
81

Musica/Tecnologia, 15 (2021), ISSN online 1974-0050, ISSN print 1974-0042, pp. 81-107

© 2021 Firenze University Press e Fondazione Ezio Franceschini
DOI: 10.36253/music_tec-13302 – http://www.fupress.com/mt

The Development of the !trumpet1

Nicolas Collins2

Submitted 23rd March 2021
Revision 14th June 2021

Introduction

The !trumpet is software synthesis system controlled from, and playing back
through, a trumpet. It is not an electronically extended trumpet (like those of Ben
Neill, Axel Dörner or Jonathan Impett, among others): the player produces no acoustic
sounds by blowing through the mouthpiece. Instead, breath pressure and valve move-
ment on the brass instrument are read by an embedded Arduino microcontroller and
sent to a laptop, where the data is mapped onto various parameters in synthesis soft-
ware; the resulting electronic sound is returned to the trumpet, where it plays through
a loudspeaker inside the bell, and is further processed acoustically by valve position
(changes in the length of tubing filter the speaker output), movement of a plunger
mute (wah-wah style filtering), and orientation of the instrument in space (panning).

The built-in speaker gives the !trumpet a self-contained acoustic quality, rare among
electronic instruments, that blends well with more conventional instruments on stage.
The speaker is constrained to the bandwidth of a conventional trumpet (mid- to high-
frequencies), but the performer can direct a full-range signal to stereo line outputs for
connection to a PA system when bass frequencies or higher sound levels are desired.

The mute contains seven momentary switches for controlling various functions
in the software. Switch closures are sent to the Arduino on the trumpet body via an
infrared link (similar to a TV remote control). Two additional momentary switches,
mounted on the trumpet itself, control the routing of the audio to the built-in speaker
and the line output.

In a nod to David Tudor’s legendary composition Bandoneon! I dubbed this instru-
ment “!trumpet”. But where Tudor employed the “!” to indicate “factorial”, I use the
sign for its logical property of negation: this is definitely not a trumpet3.

1 The article presented here is the reproduction - granted by its author - of the essay with the same
title hosted on the author’s website: <https://www.nicolascollins.com/>. An initial draft of the article was
written in May 2020 and updated in November 2020. All websites were visited on the 30th of June, 2021.

2 Professor, Department of Sound, The School of the Art Institute of Chicago, 122 South Michigan Ave.,
Room 301, Chicago, IL 60603. Research Fellow, Orpheus Instituut, Korte Meer 12, 9000 Gent, Belgium.

3 An early (December 2017) solo performance of the !trumpet can be heard here: http://www.nicolascol-

82 The Development of the !trumpet

Background

The !trumpet is the latest iteration of a design concept that dates back to instru-
ments I built as an undergraduate at Wesleyan University in the 1970s: adapting
conventional instruments for the acoustic manipulation of electronic sound. Under
the influence of Alvin Lucier I composed a number of pieces that used feedback to
articulate acoustical characteristics of architectural spaces, and eventually extended
those techniques to “playing” acoustic instruments4. In Feetback (1975), for example,
I fitted small microphones inside the mouthpieces of two brass or woodwind instru-
ments, and connected them to speakers (high-frequency horn-drivers) coupled to the
mouthpieces of two other instruments5. The players change fingering and spatial ori-
entation of the instruments to elicit different feedback pitches as they walked through
the performance space – using feedback to overblow the harmonic series of the instru-
ments as they intersected with that of the room.

In 1982 I built the first of a series of “backwards electric guitars”: electric guitars
whose pickups are wired to the speaker outputs of amplifiers, so that the strings can be
resonated with sound (similar to shouting into a piano with the sustain pedal down);
chording and dampening the strings filter the sounds6. As with the feedback-driven
wind and brass instruments, the overtones of the guitar strings were elicited electroni-
cally instead of through the usual playing techniques.

In 1986 I added a small keypad to a speaker-loaded trombone, linked an optical
shaft encoder to the slide, and wired the instrument to a home-made digital signal
processor and sampler. By pressing switches and moving the slide I could increment
and decrement values in a computer program – in effect clicking and dragging a
mouse without having to look at a screen. The resulting sounds, articulated by breath,

lins.com/music/!trumpet_Orpheus_12_2017.mp3. This is a live recording in the concert hall of the Orpheus
Institute (Ghent) in which you can hear a few different voices and the acoustic transformations of the valving
and mute movement. The PA is brought in 3’45” into the eight-minute performance, with notable rise in
loudness and bass response. All reverberation is from the hall acoustics, none was added in post-production.

4 http://www.nicolascollins.com/texts/allthisandbrains.pdf and http://www.nicolascollins.com/texts/
peasouphistory.pdf.

5 http://www.nicolascollins.com/texts/feetbackscore.pdf
6 http://www.nicolascollins.com/texts/BackwardsElectricGuitar.pdf

Figure 1. !trumpet.

83Nicolas Collins

played back through the trombone, where they were further filtered acoustically by
the movement of the slide and mute, and directed spatially by aiming the instrument
like a flashlight. An early entrant into the world of alternative controllers that sprang
up in the age of MIDI, the “trombone-propelled electronics” overlaid the acoustic

Figure 2. Drivers used for saxophone (left) and trombone (right), 1975.

Figure 3. Backwards electric guitars, 1987 (left) and 2002 (right).

84 The Development of the !trumpet

transformations of the speaker-equipped trombone on the emerging vocabulary digi-
tal sound processing7.

The acoustic manipulation at the heart of each of these hybrid instruments – fil-
tering feedback or sound sources in tubes or strings – could have been accomplished
in simple purpose-built devices: telescoping PVC plumbing tubes, guitar strings on
a wood plank. But from early on I was drawn to creative re-use of found objects over
pure invention, and I preferred to stress the connection between possibly unfamiliar
experimentation and extant musical practice.

