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Abstract. The Gumbel distribution is one of the most used models to carry out risk 
analysis in extreme events, in reliability tests, and in life expectancy experiments. In 
this article, we extend the general statistics for goodness-of-fit tests proposed by
Noughabi (2019), specifically focusing on the Gumbel distribution. Our approach 
utilizes a new estimate of Kullback-Leibler information to develop a goodness-of-fit
test. The properties of the test statistic are presented, and the unknown parameters of 
the Gumbel distribution are estimated by the maximum likelihood method. Critical 
points of the proposed test statistic are obtained through Monte Carlo simulation. A 
simulation study is conducted to evaluate the power of the test and compare its 
performance with existing tests. Finally, two real data examples are presented and 
analyzed.
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1. INTRODUCTION
The Gumbel distribution is a popular, asymmetric, extreme value distribution (EVD), used 
to model maximums and minimums. For example, the EVD Type I has been used to predict 
earthquakes, floods, and other natural disasters, as well as modeling operational risk in risk 
management and the life of products that quickly wear out after a certain age. 

Various applications based on the Gumbel distribution assumption are widely 
addressed in different fields of science. (e.g., Kotz and Nadarajah, 2000; Koutsoyiannis, 
2003; Aryal and Tsokos, 2009; Yolanda et al., 2019; Eledum and Mohammed 2022; 
Osatohanmwen et al. (2022); and Krishna and Goel (2023)). 

However, misspecification of the Gumbel distribution can have serious consequences, 
particularly when modeling extreme events. Incorrectly assuming a Gumbel distribution 
could lead to:

• Underestimation of risk: For instance, in risk management, using a Gumbel 
distribution when another skewed distribution is more appropriate could result in 
underestimating the likelihood of extreme events, leading to inadequate risk 
mitigation strategies.

• Inaccurate predictions: When modeling phenomena like natural disasters, using the 
wrong distribution could produce inaccurate predictions, impacting disaster 
preparedness and response efforts.
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Therefore, finding a powerful goodness-of-fit test for the Gumbel distribution is crucial 
to ensure accurate model selection and reliable analysis. This is especially important when 
dealing with extreme events and other critical applications where misspecification can have 
significant consequences.

In this article, we investigate different goodness of fit tests for the Gumbel distribution 
based on the empirical distribution function. 

Assuming that 1,..., nX X is the sample from a distribution F , we wish to assess 
whether the unknown ( )F x can be satisfactorily approximated by a Gumbel model ( )G x
. Goodness-of-fit (GOF) tests are designed to measure how well a proposed model fits the 
observed sample data. There are various classes of GOF tests, each based on different 
principles and measures of fit. One prominent class consists of tests based on the distance 
between the empirical and hypothesized distribution functions. These tests, such as the 
Cramer-von Mises ( 2W ), Kolmogorov-Smirnov ( D ), Kuiper (V ), Watson ( 2U ), and 
Anderson-Darling ( 2A ), assess how well the hypothesized distribution function aligns with 
the empirical distribution function derived from the observed data. For this study, we focus 
on this class of GOF tests because: 

• They are widely used and well-established.
• They provide a direct measure of the discrepancy between the proposed model and the 
observed data.
• They have robust theoretical properties and have been extensively studied in the 
literature.

For more details about these tests, see D’Agostino and Stephens (1986), Lemeshko et 
al. (2007), and Lemeshko and Gorbunova (2013).

The Kullback-Leibler (KL) discrimination has been widely studied in the literature as
a central index for measuring quantitative similarity between two probability distributions. 
The KL discrimination of f from g is defined by

( )( , ) ( ) log .
( )

f xD f g f x dx
g x

= ∫
Note that ( , ) 0D f g = if and only if ( ) ( )f x g x= with probability 1. 

