding and music information retrieval. The tightness of the frames guarantees that the
total energy of the signal is equal to the sum of the squares of the analysis coefficients
and that no multiplicative bias is introduced in the analysis that is then taken away by
the synthesis.

3.1 Adaptation to Desired Frequency Scales

The allocations of the bands of the frequency channels is performed by means of
a frequency map ✓, mapping nonuniform bands into uniform ones. It is convenient to
normalize the map so that the desired center frequencies are mapped to integers denoting
the channel indices. The map can be derived from perceptual, physical or musical scales.

An example of adapted frequency band characteristics is shown in Fig. 6, where
the map is directly obtained from the perceptual Bark scale [Tra90], resulting in 25
channels with bandwidths increasing with frequency in the frequency range 0 to 22 KHz.
It is apparent how the bands are not simply obtained by constant scaling: the frequency
characteristics are more stretched for the upper band portions than for the lower ones.

Another example is reported in Fig. 7 where the frequency tiling is adapted to a 1/3
of octave scale, resulting in 33 channels. The arbitrariness of the map allows one to
build frames tuned to any scale and pitch resolution.

3.2 Frequency Channels

Given the integer N obtained by rounding the maximum value of the normalized
warping map, the bandwidth parameter b in (42) is selected by dividing the maximum
frequency of the total range by N .
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Fig. 6: Warping the frame frequency channels according to Bark scale (top): resulting
frequency band characteristics (bottom).

The actual number of frequency channels depends on the overlap factor K. For
K = 2, useful in most applications, the final number of channels is given by N + 1,
which includes the 0 frequency channel and the highest frequency channel that has
support overlapping with the frequency range of the signal. When needed, the frequency
response of the 0 frequency channel is obtained by fixing a lower bandwidth and
summing together all the frequency windows having center frequency below the lower
bandwidth.

For real signals, negative frequency channels can be obtained by complex co-
njugation of the corresponding positive frequency channel and do not need to be
computed.

3.3 Implementation

In our implementation we employed an algorithm directly derived from (41) in
which the FFT of the signal is first computed and the scalar products are computed in
the frequency domain over the frequency support of the windows '̂

q

. This algorithm
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Fig. 7: Warping the frame frequency channels according to a 1/3 of octave scale (top):
resulting frequency band characteristics (bottom).

is shown in [Vel+11] to have complexity O(L logL) for both analysis and synthesis,
where L is the length of the signal.

Implementation is therefore very simple and it parallels in the frequency domain
what is usually performed in the time domain, in terms of windowing for the analysis
and overlap-add for the synthesis. At different time instants the windows only differ by
a phase factor, which is easily obtained by multiplication.

3.4 Nonuniform Spectrograms

In order to display time-frequency spectrograms with synchronous time scale for all
bands, it is convenient to compute the transform coefficients with time oversampling,
choosing the sampling intervals ⌧

q

in (51) to be all equal to their minimum value ⌧ . This
is always possible for finite bandwidth signals. In this case, at each time step one needs
to modulate the DFT of the signal, multiplying it by ej2⇡⌫⌧ . Incidentally, should we
modulate, at this step, by the factor ej2⇡b✓(⌫)⌧ instead, we would obtain a frequency
domain implementation of the expansion over the warped Gabor frames in (24).
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Here the frequency ⌫ takes the discrete values k⌫
s

/L, where k 2 {0, . . . , L/2� 1},
obtained from the FFT calculation, in which ⌫

s

is the sampling rate of the signal. The
modulated DFT of the signal is stored and reused in the next time step calculation.

The spectrogram based on the 12-tone equally tempered scale of a singing musical
phrase is shown in Fig. 8, resulting in 118 frequency channels at ⌫

s

= 44.1 KHz. For
comparison, the uniform frequency band spectrogram of the same signal based on the
same number of channels is shown in Fig. 9, using the same distribution of frequency
bins. It is apparent how, at same computational cost, the 12-tone spectrogram better
captures the musical score by zooming into the part of the time-frequency domain,
where most energy of the signal is concentrated.

For another comparison, the spectrogram based on the warped Gabor frames (24) is
reported in Fig. 10. One can notice how the presence of the dispersive delays destroys
the time structure of the score.
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Fig. 8: Nonuniform 12-tone scale spectrogram of the singing phrase represented in the
score line [from Tom’s Diner, Suzanne Vega], in which it is possible to track in tempered
time-frequency scale the score and even the glissando introduced by the singer.
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Fig. 9: Uniform frequency scale spectrogram of singing phrase.

As another application example suitable for coding applications, the nonuniform
spectrogram based on 1/4 Bark scale (4 channels per Bark) of a complex rock music
excerpt is shown in Fig. 11. For comparison, the uniform spectrogram is plotted below
in Fig. 12. It is apparent how the perceptually relevant information is distributed in
time-frequency by using the nonuniform spectrogram.