Initially developed for a specific composed work, Tobabo Fonio (1986)8, the “trom-
bone-propelled electronics” opened the door to improvisation. This was one of the
first practical systems for live sampling, and thanks to its self-contained acoustic iden-
tity, it merged easily with more conventional instruments on stage. I spun variations
out of fragments of sound grabbed from my fellow players, moving from mimicry to
the unexpected9. The original instrument was crushed beneath the wheels of a taxi at
Schipol airport (Amsterdam) in 1994, but over the next dozen years I built two varia-
tions that updated the core concepts of live sampling and signal processing using new
technologies. By 2008, however, commercially available looping devices had matured
and proliferated to the point that, as Robert Poss pointed out, “anyone can buy your
trombone in a pedal”10. Bored with the sonic vocabulary that had enthralled me for
over three decades, I retired my last trombone11.

7 http://www.nicolascollins.com/texts/TrombonePropelledElectronicsReduced.pdf
8 https://www.youtube.com/watch?v=89jbl0ZuaH4
9 Nicolas Collins, 100 of the World’s Most Beautiful Melodies, Trace Elements CD, 1989. See http://

www.nicolascollins.com/100melodiestracks.htm
10 Email correspondence, 2008.
11 In 1989 I developed a concertina with an embedded speaker and flex sensor on each of the six

sides of the bellows. The goal was a “polyphonic” extension of the trombone. Despite several years of ef-
fort, assisted by the clever engineers at STEIM, I only managed to produce one piece for the instrument,
performed twice. See Nicolas Collins. “Cargo Cult Instruments.” Contemporary Music Review 6 (1991).

Figure 4. Trombone-propelled electronics, first version (1988, left) and last version (2005, right).

85Nicolas Collins

My entry into electronic music pre-dated personal computers and came through
homemade circuitry instead. Although I began working with early microcomputers
in the 1970s, I kept my soldering iron warm – experience taught me that sometimes
hardware offered a more efficient (or at least different) path through a musical thicket
than software could. MIDI came and went and was replaced by DAWs and program-
ming languages like Max/MSP and SuperCollider. But by the time I joined the faculty
of the School of the Art Institute of Chicago in 1999, glimmers of anti-digital back-
lash could be detected in rise of Circuit Bending and the revival of analog synthesis.
At my students’ request I introduced a course in hardware hacking, which in turn led
to a book and workshops around the globe12. The experience of sitting in a large room
surrounded by 20 novice hackers, each with her own speaker, rekindled my interest
in the glitchy sounds and chaotic structure of circuit experimentation after years of
immersion in more rational digital soundscapes. I began composing more hardware-
centric works.

Salvage (Guiyu Blues) (2008)13 was inspired in equal part by:
• The sounds that arose from the workshop tables, which evoked the glitchy texture

of my earliest electronic work, and that of my peers and mentors in the pre-com-
puter 1970s. They contrasted refreshingly with the sampling, looping, granulation
and other DSP-based effects so prevalent at the time.

• The peculiar form that these sounds took in the hands of a room full of hackers:
the semi-controlled chaos of parallel but unsynchronized experimentation with
similar, not-easily controlled circuits.

• The desire to shrink my silicon footprint. I had recently read about the environ-
mental impact of electronic recycling in the town of Guiyu in the Guangdong
province of China, and I decided to make a pointed, if token, gesture of reducing
that toll by one circuit board.

Out of a bank of six oscillators from a single CMOS 74C14 IC I constructed an
instrument that would extract sound from any dead, landfill-bound circuit board:
computer, cell phone, printer, television, etc. The frequency range of each voice, from
sub-sonic through audible pitch to ultrasonic whistling, is determined by a choice of
a fixed capacitor; the precise pitch would typically be set by a resistor in the feedback
path from its output to its input, but in my implementation each output and input is
connected to test probe (like that on a multimeter) instead. When a pair of probes is
pressed against traces on the dead circuit board, the frequency is determined by what-
ever components lie in the path between them – usually a complex (and unknowable)
array of diodes, transistors, integrated circuits and other components, rather than a
simple resistor. As a result, moving the probes across the surface elicits an unpredict-
able and unstable sequence of pitches – given enough time, a player could learn to

12 https://www.routledge.com/Handmade-Electronic-Music-The-Art-of-Hardware-Hacking-3rd-
Edition/Collins/p/book/9780367210106

13 Salvage (Guiyu Blues) (2008), https://www.youtube.com/watch?v=XV50-Cwy1RI&t=504s

86 The Development of the !trumpet

associate specific sounds to specific points on the grid of the board, but corroded con-
tacts and shaky hands increase uncertainty. This is a work for six players, each holding
a pair of probes. When multiple probes touch the board, short-circuits and feedback
between them further complicate the sounds, as does the mixing of voices through
diode multiplication (rather than simple resistor addition). In 2014 I adapted the
core technology of Salvage for solo performance, replacing the 12 probes with a dozen
small fishing weights (lead shot) that I rolled beneath my fingers across a scavenged
circuit board14.

In February 2017 I attended a concert by musicians from the Merce Cunningham
Dance Company15. Despite former music director John Cage’s longstanding aversion
to improvisation, and the presence of titled compositions on the program, a spirit of
improvisation ran through the evening. I was struck that night by how much I missed
the musical and social aspects of improvisation. None of the systems I’d developed
in the previous decade had the improvisational potential of the abandoned trom-
bone – the chaos of Salvage was more interesting (to my ear) within the structure of a
composed work than in a sextet free-for-all. While my trombone had arisen from my
interest in the intersection of acoustical and digital transformations of sound, now I
began looking for a way of combining a familiar acoustic armature with my newfound
affection for the analog sonic world of chaotic circuitry, in the hopes of arriving at a
new instrument.

I chose a trumpet for the core ($30- on eBay): smaller and lighter than the trom-
bone, but still capable of acoustic transformation of an embedded speaker, with con-
trol by breath, and with the potential for mapping the valves top three continuous
controllers, in lieu of a single slide. Initially I ran down two technologically divergent
but ultimately unfruitful alleys: a Pd-on-Raspberry-Pi option that kept veering in

14 The Royal Touch (2014), https://www.youtube.com/watch?v=DtGcueEsuDE
15 https://mcachicago.org/Calendar/2017/02/Music-For-Merce

Figure 5. Salvage and The Royal Touch.