Recently, Alizadeh Noughabi (2019) proposed a new estimate of the Kullback-Leibler 
discrimination and then constructed a test statistic for testing the validity of a model. His
test statistic is

( )( ) ( )
1

1 ˆ ˆlog ( ; ) ( ; ) ,
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n

mn i m i m
i

nDA G X G X
n m + −
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∑

where G is the distribution function of g, m is a positive integer, 2m n≤ , and 

(1) (2) ( )... nX X X≤ ≤ ≤ are the order statistics and ( ) (1)iX X= if 1i < , ( ) ( )i nX X= if i n>

. Here, θ is a model parameter which is usually unknown, and θ̂ is a reasonable 
equivariant estimate of θ .

Alizadeh Noughabi (2019) showed that the test statistic is non-negative just like the 
Kullback-Leibler divergence, i.e., 0.mnDA ≥ Also, the test based on mnDA is consistent.
Then, He proposed tests for normal, exponential, Laplace and Weibull distributions and 
compared the power of these tests with the other existing tests and showed that his test has 
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a good power against different alternatives. In this paper, we apply the Alizadeh 
Noughabi’s test statistic and introduce a goodness of fit test for the Gumbel distribution.

In section 2, we express some properties of the Gumbel distribution and then propose
a goodness of fit test statistic for the Gumbel distribution based on an estimate of Kullback-
Leibler divergence. In Section 3, the critical points and the power values of the proposed 
test are computed by Monte Carlo simulations and then compared with some known 
competing tests. Section 4 contains two real examples for illustrative purpose. The last
section contains a brief conclusion.

2.  The GUMBEL DISTRIBUTION AND TEST STATISTIC
This section begins by presenting key properties of the Gumbel distribution. We then 
extend the general statistics for goodness-of-fit tests proposed by Aizadeth Noughabi 
(2019), tailoring this framework to specifically address the Gumbel distribution.

2.1 THE GUMBEL  DISTRIBUTION
The probability density function of the Gumbel distribution has the following form.

1( ; , ) exp exp , , , 0,x xg x x −µ −µ   µ σ = − − − −∞ < < ∞ µ∈ σ >    σ σ σ    


where µ and σ are the location and scale parameters, respectively. The cumulative
distribution function can be obtained as

( ; , ) exp exp .xG x  −µ µ σ = − −  σ  

The mean and variance of the distribution are 

( )E X = µ +σγ and
2 2

( )
6

Var X π σ
= ,

where γ is the Euler constant. 
If ( )Z X= −µ σ , then Z is called the standard Gumbel random variable with the 

following density.
( )( ) , .

zz eg z e z
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Suppose that 1 2, ,..., nX X X are a random sample from a Gumbel distribution. The 
maximum likelihood estimates for the Gumbel distribution are the solution to the following 
simultaneous equations 
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It is clear that the MLEs of the parameters cannot be obtained explicitly. Therefore, 
these equations need to be solved numerically and this is typically accomplished by using 
statistical software packages. We will use the MLEs to computation of the proposed test 
statistic.

2.2 THE PROPOSED TEST  STATISTIC

Given a random sample 1,..., nX X from a continuous probability distribution F with a 
density function ( )f x , the hypothesis of interest is 

0
1: ( ) ( ; , ) exp exp , ( , ) ,x xH f x g x for some −µ −µ    = µ σ = − − − µ σ ∈Θ    σ σ σ    

where µ and σ are specified or unspecified and +Θ = ×  . The alternative to 0H is 

1 : ( ) ( ; , ) , ( , ).H f x g x for any≠ µ σ µ σ

We extend the following test statistic for test of the Gumbel distribution. 

( )( ) ( )
1
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nDA G X G X
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 

∑

where G is the Gumbel distribution function and µ̂ and σ̂ are the maximum likelihood 
estimates of the unknown parameters. 

We reject the null hypothesis for large values of the test statistic. According to Alizadeh 
Noughabi (2019), the test statistic is non-negative, i.e., 0mnDA ≥ , and also the test based 
on mnDA is consistent.
Remark 1. Clearly, the proposed test statistic is invariant to transformations of location-
scale and also the parameter space is transitive. Therefore, the distribution of the proposed 
test statistic mnDA does not depend on the unknown parameters µ and σ . We will use this 
property to obtain the critical values of the test statistic. 