3.5 Sound Computing Applications

The flexibility of the signal representation illustrated in this paper inspires a number
of creative uses. For example, in the analysis and synthesis of sounds with nonharmonic
partials one can adapt the frequency bands to capture the frequency content of the main
partials, together with that of other bands lying in-between the given partials. If the
frequency channels corresponding to the partials are suppressed, one can study the noise
or fluctuations of the signal.

For example, in piano tones in the low register, one can extract the hammer noise by
re-synthesizing all the nonpartial bands. Vice versa, in denoising or audio restoration
applications, one may want to suppress the side bands of the partials, which contain
disturbing unmasked noise.
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Fig. 10: Warped Gabor spectrogram of singing phrase.

In an analysis-synthesis scheme similar to the one illustrated in [PE07], within the
proposed signal representation one can allocate narrow bands centered on the frequen-
cies of the signal’s partials and wider left and right sidebands of the partials. This is
realized by means of a pitch dependent smoothed staircase warping map, with higher
slope around the frequencies of the partials and lower slope at the sidebands. The
sidebands represent fluctuations of the partials that can be often modeled as modulated
1/f noise, while the partials are represented by low-rate pitch and amplitude informa-
tion. Perceptually, the presence of the fluctuations is relevant, while the details of the
fluctuations are less relevant, which allows for coarser modeling of the sidebands. The
flexibility of the presented scheme allows for accurate tuning of the representation bands,
which is far less rigid than the allocation in [PE07].

In other applications as sound effects, one can use uniform bands for the analysis
coupled with nonuniform bands for the synthesis with same coefficients. Thus, the
frequency content of the signal in the analysis bands is displaced to other frequency
bands in the synthesis, resulting in band stretching and modulation. In this way one
obtains an efficient algorithm for frequency warping, similar to the one presented in
[EC07].

In conventional uses of the phase vocoder, such as time stretching, frequency shifting
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Fig. 11: Bark scale spectrogram of rock music excerpt.

and harmonizer, one is often interested in tracking the partials, which requires estimation
of the instantaneous frequencies. This is usually performed by time differencing the
phase of the transform coefficients, as evaluated at adjacent time instants. For the
estimation to be successful one needs to have sufficiently narrow-band analysis atoms so
that interference of distinct signal partials is low. The proposed transform allows us to
design the frequency resolution arbitrarily, assigning, e.g., higher resolution around the
expected frequencies of the partials, which for most signals are in the lower frequency
portion of the spectrum.

Even in the constant Q case, one can set the resolution to arbitrary fractions of a tone,
as sufficient for frequency tracking. Mixed mode is also possible, e.g., by assigning
uniform resolution at low frequencies and constant Q at high frequencies. Compared
to orthogonal wavelets, whose resolution in the simplest and most popular case is one
octave throughout the frequency spectrum, this is a major improvement. The mixed
mode allows us to combine the benefits of conventional phase vocoders and of wavelets
in terms of an arbitrarily configurable frequency channel allocation. Moreover, time
sampling can directly reflect the bandwidth allocation for each channel. The sampling
theorem exactly holds in view of the compactly supported windows in the frequency
domain.

In conventional phase vocoders based on a compactly supported window in the
time domain, frequency leakage of a single sinusoidal component of the signal occurs
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Fig. 12: Uniform spectrogram of rock music excerpt.

throughout the spectrum. Since the analysis atoms of the proposed representation have
compact support in the frequency domain, frequency leakage is exactly confined so that
interference can only occur from signal components falling in adjacent bands. Both
amplitude and phase estimation of the partials benefit from this localization property.

Additional examples together with the corresponding sound files are available at
http://homepage.univie.ac.at/monika.doerfler/WarpFrames.html

This page will be continuously updated as new examples and applications of the
proposed framework become available.

4 Conclusions and further work

In this paper we have explored the design of perfect reconstruction phase vocoders
based on nonuniform Gabor frames with arbitrary band allocation.

By means of a warping map, uniform frequency bands are mapped into nonuniform
frequency bands, while keeping constant the sampling rate within each band. The
representation is shown to be useful in several applications adding flexibility to the well
known and ubiquitous concept of phase vocoder in sound and music computing. These
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range from visualization of musical data to audio effects, feature extraction, coding and
synthesis.

Some important aspects of the phase vocoder, in particular concerning phase estima-
tion of the partials in each band, have been pointed out but not analytically addressed in
the current contribution. These aspects are particularly useful and important in sound
transformation (stretching, transposition) and their adaptation to the flexible framework
introduced will be presented elsewhere.

Methods allowing for nearly constant delay within each band even when the supports
of the bands are not finite have been developed and will be the object of a forthcoming
publication. These methods are relevant for real-time computation for example to
allow the windows to have finite support in the time domain. In future work we will
further consider the use of nearly perfect reconstruction nonuniform representations
that are suitable for real time computation and achieve a compromise between time and
frequency localization. Furthermore, a time-varying band allocation method generalizing
the scheme in [Eva08] is under investigation.
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