87Nicolas Collins

the familiar direction of signal processing, despite my best efforts to avoid this; and
an analog circuit in the style of Salvage that was chaotic but too limited in dynamic
range and sonic variation to be broadly applicable in improvisation. After some weeks
of reflection I came to acknowledge the hobbling of a methodological bias that I had
perpetuated for years.

Since my first exposure to the Kim-1 microcomputer in 1977 I had divided my
musical resources into three distinct categories according to what I perceived as their
“intrinsic” strengths:
• Hardware (circuits and physical instruments) was great for nuanced control, inter-

esting sounds, and instability.
• Software was best for interfacing controllers, making logical decisions, and generat-

ing compositional structure.
• People made choices (not always predictable) based on musical assessment and

personal preference.

For decades I had distributed these resources accordingly, in both my composed
and improvised work. I was not the only one guilty of this tendency: in the heyday
of MIDI, composer Ron Kuivila lamented, “we need to make computer music that
sounds like electronic music” – and this was no mere semantic distinction, they did
sound different16. In 2011 I went so far as to write a paper on the musical implications
of the choice of hardware or software in compositional and performance practices17.
But in the aftermath of two false starts on a new instrument I decided to confront
these assumptions head on and attempt to write a program that would behave less like
software as I knew it and more like unstable circuitry in the hands of a novice hacker.

I began by modelling a network similar to those in Salvage and The Royal Touch:
a bank of square wave oscillators, controlled by a non-linear array of values, with the
voices mixed down by multiplication. The challenge lay in emulating the odd affor-
dances of the range of unknown components distributed across an unfamiliar dead
circuit board.

My prototype (in Max/MSP) consisted of:
• A set of three square-wave oscillators.
• The frequency of each oscillator is set by a value in a table (the coll object), filled

256 random numbers.
• The table value is indexed from the position of a linear slider object.
• Moving the fader from the bottom to the top causes the oscillator to jump from

one pitch to another, rather than ascend in a linear fashion. But because the table
was static, the sequence was repeatable rather than different on each pass (as if the
fader simply generated a new random number at each increment). This produced

16 Private conversation, New York, NY, late-1980s.
17 “Semiconducting – Making Music After The Transistor.” Musical Listening in the Age of Mechani-

cal Reproduction. Gianmario Borio, editor. Ashgate (London) 2015. A later revision can be accessed here:
https://nmbx.newmusicusa.org/what-to-ware-a-guide-to-todays-technological-wardrobe/

88 The Development of the !trumpet

a similar effect to the non-linear adjacency of moving probes across a fixed but
unknowable array of components on a circuit board.

• The timing of the transitions from one frequency to the next is randomized, be-
tween instantaneous to a noticeable glissando, mimicking the charge and discharge
of capacitors in the probed circuit.

• A small fluctuation is added to each table value so that the frequency of the oscil-
lator slowly drifts, in imitation of unstable contact between the probes and circuit
traces, and of temperature change in the components on the board.

• The three voices are mixed by multiplication (the *~ object), complicating the
sound in the manner of a ring-modulator or the diode mixing scheme of Salvage18.

A modest amount of programming produced a surprisingly convincing emulation
of the hardware antecedent – satisfying enough to justify the rather more time-con-
suming adaptation of my eBay trumpet as a controller, and subsequent programming
of a more extensive software environment.

Design goals

I began with the following general guidelines:
• The instrument should occupy a sweet spot between controllability and unpredict-

ability, so that the player would have to engage improvisationally with the instru-
ment itself, as well as with the other musicians. Every improviser periodically longs
for the freshness and accidents that accompanied first picking up the instrument,
lost to the rise of control and virtuosity over time; I wanted to program an instru-
ment that frustrates virtuosity by remaking itself every time it’s turned on.

• The majority of my circuits, programs and instruments have been compositionally
specific, each with a finite sound palette or processing vocabulary; most traditional
instruments, by contrast, have elastic borders, especially in the hands of good im-
provisers. This instrument might not have as full a range of kinesthetic nuances
and affordances as a “real” one, but it should be able to evolve, through the pro-
gramming of new voices, whenever it feels too constrained.

• The hardware and software should be sufficiently fixed to present a stable envi-
ronment for performance, but open enough to incorporate additional voices and
moderate changes in control structure. The instrument itself should be able to
evolve much like a player evolves and expands technique on a more “closed”, tra-
ditional instrument.

18 In 2018 I gave a performance with the !trumpet at an event at CERN in Switzerland. A small group
of particle physicists came up afterwards and asked me about the instrument and how the sounds were
formed. When I mentioned that each voice was the result of three oscillators mixing by multiplication,
one of the scientists turned to the others and said, “Didn’t I tell you he must be using multiplication?!”
The sound of math.

89Nicolas Collins

I chose to preserve several characteristics of my earlier trombone-propelled elec-
tronics:
• A performable instrument that combines a physical controller with a local acoustic

presence.
• The familiar form of a conventional acoustic instrument, rather than a purpose-

built device.
• Breath articulation of volume (expressive dynamics are sorely lacking in a lot of

electronic music, especially in the post-2000 revival of analog synthesis).
• Controller data extracted from native functions of the original instrument (i.e.,

slide on the trombone, valves on the trumpet).
• Embedded speaker, with acoustic transformation by slide/valves and mute.
• Secondary line output to the PA for when wider frequency response and louder

sound are wanted (everybody loves bass).
• Not linked to a specific composition like the circuits and software of recent works.
• Optimized for improvisation, group and solo.

But the new instrument should deviate from the trombone in a number of ways:
• It should be more portable: a smaller instrument (suitable for the overhead bins on

planes), with lighter electronics.
• Whereas the speaker in the trombone was attached to the mouthpiece, subsequent

experiments demonstrated that a speaker mounted in the bell was more efficient,
with better bass response (back-pressure seems as sensitive to changes in tubing
length as transmission from mouthpiece); both the speaker and amplifier could be
smaller and lighter.