3. CRITICAL POINTS AND POWER STUDY
At the significance level α , we reject 0H if the value of the test statistic is greater than 

( )C α , where the critical value ( )C α is obtained by the (1 )−α − quantile of the distribution 
of the test statistic under the null hypothesis 0H .

Since deriving the exact distribution of the proposed test statistic is complicated, we
study the null distribution of the proposed test statistic via Monte Carlo simulations using 
100,000 runs for each sample size.

We use the following steps to determine the critical values of the proposed test
statistics:

1) Generate a sample 1,..., nX X with size n from the standard Gumbel distribution;
2) Calculate the proposed statistics based on the sample 1,..., nX X ;
3) Repeat Steps 1–2 a large number of times and then determine the (1−α)th quantile 

of the test statistics.
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The obtained critical values for the proposed test statistics and sample sizes 5 50n≤ ≤
are presented in Table 1.

Table 1. Critical values of the proposed test statistic for 0.05α =
m

n 1 2 3 4 5 6 7 8 9 10
5 1.0889 0.6657
10 0.7842 0.5222 0.4558 0.4560 0.5025
15 0.6535 0.4320 0.3820 0.3648 0.3673 0.3930 0.4299
20 0.5743 0.3763 0.3266 0.3115 0.3127 0.3189 0.3350 0.3605 0.3904 0.4191
25 0.5262 0.3397 0.2908 0.2765 0.2742 0.2797 0.2876 0.3009 0.3174 0.3402
30 0.4962 0.3115 0.2629 0.2477 0.2449 0.2490 0.2553 0.2651 0.2755 0.2895
40 0.4579 0.2774 0.2275 0.2103 0.2056 0.2065 0.2116 0.2182 0.2255 0.2339
50 0.4298 0.2557 0.2056 0.1870 0.1799 0.1792 0.1817 0.1859 0.1917 0.1986

Based on Remark 1, we can use any value of the parameters to obtain the critical values 
because the distribution of the test statistic does not depend on the unknown parameters µ
and σ . Here, we considered 0µ = and 1σ = .

The power values of the proposed test against various alternatives are computed by 
Monte Carlo simulations. We compare the power values of the proposed test with the 
existing tests. In our power comparisons, we consider the well-known tests which are 
applied in practice and statistical software. The test statistics of these tests are briefly 
described as follows. For more details about these tests, on can see D’Agostino and
Stephens (1986).

Let (1) (2) ( )... nX X X≤ ≤ ≤ are the order statistics based on the random sample 1,..., nX X
.

1. The Cramer-von Mises statistic (1931): A quadratic statistic based on the integrated 
squared difference between the empirical and hypothesized cumulative distribution 
functions (CDFs).

2
2

( )
1

1 2 1 ˆ ˆ( ; , ) .
12 2

n

i
i

iW G X
n n=

− = + − µ σ 
 

∑

2. The Watson statistic (1961): A quadratic statistic similar to the Cramer-von Mises 
test but with a modified weighting function to account for the circularity of the data.

( )22 0.5 ,U CH n P= − −

where P is the mean of ( ) ˆ ˆ( ; , ), 1,...,iG X i nµ σ = .

3. The Kolmogorov-Smirnov statistic (1933): A supremum statistic based on the 
maximum absolute difference between the empirical and hypothesized CDFs.

max( , )D D D+ −= .
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where 

{ } { }( ) ( )1 1
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−
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4. The Kuiper statistic (1960): A supremum statistic similar to the Kolmogorov-
Smirnov test but accounts for the cyclical nature of the data.

V D D+ −= + .

5. The Anderson-Darling statistic (1952): A quadratic statistic that gives more weight 
to the tails of the distribution, making it particularly sensitive to deviations in the 
tails.