• Abandon completely the vocabulary of live sampling and signal processing.
• Instead write software that sounds and responds like the hardware from Salvage, The

Royal Touch, etc.: glitch, non-linear adjacencies, instability, unpredictable glissandi.
• Multiple simultaneous continuous controllers (three valves), instead of a single

data wheel coupled to the slide of the trombone. Traditional trumpet technique
assigns each valve two states, up or down, with half-valving occasionally used as
an effect. But in this instrument each valve would function like a slide pot, with
continuous linear output over its full excursion. The net result should be less like
the click and drag of single parameters in software, and more like the multi-axis
response of gestures on most conventional instruments.

• Fewer switches and simpler control structure than the trombone (which had two
dozen main keys and a few function keys to remap them), for more intuitive per-
formance. Holding the trumpet with the right hand suggests a small number (5-7)
of switches in the mute for left hand, to complement the continuous valve data.
An exercise in self-discipline.

• Adaptations in software of the trumpet’s fundamental acoustic characteristics and
performance tropes: overblowing the harmonic series, valve-based pitch intervals,
etc.

• Multiple voices, with a wide range of sounds, rather than a single core technique
like the sampling and multi-tap processing of the trombone.

90 The Development of the !trumpet

• The Arduino should serve as a “dumb” interface, converting sensor data into a
serial stream to the host laptop, to reduce the need to modify its code unless new
sensors are added.

• Laptop software (Max/MSP) should be structured to facilitate both playing and
updating:
o Same software format for all voices, as far as practical.
o Controllers mapped as similarly as possible for all voices.

The hardware

To the physical trumpet I added:
• An Arduino Uno mounted between the legs of the long crook (a third version of

the instrument uses a smaller Arduino Mini Metro).
• A sensor to measure the position of each of the three valves: a small neodymium

magnet is embedded in a rubber grommet fitting into the cup at the base of each
piston, with a linear Hall Effect sensor (Sprague UGN3503) is set in the screw-
cap at the base of the valve housing. The sensor outputs a voltage proportional to
the strength of the magnet field, which increases exponentially as the magnet ap-
proaches.

• An air pressure sensor (NXP MPXV5010) connects to a plastic tube running to
a hole drilled in the cup of the trumpet mouthpiece. The stem of the mouthpiece
is blocked with silicon caulk; blowing into the cup is measured as pressure at the
sensor.

• Two momentary switches are mounted on a small bracket near the valves, acces-
sible by the thumb of the right hand when holding the instrument.

Figure 6. !trumpet system.

91Nicolas Collins

• A speaker (Aurasound NS2-326-8AT) is embedded in the bell of the trumpet.
• An infrared (IR) detector module is mounted inside the bell, to pick up signals

from the mute (see below).
• A daughter board mounted on the Arduino contains:

o Smaller headers connecting the sensors, switches and the IR detector in the bell.
o The air pressure sensor.
o A second IR sensor to pick up the mute when off axis from the bell, and a

CMOS logic chip (CD4093) to mix the two IR signals.
• A class D mono amplifier circuit board (TPA 3118) is mounted between the legs

of the tubing and connects to the trumpet speaker. Audio level is controlled by
a stepped potentiometer. (The third version of the instrument uses an externally
package version of the same amplifier board.)

• A lightweight bundle of six-meter cables connected to the trumpet circuitry:
o A USB cable carries power to the Arduino and serves as a bi-directional serial

interface between the Arduino and the laptop.
o A shielded cable carries voltage from a remote 12-volt DC power supply (2000

ma) to the amplifier board. Optionally a remote battery pack can be substi-
tuted for the power supply for mains-free performance (Abenic 12v 1800mAh
rechargeable LiPo).

o A second shielded cable carries audio from the laptop audio interface to the am-
plifier and trumpet speaker. (The power cable and audio cable are replaced by
speaker cable in the third instrument, connecting to the external amplifier.)

A toilet plunger cup has been adapted as a mute and secondary controller:
• Holes were drilled for seven momentary switches that align with the four fingers

and thumb when holding the plunger as a mute. (The functions of these switches
are explained in the Software section of this paper, below.)

• The switches are wired to a programmable infrared transmitter circuit (Tauntek
IRMimic). Switch closures are sent as infrared data to the IR sensors on the trumpet.

• A small LiPo (Lithium Polymer) battery provides power for the transmitter circuit,
with on/off toggle switch.

Figure 7. On board circuitry showing built-in class-D amplifier with volume control (left), and
remote amplifier for 3rd revision of the instrument (right) (Swiss Army knife for scale).

92 The Development of the !trumpet

Figure 8. Valve sensor: Hall effect sensor (left), and magnet embedded in valve base (right).

Figure 9. Air pressure sensor and hose coupling to mouthpiece.

Figure 10. Switches near top of valves. Figure 11. Speaker in bell, with IR detector at top.

93Nicolas Collins

• A charging circuit for the LiPo battery is embedded in the threaded neck of the
mute. This connects via a mini USB jack to a cable from a charger as needed (any
phone charger or USB jack on a laptop can be used).

The software

Software is divided between two processors: an Arduino Uno mounted on the
trumpet, which communicates via USB to a Macintosh PowerBook.

Arduino

The Arduino polls the various sensors and switches on the trumpet and mute, and
formats the data for transmission to the laptop:
• Three analog inputs read voltage outputs from the Hall Effect sensors measuring

the position of the valves.
• One analog input reads the voltage output from the pressure sensor measuring

breath strength.

Figure 12. Mute, exterior with switches, interior with circuitry.

Figure 13. Flowchart of software.

94 The Development of the !trumpet

• Two digital inputs read the state of the two momentary switches mounted near the
valves.

• One digital input receives the data from the two IR detectors (mixed through the
CMOS 4093).

• All sensor data is compiled into a single serial stream sent via USB to the laptop.

Macintosh

Software on the Macintosh is written in Max/MSP. The program is divided into a
number of sub-patches that handshake with the Arduino, map sensor data to sound
parameters in 20-odd voice programs, and perform other functions in support of
digital sound synthesis. The patches provide visual feedback (meters, number values,
color-coded indicators, etc.), but these are intended primarily for de-bugging and
rehearsal purposes. The software can be played from the trumpet with no need for
visual feedback from the computer screen or interaction with the keyboard, with the
occasional exception of the large-font elapsed time display (see tptdisplay below),
which functions as a handy stopwatch during performance.

Core Patches

On the left side of the main patch window the trumpet interface patch requests
data from the Arduino every 10msec and breaks the data out into the individual sen-
sor bytes. When launched, the program calibrates the zero state of the breath and valve
sensors (no breath, valves up); an on-screen button sets the maximum level for breath
and the lowest position of the valves, to account for the player’s breath strength and
any mechanical slippage in the valve sensors (the player “tunes” the instrument by
clicking this button after power-up, if necessary). Since the strength of the magnetic

Figure 14. !trumpet main patch.

95Nicolas Collins

field drops with the square of the distance between the magnet and sensor, a log con-
verter linearizes the valve data. Number boxes and umenus specify the serial port and set
the slew time and jitter rejection for the analog sensor data, which is sent on to the rest
of the program, along with the states from the switches on the trumpet and mute. All
this data is displayed graphically in this patch. Hot buttons in the window (“patch-
ing”, “sensors”, “arduino”) open sub-patches for inspection and trouble-shooting, and
a red “HELP” button opens a short text-file summarizing control assignments and
ASCII key mapping from the laptop.

Along the bottom of the main window the voices patch contains the core sound-
generating routines. The majority of these share a similar structure and control-map-
ping to preserve consistent playing technique across the instrument:
• Each voice contains three sound generators – oscillators, filtered noise sources,

pulse trains, sample playback modules, etc. (See Inventory of Voices, below, for
detailed description of specific voices).

• The pitch/rate of each sound generator is set by values read out from a coll (table
or array) of numbers, 32-254 values, depending on the voice.

Figure 15. Trumpet interface, showing active valves & breath (left), mute switches (right).

Figure 16. Arduino processing (left) and HELP pop-up (right).

Figure 17. Voices bank.

96 The Development of the !trumpet

• The values in each coll are generated randomly (random) when the program is
launched. Each generator in each voice has its own individually randomized coll.

• Each coll is indexed by the linear output from one of the three valves.
• In contrast to the two-state behavior of the valves in a traditional trumpet, here

each valve is treated as a continuous controller (like a slide pot).
• Because valve position controls the generator via the randomized coll, the player

cannot predict the sequence of frequencies that pressing a valve will produce, un-
like direct control from a slide pot.

• But since the coll is static, its sequence will repeat every time the corresponding
valve is moved, so that the performer becomes more familiar with the mapping the
longer the voice is played.

• The outputs of the three generators are mixed together, sometimes by simple linear
addition (+~) but usually by multiplication (*~), which produces a more complex
signal, similar to the effect of a ring-modulator.

• The transition time from one coll value to the next is controlled by a random
number, so that sometimes the pitch/rate changes instantly and sometimes it
sweeps noticeably, like a glissando. There are two modes for transition time, fast
(default) and slow, selected from the mute. The glissandos mimic the charge and
discharge of capacitors often heard in hacked circuits.

• When the valve is not moving, the value from the coll is “wobbled” within a small
range. This produces a slow drift in pitch/rate whenever the valve is still, mimick-
ing the effects of temperature change and corroded contacts in analog circuitry.
Wobble can be disabled from one of the switches the mute.

• A gate function can be toggled on and off. When disabled (default) the voice is
always active, and heard whenever articulated by the breath (see output below).
When the gate is enabled, each generator in a voice is turned on for a short period
of time whenever valve moves a millimeter, then snaps off until the valve indexes
the next value. This produces a percussive sound, in contrast to the more continu-
ous default character of most voices. Variables of gate behavior, such as on-time,
are set in the gatormaster patch (below).

• Each voice is embedded in a poly~ object, so that its DSP functions can be turned
off when the voice is inactive. The !trumpet program contains some two-dozen
voices; shutting down unused processes reduces the load on the CPU to less than
10% for most voices.

The voicecontrol patch is the shell for selecting and managing the sound synthesis
routines, including mapping sensor data to sound parameters. One of the three mute
switches activated by the thumb randomly selects a new voice from the available set;
a second mute thumb switch provides an “undo”, stepping back thru the sequence
of selected voices. The colls for each voice are randomized every time the voice is
called up, except when it is returned to with the “undo” command, in which case
the old coll is recalled. By default only one voice is active at a time; the “\” key on
the Macintosh keyboard toggles mode between one voice and three voices active, for
greater complexity and density. The “settings” on-screen hot-button opens a patch for
setting numerous global and voice-specific parameters.

97Nicolas Collins

The switches on the mute are mapped to various functions in the software:
• Thumb 1: randomly select the next voice.
• Thumb 2: undo voice change (step back to previous voice).
• Thumb 3: toggle glissando mode between fast and slow.
• Index finger: freeze all software changes in the voice except breath articulation.

Moving the valves now does not index through the colls, “wobble” is disabled.
As a result, the only audible changes to the sound are performed acoustically: valve
movement filters the sound through changes in the length of the air column,
mute movement produces a wah-wah effect, aiming the instrument reflects sound
around the room, etc.

• Middle finger: freeze coll control of the voice frequency, like the Index finger, but
links each valve’s movement directly to the “wobble” factor of the active sound
generator in place of the automatic slow sweep. This effectively remaps the valves
from coarse non-linear frequency control (via the colls) to fine linear adjustment
(c. 5% of range). This is useful for fine-tuning a “frozen” sound.

• Ring finger: A umenu in the trumpet interface patch toggles the function of this
switch between two modes:

Figure 18. Two examples of a voices: sines (left) and tix (right).

Figure 19. Voicecontrol (left) and pop-up settings screen (right).

98 The Development of the !trumpet

o Swaps the audio output between the trumpet speaker and PA, for rapid alterna-
tion of signal presence.

o Freezes all default software changes in the voice, like the Index finger, but remaps
valves to direct linear control of frequency over a one-octave range – larger
changes than the wobble enabled by the middle finger, but linear unlike the
default coll control.

• Pinky finger: toggles gating function on and off.
(A few voices call up voice-specific re-mapping of one or more mute switch.)