{ }2
( ) ( 1)

1

1 ˆ ˆ ˆ ˆ(2 1) log ( ; , ) log 1 ( ; , ) .
n

i n i
i

A n i G X G X
n − +

=

 = − − − µ σ + − µ σ ∑

where G is the Gumbel distribution function.
The following alternatives are considered in power comparison. The considered

alternatives can divide into two groups, symmetric alternatives and asymmetric 
alternatives.
Group I: Symmetric alternatives:

• the standard normal distribution, denoted by (0,1)N ,
• the Student’s t distribution with 10 degrees of freedom, denoted by (10)t ,
• the Student’s t distribution with 3 degrees of freedom, denoted by (3)t ,
• the standard logistic distribution, denoted by (0,1)L ,
• the standard Laplace distribution, denoted by Laplace ,
• the standard Cauchy distribution, denoted by (0,1)C ,
• the uniform distribution, denoted by (0,1)U ,
• the beta distribution, denoted by (2,2)Beta ,

Group II: asymmetric alternatives:
• the exponential, (1)Exp ,
• the gamma, (0.5,1)Γ and (2,1)Γ ,
• the lognormal, (0,1)LN ,
• the Weibull, (0.5,1)W and (2,1)W ,
• the inverse Gaussian, (1,0.5)IG , (1,1)IG and (1,2)IG ,
• the skew normal distribution, (0,1,0.5)SN , (0,1, 2)SN and (0,1,3)SN ,
• the skew Laplace distribution, (0,1,0.5)SL , (0,1, 2)SL and (0,1,3)SL .

Under above alternatives the power values of the tests are obtained by means of Monte 
Carlo simulations. Under each alternative 100,000 samples of size 10, 20, 30 and 50 are 
generated and the test statistics are calculated. Then power value of the corresponding test 
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is computed by the frequency of the event ‘‘the statistic is in the critical region’’. The
power values of the tests at significance level 0.05α = are presented in Tables 2 and 3.
For each sample size and alternative, the bold type in these tables indicates the tests
achieving the maximal power.

Table 2.  Empirical powers of the tests against symmetric distribution at significance level 5%.
.altern n 2W D V U 2A mnDA

(0,1)N 10 0.1090 0.0929 0.1002 0.1088 0.1008 0.1859
20 0.2092 0.1620 0.1821 0.2039 0.2187 0.3899
30 0.3026 0.2289 0.2592 0.2895 0.3340 0.5252
50 0.4965 0.3694 0.4263 0.4717 0.5551 0.7037

(10)t 10 0.1330 0.1113 0.1217 0.1319 0.1254 0.2138
20 0.2690 0.2094 0.2401 0.2643 0.2801 0.4378
30 0.3907 0.3033 0.3467 0.3819 0.4202 0.5719
50 0.6057 0.4771 0.5442 0.5912 0.6485 0.7511

(3)t 10 0.2352 0.2000 0.2167 0.2334 0.2301 0.2893
20 0.4572 0.3848 0.4312 0.4570 0.4653 0.5322
30 0.6220 0.5391 0.5908 0.6218 0.6376 0.6795
50 0.8252 0.7505 0.7990 0.8262 0.8392 0.8503

(0,1)C 10 0.5971 0.5617 0.5759 0.5934 0.5931 0.4526
20 0.8708 0.8350 0.8560 0.8701 0.8703 0.7591
30 0.9612 0.9442 0.9546 0.9611 0.9617 0.8837
50 0.9971 0.9946 0.9960 0.9971 0.9973 0.8094

(0,1)L 10 0.1439 0.1197 0.1300 0.1427 0.1367 0.2258
20 0.2978 0.2344 0.2681 0.2939 0.3098 0.4564
30 0.4317 0.3382 0.3856 0.4242 0.4586 0.5941
50 0.6512 0.5297 0.5945 0.6409 0.6879 0.7739

Laplace 10 0.2243 0.1900 0.2037 0.2228 0.2139 0.2819
20 0.4676 0.3922 0.4344 0.4691 0.4670 0.5599
30 0.6456 0.5592 0.6061 0.6464 0.6498 0.7313
50 0.8602 0.7902 0.8289 0.8616 0.8623 0.9080

(0,1)U 10 0.1244 0.0995 0.1233 0.1295 0.1177 0.1683
20 0.2454 0.1822 0.2270 0.2483 0.2654 0.2888
30 0.3787 0.2732 0.3418 0.3745 0.4422 0.3855
50 0.6553 0.4776 0.5991 0.6415 0.7616 0.5662

(2, 2)Beta 10 0.0903 0.0787 0.0854 0.0920 0.0805 0.1522
20 0.1578 0.1315 0.1367 0.1531 0.1595 0.2975
30 0.2319 0.1854 0.1912 0.2169 0.2544 0.4102
50 0.4071 0.3036 0.3345 0.3724 0.4739 0.5816
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Table 3. Empirical powers of the tests against asymmetric distribution at significance level 5%.
.altern n 2W D V U 2A mnDA

(1)Exp 10 0.1585 0.1396 0.1280 0.1482 0.1919 0.1304
20 0.3047 0.2439 0.2255 0.2733 0.3769 0.3324
30 0.4446 0.3515 0.3296 0.3963 0.5506 0.5608
50 0.7020 0.5596 0.5651 0.6428 0.8132 0.8637

(0.5,1)Γ 10 0.4350 0.3769 0.3593 0.4114 0.5075 0.3986
20 0.7764 0.6624 0.6878 0.7361 0.8513 0.7915
30 0.9285 0.8448 0.8875 0.9019 0.9680 0.8931
50 0.9955 0.9770 0.9925 0.9915 0.9993 0.9175

(2,1)Γ 10 0.0630 0.0616 0.0593 0.0617 0.0712 0.0680
20 0.0853 0.0752 0.0737 0.0804 0.0992 0.0951
30 0.1106 0.0960 0.0911 0.1042 0.1334 0.1334
50 0.1653 0.1318 0.1310 0.1534 0.2053 0.2245

(0,1)LN 10 0.2850 0.2621 0.2317 0.2626 0.3332 0.1298
20 0.5219 0.4481 0.3995 0.4647 0.5962 0.3214
30 0.7043 0.6130 0.5594 0.6349 0.7803 0.5208
50 0.9068 0.8313 0.8022 0.8547 0.9496 0.7455

(0.5,1)W 10 0.6997 0.6363 0.6264 0.6745 0.7586 0.5051
20 0.9600 0.9144 0.9344 0.9453 0.9790 0.6488
30 0.9965 0.9857 0.9936 0.9942 0.9989 0.5775
50 1.0000 0.9997 1.0000 1.0000 1.0000 0.4524

(2,1)W 10 0.0484 0.0468 0.0510 0.0504 0.0444 0.0622
20 0.0559 0.0548 0.0583 0.0582 0.0509 0.0799
30 0.0620 0.0613 0.0626 0.0632 0.0582 0.0998
50 0.0808 0.0751 0.0737 0.0807 0.0768 0.1489

(1,0.5)IG 10 0.4135 0.3741 0.3390 0.3848 0.4731 0.1995
20 0.7340 0.6469 0.6140 0.6795 0.7997 0.5164
30 0.8957 0.8224 0.8055 0.8535 0.9368 0.6944
50 0.9890 0.9648 0.9654 0.9774 0.9960 0.7622

(1,1)IG 10 0.2314 0.2116 0.1835 0.2121 0.2760 0.1171
20 0.4313 0.3670 0.3196 0.3789 0.5062 0.2920
30 0.5162 0.5203 0.4590 0.5434 0.7024 0.4963
50 0.8494 0.7469 0.7020 0.7829 0.9115 0.7889

(1,2)IG 10 0.1102 0.1047 0.0919 0.1017 0.1316 0.0731
20 0.1841 0.1617 0.1333 0.1594 0.2246 0.1262
30 0.2567 0.2178 0.1761 0.2161 0.3186 0.1963
50 0.4218 0.3375 0.2800 0.3542 0.5105 0.3539

(0,1,0.5)SN 10 0.1057 0.0900 0.0972 0.1053 0.0978 0.0684
20 0.2003 0.1559 0.1740 0.1955 0.2092 0.1275
30 0.2895 0.2208 0.2492 0.2773 0.3219 0.2126
50 0.4760 0.3544 0.4074 0.4524 0.5337 0.4019
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Table 3. Continued.
.altern n 2W D V U 2A mnDA