The output patch controls the routing and articulation of the voices to the trum-
pet-speaker and line-outputs to the PA. By default, blowing into the mouthpiece con-
trols the volume of the signal sent to the trumpet-speaker; one of the two momentary
switches near the valves (accessed by the thumb of the right hand) freezes this volume
setting to keep the trumpet-speaker on without having to keep blowing (lazy-man’s
circular breathing), or to mute the trumpet-speaker when only the line outputs are
wanted. The second switch near the valves similarly enables and freezes the line out-
puts. A crossover splits the audio output into two bands. By default frequencies above
200 Hz (roughly the lowest pitch on a Bb trumpet) are sent to the trumpet-speaker,
and those below 300 Hz are sent to the PA outputs – the trumpet serves as the tweeter,
the PA as the woofer. But if the line outputs are on when the trumpet-speaker is off, the
full frequency range is sent to the line outputs (compensating for the lack of trumpet-
tweeter). When the software is run with a simple stereo audio interface (like the built-
in audio on the Macintosh) the right output channel is sent to the trumpet-speaker
and the left is sent as a mono output to the PA. With a multi-channel interface the
line signal is “stereo-ized” through a phase-difference network and sent out channels
1 and 2, channel 4 is sent to the trumpet-speaker, and channel 3 serves as an auxiliary

Figure 20. output. Figure 21. DSP control.

99Nicolas Collins

output for a few specific programs. Connecting certain audio interfaces automatically
opens interface-specific patches for routing and monitoring audio signals.

Auxiliary and Utility Patches

The DSP panel in the upper left selects the audio interface and enables DSP functions.
When an external interface is connected to the computer, it is listed in the pull-down
umenu and automatically selected for audio I/O; if the interface has four or more output
channels the audio output is routed accordingly (see description of output patch, above).
DSP can be enabled for the !trumpet patch and sub-patches only (“local”) or all Max/MSP
patches open on the desktop (“all”). Turning on the DSP also enables ASCII hot-keys to
control functions within the !trumpet program. This panel includes a readout of percent-
age of CPU being utilized in the program, a hot-button for opening the Max’s full DSP
configuration panel, and umenus for setting the size of the i/o vector and signal vector.

The tptdisplay window in the upper right displays the name of the voice currently
active and the elapsed time since the DSP was turned on or the software was reset.
On-screen buttons, linked to ASCII hot-keys, start and stop the timer (“return”) and
reset it (“x”). In a large font, this panel serves as a useful performance stopwatch, leg-
ible some distance from the computer.

Above the voices patch compvoices contains Max patches for several composed
works, some of which do not make use of the physical trumpet instrument. This
patch is included to streamline changeover between improvising with the !trumpet
and performing other software-based works, running pieces that require routing exter-
nal signals through the audio interface. The various sub-patches are wrapped in poly~
objects like the main voices, to minimize CPU load. Selecting any of the sub-patches
sometimes remaps the function of the mute switches or valves if the !trumpet is used
in performance, and often open composition-specific auxiliary patch windows. This
patch is expanded when new Max-based works are added to repertoire.

Glissdisplay indicates the state of the glissando mode: “gliss off” and grey back-
ground = fast glissandos; “gliss on” and green background = slow glissandos.

Gatormaster sets the range of behavior for the self-gating of the voices:
• “Rate” sets how many times in the excursion of each valve the gate is switched on.
• “Min” sets the minimum on-time for the gates, in msec.
• “Max” sets the maximum on-time for the gates, in msec. Each time a gate is turned

on its on-time is set to a random value between “min” and “max”.

Figure 22. tptdisplay.

100 The Development of the !trumpet

“Gators off” and grey background = gates disabled; “gators on” and green back-
ground = gates enabled.

Remoteblack is a utility for muting video projection used for some of the pieces
run from the compvoices panel.

Recplay records a seven-track AIFF file directly to hard drive of the computer:
• The stereo line output going to the PA.
• The mono line output feeding the trumpet speaker.
• Four input signals from the audio interface, if available. Typically these consist of:

o A pair of microphones recording the overall sound in the room.
o A small electret capsule mounted inside the bell in a pressure-zone (PZM) con-

figuration, which provides a very vivid representation of the acoustic modula-
tion by the valves and mute (figure 25).

o An additional microphone placed at a short distance from the trumpet (the in-
strument has a fitting to hold a modified headset-mounted vocal microphone).

This patch provides a fast, easy way to document performances with no external
recording equipment. The “play” button opens a simple file player that mixes the five
tracks down to stereo for checking the recording or making a rough stereo mix file.

The soundcheck panel opens three dull but useful concert utilities:
• 1-2-3-4 plays a loop of my voice speaking a number through the corresponding

output channel of the computer audio interface. Easier than intoning “test 1, test
1…” over and over.

Figure 23. Example of auxiliary window opened from compvoices patch.

Figure 24. recplay patch, file recorder panel open, file player panel open.

101Nicolas Collins

• Grid sends an accurate checkerboard grid to the video projector. Settles arguments
with technicians over where the fault in the aspect ratio error lies.

• Slate sends a short pulse of white noise out the main audio outputs and trumpet
speaker; useful for aligning camera mike with the internal multi-track files when
synching audio to video in post-production.

Figure 25. Pressure-zone electret microphone mounted inside bell.

Figure 26. Soundcheck panel (left), 1-2-3-4 audio channel tester (right).

102 The Development of the !trumpet

Inventory of voices19

The voices in the software fall into three general categories: continuous sounds,
pulsed sounds and sample playback. The first voices I programmed were designed
to imitate hacked circuitry. Improvising with other trumpet players was a humbling
experience (such cool noises, no computer needed!), but one that led directly to a new
voices in (crude) imitation of my talented collaborators20.
• Continuous sounds. More-or-less continuous synthesized sounds, ranging from

clean sine waves through chaotic functions to filtered noise, articulated by breath.
o Sines: 3x cycle~ sine waves. Each cycle~ phase modulated by wobbler.

Multiplying mix by *~ (multiplication, i.e., ring modulation).
o Triangs: 3x tri~ triangle waves. Each tri~ has waveshape (ramp>>triangle>>saw)

modulated by wobbler. Multiplying mix by *~.
o 74C14: 3x phasor~ sawtooth waves, clipped (>~) to produce pulse waves. Each

clip threshold (i.e., pulse width) controlled by wobbler. Multiplying mix by *~.
(This was the first voice I programmed, closest in sound to 74C14 waveforms
of Salvage and The Royal Touch).

o Trio: 1 sine, 1 pulsewave, and 1 chop (clipped low frequency noise) generated as
in the above voice sets, with same wobbler functions. Multiplying mix by *~.

o FM: 3x cycle~ sine waves. Each cycle~ phase modulates another cycle~, mod-
ulation range adjusted by wobbler. Multiplying mix by *~.

o Chaos: Chaos oscillator based on Chirikov’s Standard Map, from Siska Ádám’s
“sadam” library (2015). Valve1 controls frequency, Valve2 = X0, Valve3 = P0. K
(noisiness) given random value after all valves are up > 1 sec; decide object se-

19 As of 11/2020.
20 It is worth noting that in the five decades I have been pursuing what many would describe as

“electronic music” I have seldom had any interest in, or talent for synthesis. My work was usually based
on found sound material – from feedback, to live sampling, to improvisers’ decisions, to unstable circuitry.
Programming the voices for the !trumpet was my first serious attempt at synthesis since my early years in
the electronic studio at Wesleyan (1972-74).

Figure 27. Video grid control sub-panel and projected image.

103Nicolas Collins

lected range of random between noisy and less noisy end of spectrum. No wobble.
o 3kos: 3 Chaos oscillators as above, with cross-mixed valve control of fc, XO and

PO in each oscillator. Linear mix (no multiplying).
o Cicadas: 3 whistly high cycle~ sine waves with wobbler-controlled overdrive for

ring-mod style difference tones. Linear mix.
o Tix: 3 low frequency, narrow pulse waves pinging resonant filters. Linear mix.
o Noise: 3x rand~ low frequency noise. No wobbler. Multiplying mix by *~.
o Air: broadband white noise through 3 reson~ bandpass filtered, linear mixing.

Evokes Dörner/Ulher breath noises. No wobbler. Linear mix.
o Fdbk: Highly amplified microphone input passes through 3 reson~ bandpass fil-

ters to output for filtered feedback. Clipped with 3 pong~ objects. No wobbler.
Linear mix.

• Pulsed sounds. Shorter synthesized sound bursts. Several use real-time random
instead of coll to control some parameters.
o Zug: 1 click~ pulse train per valve, metro controlled, tempo randomized each

time valve is at top position. Each pulse train passes through svf~ resonant
filter, frequency and Q controlled from colls. Linear mix.

o Kiss: lip-smack and popping sounds. White noise burst triggered at top and bot-
tom of valve position, 1 noise source per valve, through svf~ filter. Random fc,
Q, envelope and filter choice (low-pass, high-pass, bandpass, notch) with each
noise burst. Linear mix.

o Bang: similar to kiss but with valve extremes triggering click~ through gen-based
waveguide model. Linear mix.

o Rt60: similar to kiss but with valve extremes triggering noise~ burst through
gen-based reverb model. Linear mix. Valve 1: random reverb time at extremes
of valve movement. Valve 2: random other reverb parameters at extremes (size,
early reflections, dampening, etc.) Valve 3: linear control of frequency shifting
output signal. Mute Index finger: freeze valve functions. Mute Middle finger:
enable internal reverb feedback (modelled on an Ursa Major function used in
first trombone system). Ring finger: enables infinite reverb time. Pinky finger:
reset all parameters.

• Sampled sounds. Sound file playback (no live sampling).
o Samp: 3-voice sample playback module, with pitch control from valve colls.

Each time the voice is selected, one of set of short prepared samples is randomly
selected, which play back in a shuffle (random) mode. Pinky switch advances
sample players to next sound file. Specific sample sets were chosen because they
resemble extended trumpet technique:
• Fish: 27 hydrophone recordings of fish and crustacea (from Smithsonian

LPs from the 1960s).
• Birds: 91 recordings of bird calls and bird songs.
• Radio: 54 files of noisy radio signals, mostly shortwave, I recorded in East

and West Europe and the USA in the 1980s.
• Crackle: 38 recordings of surface noise and lock grooves from vinyl and shellac

records.

104 The Development of the !trumpet

• Coils: 33 short recordings of electromagnetic feedback from my composi-
tion Immortal Coil.

o Tpt: Vst~ wrapper of an Aria sampler plays trumpet samples from the Garritan
“Jazz and Big Band 2” instrument set. Implementation in imitation of Ben
Neill’s Mutantrumpet.
• Valve1 assigned to pitch coll, with random velocity and random mute se-

lection (open, harmon, straight, bucket, cup) on each change (valve1 move-
ment quantized to 32 positions). The rapid change of mutes is especially
evocative of Neill’s Mutantrumpet.

• Valve2 assigned to note duration, linear mapping from shortest duration
when valve is up, longest when valve is down.

• Valve3 mapped via coll to frequency of cycle~ multiplying sample output
for ring modulation effect, disabled when this valve is full up, for clean
trumpet sound.

• The pitch coll (valve1) stores values as an array of midi number for pedal
note, overtone #, and resultant midi #, with specific pitch calculated at mo-
ment of retrieval; this aids overblowing. The number of partials in the coll
set limits upper range for basic playback, default = 8; in overblow mode the
default = 26 for more extreme high notes.

• Overblow mode toggled with Pinky switch, jammed on when volume is
locked on with valve switch.

You can see at the following DOI: 10.5281/zenodo.5068018 an excerpt from Lucky
Dip (2020), 50 short solo improvisations on the !trumpet, shuffled in JavaScript to give
you a different album every time you visit http://www.nicolascollins.com/LuckyDip.htm.