(0,1, 2)SN 10 0.0644 0.0577 0.0631 0.0649 0.0587 0.0553
20 0.0887 0.0757 0.0831 0.0888 0.0874 0.0685
30 0.1118 0.0946 0.0998 0.1091 0.1194 0.0881
50 0.1650 0.1284 0.1392 0.1574 0.1849 0.1286

(0,1,3)SN 10 0.0507 0.0487 0.0514 0.0518 0.0476 0.0536
20 0.0565 0.0526 0.0583 0.0586 0.0532 0.0598
30 0.0582 0.0558 0.0594 0.0588 0.0589 0.0689
50 0.0679 0.0629 0.0660 0.0678 0.0703 0.0817

(0,1,0.5)SL 10 0.4059 0.3275 0.3714 0.4012 0.3927 0.1867
20 0.7535 0.6448 0.7099 0.7473 0.7576 0.5536
30 0.9087 0.8329 0.8785 0.9035 0.9147 0.7880
50 0.9904 0.9703 0.9831 0.9892 0.9919 0.9609

(0,1,2)SL 10 0.1092 0.0991 0.1003 0.1071 0.1116 0.0469
20 0.1936 0.1646 0.1821 0.1945 0.1997 0.0652
30 0.2712 0.2292 0.2569 0.2737 0.2839 0.0953
50 0.4254 0.3548 0.4055 0.4343 0.4395 0.1646

(0,1,3)SL 10 0.0978 0.0929 0.0863 0.0933 0.1083 0.0527
20 0.1533 0.1359 0.1313 0.1458 0.1679 0.0620
30 0.2034 0.1771 0.1736 0.1924 0.2231 0.0729
50 0.3158 0.2602 0.2723 0.3044 0.3358 0.1012

The power of the proposed test statistic depends on the alternative distribution and the 
window size. It is not possible to have the best value of m which attains the maximum 
powers for all alternatives. Therefore, based on a broad Monte Carlo analysis, we 
determine the optimal m to be the values of m which attain good (not best) powers for 
symmetric of asymmetric alternative distributions. For a given n , the value of m can be 
obtained from heuristic formula [ ]2 1m n= − and [ ]10m n= , for symmetric of 
asymmetric alternatives, respectively. Here, [x] means the integer part of x. For example,
when 20n = , we recommend 2m = and 9m = , against asymmetric and symmetric 
alternatives, respectively, as the optimal values which the proposed test attains good (not 
best) power values. We observe that the optimal m increases as n increases.

From Table 2, the symmetric alternatives, it is seen that the proposed test based on 
mnDA statistic has the most power (with the exception of the case where Cauchy was the 

alternative). The differences of power values between the test mnDA and the other tests are 
substantial. Therefore, against symmetric alternatives, the proposed test based on mnDA
statistic should be recommended in practice.

In Table 3, the asymmetric alternatives, it is evident that no single test can be said to 
perform the best against all alternatives. However, the test 2A has the most power against 
mostly alternatives.

Our analysis indicates that the mnDA and 2A tests exhibit the highest power against 
their respective types of alternatives: mnDA for symmetric and 2A for asymmetric 
distributions. Overall, both tests demonstrate robust performance against a range of 
alternatives, making them reliable tools for practical applications.
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4. APPLICATIONS
In this section, we examine two real-world data set to test the goodness-of-fit for the 
Gumbel distribution when a sample is available.

Example 1. The first real data set consists of 30 observations of time between failures for 
the repairable item. It was introduced by Murthy et al. (2004) and then applied by Hossam 
et al. (2022). The real data set is as follows.
1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 
0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

In Figure 1, we present a graphical comparison of the observed data and the Gumbel 
distribution using an empirical distribution function (EDF) plot. Additionally, we provide 
a quantile-quantile (Q-Q) plot to visually assess the agreement between the two 
distributions.

The proposed procedure can be used to investigate whether the data come from a 
Gumbel distribution. The value of the considered test statistics is computed and also the 
critical value of each test at the significance level 0.05 is obtained by Monte Carlo 
simulation. Results are summarized in Table 4. Also, the values of estimated parameters 
are ˆ 1.06µ = and ˆ 0.77σ = .

Figure 1. EDF plot and Q-Q plot of the observed data to the Gumbel distribution.

Table 4. The value of the test statistics and critical values at 5% level.
Test Value of the test statistic Critical value Decision

2W 0.0335 0.1226 Not Reject 0H
D 0.1023 0.1566 Not Reject 0H
V 0.1589 0.2641 Not Reject 0H

2U 0.0295 0.1165 Not Reject 0H
2A 0.2748 0.7461 Not Reject 0H

mnDA 0.1062 0.2629 Not Reject 0H
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Based on the considered tests, we can find that the values of these test statistics are 
smaller than the corresponding critical values and consequently the Gumbel hypothesis is 
not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not 
have sufficient evidence to reject the Gumbel distribution as the underlying distribution of 
these data.

Example 2. We consider the Covid-19 data set presented by Hassan et al. (2021). Covid-
19 data belong to Italy of 111 days that are recorded from 1 April to 20 July 2020. This 
data formed of daily new deaths divided by daily new cases. It is available at 
https://covid19.who.int. The data set is as follows.
0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 
0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 
0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597, 0.2195, 
0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 0.2148, 
0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686, 
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792, 0.3515, 
0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071, 0.1041, 
0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894, 
0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 
0.0476, 0.0562, 0.0138.

Figure 2 includes both an EDF plot and a Q-Q plot, visually comparing the observed 
data to the Gumbel distribution.

Figure 2. EDF plot and Q-Q plot of the observed data to the Gumbel distribution.

For this example, the values of estimated parameters are obtained as ˆ 0.13µ = and 
ˆ 0.07σ = . Applying the proposed procedure to this data set the value of the test statistic is 

obtained as 0.0967 and also the critical value of the test at the significance level 0.05 is 
obtained as 0.1146. The other procedures are also used to investigate whether this data 
come from a Gumbel distribution. The value of each test statistic is computed and also the 
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critical value of each test is obtained by Monte Carlo simulation. Results are summarized 
in Table 5.

Table 5. The value of the test statistics and critical values at 5% level.
Test Value of the test statistic Critical value Decision

2W 0.1768 0.1235 Reject 0H
D 0.0816 0.0835 Not reject 0H
V 0.1401 0.1408 Not reject 0H

2U 0.1632 0.1174 Reject 0H
2A 1.1045 0.7552 Reject 0H

mnDA 0.0967 0.1146 Not Reject 0H

Based on the tests ,D V and mnDA , we can find that the values of these test statistics
are smaller than the corresponding critical values and consequently the Gumbel hypothesis
is not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not 
have sufficient evidence to reject the Gumbel distribution as the underlying distribution of 
these data. Based on the other tests, since the values of the test statistics are larger than the 
corresponding critical values, the Gumbel hypothesis is rejected at significance level 0.05.

Based on our simulations from Tables 2 and 3, we concluded that generally the 
proposed test mnDA and 2A are powerful against symmetric and asymmetric alternatives, 
respectively. Therefore, in this example, we prefer the proposed test 2A over the other 
tests. Consequently, we choose this test and make a decision. From the results of Table 6,
the test 2A reject the null hypothesis and we can not conclude that these data follow a 
Gumbel distribution.

5.  CONCLUSIONS
In this paper, we have extended a goodness-of-fit test for the Gumbel distribution based on 
an estimate of Kullback-Leibler information. We have examined the properties of the 
proposed test, computed critical values, and evaluated its power. While our findings 
demonstrate the test’s effectiveness against symmetric alternatives, its true value lies in 
distinguishing the Gumbel distribution from other skewed distributions, particularly 
relevant in domains like extreme event modeling and survival analysis where
misspecifying a skewed distribution as a Gumbel could lead to underestimation of risk or 
inaccurate predictions.

The current study focuses on complete data sets, but acknowledging the prevalence of 
type II censoring in survival analysis, future research should investigate the applicability 
of our proposed test in the presence of censoring. This extension would be particularly 
valuable for analyzing survival data and evaluating the fit of the Gumbel distribution in 
settings where complete data is not available.