Tried and rejected

The core hardware and software of the !trumpet were developed over the last four
months of 2017, with the first performance (duo with Ben Neill) taking place in
Beacon, NY on February 11, 2018. Subsequently I’ve added new voices, incorporated
patches for several compositions in repertoire (see compvoices above) and utility pur-
poses (soundcheck), and tweaked the core program. Happily, my original software
shell has proven quite robust in its ability to absorb this expansion – as I had hoped,
but nonetheless much to my surprise, since I am not a very practical programmer.
Several significant changes to the structure of the instrument and its software were
implemented but subsequently rejected; likewise, several voices were programmed but
dropped after trial by performance. The process of rejection honed the instrument’s
identity as much as any of the additions I accepted. An inventory of these false starts
articulates what the instrument is not, which in turn helps clarify what it is.

• Bluetooth mute. I was quite proud of my first wireless mute: essentially the same
switch array currently in use, but connected to a hacked Bluetooth A/V remote

105Nicolas Collins

control instead of an IR remote. Data was routed through the Macintosh Bluetooth
handler (accessed through the main menu bar). I would have preferred an interface
that mapped through my Max patch, but the final nudge to seek an alternate ap-
proach was seeing a photo of myself in action: the white controller made me look
as though I was flashing the audience my middle finger. Frank Baldé (STEIM) en-
couraged me to use a simpler, one-way protocol, instead of the bi-directional hand-
shaking of Bluetooth. I experimented with a few radio-frequency (RF) controllers,
but they responded to key-closures too sluggish. I eventually settled on a compact
programmable IR pc board, currently in use (Tauntek IRMimic) – essentially a TV
remote control, about as dumb as you can get these days.

• Additional sensors and controllers were added to the trumpet, on the assump-
tion that more data would be more useful: simple mechanical tilt switches, a
9DOF multi-axis tilt/direction sensor, a rotary shaft encoder (data wheel), ad-
ditional pushbutton switches. Despite concerted effort, I was never able to incor-
porate the additional information in a musically useful way. The various position
sensors offer no resistance or haptic feedback, which is something I need in an
instrument: I was always more comfortable with the old trombone slide -- a
“sticky” controller that stayed where I put it – than with a free-air controller like
a Theremin or Michel Waisvisz’s “Hands”; and the spring-loaded valves (in a
poorly maintained trumpet) had just the right amount of resistance and inertia.
There also seems to be a limit to how many switch-to-function options my fin-
gers and brain can map onto a single integrated instrument; more would require
something like a mode swap – a complicating trait in the trombone system that
I wanted to avoid repeating.

• Alternative valve sensors. The inverse-square fall-off of magnetic field strength re-
duces the resolution of the Hall-effect valve sensors as the piston approaches the
top of its excursion, and requires some extra math to linearize. In pursuit of greater
accuracy and simplicity I experimented with, and rejected, two alternatives:

Figure 28. Original Bluetooth mute, detail and in use in concert.

106 The Development of the !trumpet

o Mechanical linear sensors. I coupled a pricey Bourne linear position sensor
(3048L) to each valve. Resolution was excellent, but the drag of the sensors
slowed valve movement, and the mechanisms cluttered the instrument and
made it look too steampunk.

o IR distance sensors. I experimented with a VCNL 4010 IR distance sensor,
which measures short distances accurately, but quantizes the data to the nearest
millimeter, which is too coarse for the 15mm of travel of the valve.

(I am still on the lookout for other valve sensing options).
• Accompaniment software. Although the audio output of each voice consists of a

mix of three sound generators, the !trumpet is an intrinsically monophonic instru-
ment, like the traditional trumpet. For solo improvisation I wrote a program that
generated an accompaniment by analyzing my valving and breath gestures and
superimposing a delayed version of this control data on secondary set of voices
that went to the PA. Perhaps due to its simplicity, my accompaniment algorithm
didn’t seem to add much value to solo improvisation. I eventually deleted this sec-
tion of my software, focused instead on emphasizing the positive role of gaps and
extended dynamic range in my solo improvisation, and sought live musicians for
polyphony as needed.

• Sampling and DSP. Despite my frustration with the ubiquity of live sampling at
the time of retiring the trombone-propelled electronics, and my vow to exclude it
from the new instrument, from time-to-time I would – seemingly involuntarily –
incorporate characteristics of that sound world in the development of new voices
(like a recovering alcoholic veering toward the beckoning door of a pub). Aside
from the sample playback patches used for the trumpet voice and the noisy sample
sets, and the reverb and waveguide objects in a few percussive voices, I ultimately
rejected most recognizably-“digital” effects.

The future

This essay comes three years after I began the development of this instrument. The
structure of both the hardware and the software facilitate periodic updates, and the pre-
sent state of the instrument has evolved through cycles of addition and subtraction of
features. At the moment it seems relatively stable21. The most recent changes have been
the addition of features to facilitate recording: a pressure-zone microphone embedded in
the bell (see figure 25) and a “slate” function in the program. The pandemic has quashed
performance options for the past nine months, so some solo recording sessions present
a timely opportunity to evaluate the versatility and “instrument-ness” of the !trumpet.

21 Liz Allbee, on trying out my instrument, observed that the breath sensor only responded to blowing:
“I like to make sounds by sucking through the mouthpiece as well as blowing.” I purchased a variant of
my current breath sensor that measures negative pressure (vacuum), as well as the usual positive pressure,
but at the time of writing Covid-19 holds these components on the opposite side of the Atlantic from
me – experiments delayed.

107Nicolas Collins

Figure credits:

All figures by Nicolas Collins except:
Fig. 1b: Cindy Voitus
Fig. 3a: André Hoekzema
Fig. 3b, Fig. 4 right: Simon Lonergan
Fig. 4a: Susan Tallman
Fig. 6 and 13: Zoe Adler (zoe@zoeadler.com)
Fig. 28b: Robert Poss

	Questo numero
	Inventare gli arnesi della propria espressione
	Stefano Alessandretti, Laura Zattra, Paolo Zavagna
	Media archaeology-based Visual Music
	Alberto Novello
	Tra nubi, selve, giardini e tassonomie: nuova liuteria elettromeccanica ed elettroacustica nelle pratiche musicali di Mauro Lanza, Andrea Valle e Simone Pappalardo
	Luca Guidarini
	The Development of the !trumpet
	Nicolas Collins
	Abstracts
	Biographies