Our findings underscore the potential of our proposed test in various domains. Future 
research should include a more comprehensive comparison of our test with existing 
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methods, particularly the Anderson-Darling test, to gain a clearer understanding of its 
advantages and limitations in both complete and censored data settings. 
Finally, we have presented two real data sets to illustrate how the proposed test can be 
applied to items and removed from the life-test experiment items and removed from the life-
test experiment assess the goodness-of-fit of the Gumbel distribution when a complete 
sample is available. This demonstrates the potential usefulness of our test in various 
domains, and further research will explore its applicability to censored data settings.

ACKNOWLEDGEMENTS
The author is grateful to the anonymous referees and the associate editor for providing 
useful comments on an earlier version of this manuscript.

REFERENCES
Alizadeh Noughabi, H. (2019). A new estimator of Kullback–Leibler information and its 

application in goodness of fit tests. Journal of Statistical Computation and 
Simulation, 89, 1914-1934.

Anderson, T.W. and Darling, D.A. (1954). A test of goodness of fit. Journal of American 
Statistical Association, 49, 765-769.

Aryal, G.R. and Tsokos, C.P. (2009). On the transmuted extreme value distribution with 
application, Nonlinear Analysis, 71, 1401-1407.

D’Agostino, R.B. and Stephens, M.A. (Eds.) (1986). Goodness-of-Fit Techniques, New 
York: Marcel Dekker.

Eledum, H. and Mohammed, A.M. (2022). A new generalization of the Gumbel 
distribution with climate application, Information Sciences Letters, 11, 278-286.

Hassan, A.S., Almetwally, E.M. and Ibrahim, G.M. (2021). Kumaraswamy inverted topple 
one distribution with applications to COVID-19 data. CMC-Computers Materials and 
Continua, 68, 337-358.
Hossam E., Abdulrahman, A.T., Gemeay A.M., Alshammari, N., Alshawarbeh E.and

Mashaqbah, N.K. (2022). A novel extension of Gumbel distribution: Statistical 
inference with COVID-19 application, Alexandria Engineering Journal, 61, 8823-
8842.

Kolmogorov, A.N. (1933), Sulla determinazione empirica di une legge di distribuzione.
Giornale dell’Intituto Italiano degli Attuari, 4, 83-91.

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications,
World Scientific.

Koutsoyiannis, D. (2003). On the appropriateness of the Gumbel distribution for modelling 
extreme rainfall, In Proceedings of the ESF LESC Exploratory Workshop held at 
Bologna, 24-25.

Krishna, H. and Goel, R. (2023). Inferences based on correlated randomly censored 
Gumbel’s Type-I bivariate exponential distribution, Annals of Data Science,
https://doi.org/10.1007/s40745-023-00463-7.

Kuiper, N.H. (1960). Tests concerning random points on a circle, Proceedings of the 
Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 63, 38-47.



162 Noughabi, H., A.

Lemeshko, B.Yu. and Gorbunova, A.A. (2013). Application and power of the 
nonparametric Kuiper, Watson, and Zhang tests of goodness-of-fit, Measurement 
Techniques, 56, 465-475.

Lemeshko, B.,Yu., Lemeshko, S.B. and Postovalov, S.N. (2007). The power of goodness 
of fit tests for close alternatives, Measurement Techniques, 50, 132-141.

Murthy, D.N.P., Xie, M. and Jiang, R., (2004), Weibull models, volume 505, John Wiley 
& Sons.

Osatohanmwen, P., Efe-Eyefia, E. and Oyegue, F.O. (2022), The exponentiated Gumbel–
Weibull {logistic} distribution with application to Nigeria’s COVID-19 infections 
data, Annals of Data Science, 9, 909–943.

von Mises, R. (1931). Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik 
und theoretischen Physik, Leipzig and Vienna: Deuticke.

Watson, G.S. (1961). Goodness of fit tests on a circle, Biometrika, 48, 109-114.
Yolanda, M. Heleno, B. and Hector, W. (2019). Gumbel distribution with heavy tails and 

applications to environmental Data, Mathematics and Computers in Simulation, 157, 
115-129.


