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Abstract. The Gumbel distribution is one of the most used models to carry out risk
analysis in extreme events, in reliability tests, and in life expectancy experiments. In
this article, we extend the general statistics for goodness-of-fit tests proposed by
Noughabi (2019), specifically focusing on the Gumbel distribution. Our approach
utilizes a new estimate of Kullback-Leibler information to develop a goodness-of-fit
test. The properties of the test statistic are presented, and the unknown parameters of
the Gumbel distribution are estimated by the maximum likelihood method. Critical
points of the proposed test statistic are obtained through Monte Carlo simulation. A
simulation study is conducted to evaluate the power of the test and compare its
performance with existing tests. Finally, two real data examples are presented and
analyzed.
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1. INTRODUCTION

The Gumbel distribution is a popular, asymmetric, extreme value distribution (EVD), used
to model maximums and minimums. For example, the EVD Type I has been used to predict
earthquakes, floods, and other natural disasters, as well as modeling operational risk in risk
management and the life of products that quickly wear out after a certain age.

Various applications based on the Gumbel distribution assumption are widely
addressed in different fields of science. (e.g., Kotz and Nadarajah, 2000; Koutsoyiannis,
2003; Aryal and Tsokos, 2009; Yolanda et al., 2019; Eledum and Mohammed 2022;
Osatohanmwen et al. (2022); and Krishna and Goel (2023)).

However, misspecification of the Gumbel distribution can have serious consequences,
particularly when modeling extreme events. Incorrectly assuming a Gumbel distribution
could lead to:

¢ Underestimation of risk: For instance, in risk management, using a Gumbel
distribution when another skewed distribution is more appropriate could result in
underestimating the likelihood of extreme events, leading to inadequate risk
mitigation strategies.

* Inaccurate predictions: When modeling phenomena like natural disasters, using the
wrong distribution could produce inaccurate predictions, impacting disaster
preparedness and response efforts.
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Therefore, finding a powerful goodness-of-fit test for the Gumbel distribution is crucial
to ensure accurate model selection and reliable analysis. This is especially important when
dealing with extreme events and other critical applications where misspecification can have
significant consequences.

In this article, we investigate different goodness of fit tests for the Gumbel distribution
based on the empirical distribution function.

Assuming that X,,..., X, is the sample from a distribution F', we wish to assess
whether the unknown F'(x) can be satisfactorily approximated by a Gumbel model G(x)
. Goodness-of-fit (GOF) tests are designed to measure how well a proposed model fits the
observed sample data. There are various classes of GOF tests, each based on different
principles and measures of fit. One prominent class consists of tests based on the distance
between the empirical and hypothesized distribution functions. These tests, such as the
Cramer-von Mises (W?), Kolmogorov-Smirnov (D), Kuiper (¥ ), Watson (U?), and
Anderson-Darling ( 4*), assess how well the hypothesized distribution function aligns with
the empirical distribution function derived from the observed data. For this study, we focus
on this class of GOF tests because:

* They are widely used and well-established.

* They provide a direct measure of the discrepancy between the proposed model and the
observed data.

» They have robust theoretical properties and have been extensively studied in the
literature.

For more details about these tests, see D’Agostino and Stephens (1986), Lemeshko et
al. (2007), and Lemeshko and Gorbunova (2013).

The Kullback-Leibler (KL) discrimination has been widely studied in the literature as
a central index for measuring quantitative similarity between two probability distributions.
The KL discrimination of ' from g is defined by

D(f,g)=[ f(x)log

f(x)
g(x )
Note that D(f',g) =0 if and only if f(x)= g(x) with probability 1.

Recently, Alizadeh Noughabi (2019) proposed a new estimate of the Kullback-Leibler
discrimination and then constructed a test statistic for testing the validity of a model. His
test statistic is

1< n
DAmn :_n;log{zln(G(X(Hm)’e) G(X(z m)’ ))}’

where G is the distribution function of g, m is a positive integer, mSn/z, and

Xy £X ) £...£X ) are the order statistics and X ;) =X ) if i <1, X ;,, =X, ifi >n

. Here, 0 is a model parameter which is usually unknown, and 9 is a reasonable
equivariant estimate of 6.

Alizadeh Noughabi (2019) showed that the test statistic is non-negative just like the
Kullback-Leibler divergence, i.e., DA, >0. Also, the test based on DA, is consistent.

Then, He proposed tests for normal, exponential, Laplace and Weibull distributions and
compared the power of these tests with the other existing tests and showed that his test has
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a good power against different alternatives. In this paper, we apply the Alizadeh
Noughabi’s test statistic and introduce a goodness of fit test for the Gumbel distribution.

In section 2, we express some properties of the Gumbel distribution and then propose
a goodness of fit test statistic for the Gumbel distribution based on an estimate of Kullback-
Leibler divergence. In Section 3, the critical points and the power values of the proposed
test are computed by Monte Carlo simulations and then compared with some known
competing tests. Section 4 contains two real examples for illustrative purpose. The last
section contains a brief conclusion.

2. The GUMBEL DISTRIBUTION AND TEST STATISTIC

This section begins by presenting key properties of the Gumbel distribution. We then
extend the general statistics for goodness-of-fit tests proposed by Aizadeth Noughabi
(2019), tailoring this framework to specifically address the Gumbel distribution.

2.1 THE GUMBEL DISTRIBUTION
The probability density function of the Gumbel distribution has the following form.

g(x;u,c):1exp{(—x_“j—exp(—x_uj}, —o<x<o, pell, o>0,
c c c

where p1 and o are the location and scale parameters, respectively. The cumulative
distribution function can be obtained as

G(x;p,0)= exp[—exp(— x_“D.
o

The mean and variance of the distribution are

2. 2
TOo

E(X)=p+oy and Var(X)= Pt

where vy is the Euler constant.
If Z=(X-p)/o, then Z is called the standard Gumbel random variable with the
following density.
g(z)=e ), —0< z <0,

Suppose that X, X,,.... X

n

are a random sample from a Gumbel distribution. The

maximum likelihood estimates for the Gumbel distribution are the solution to the following
simultaneous equations

_ 2 nexp(-x,/6)
¥ _
Z; exp(—x,/6)

B

—élog(lz'_q_] exp(—x,./&))—ﬁt =0.
n="
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It is clear that the MLEs of the parameters cannot be obtained explicitly. Therefore,
these equations need to be solved numerically and this is typically accomplished by using
statistical software packages. We will use the MLEs to computation of the proposed test
statistic.

2.2 THE PROPOSED TEST STATISTIC

Given a random sample X,,...,.X, from a continuous probability distribution F with a
density function f'(x), the hypothesis of interest is

H,: f(x)=g(x;p,0) =éexp {(—%)—exp[—%)}, for some (L,0) €O,

where p and o are specified or unspecified and ® =[] x[J *. The alternative to H, is
H,: f(x)#g(x;p,0),  for any (n,0).

We extend the following test statistic for test of the Gumbel distribution.
13 n - -
DAmn == ; Z lOg {M(G(X(Hm); “‘7 G) - G(X(ifm) 9 “’7 G))})
i=1

where G is the Gumbel distribution function and [ and & are the maximum likelihood
estimates of the unknown parameters.

We reject the null hypothesis for large values of the test statistic. According to Alizadeh
Noughabi (2019), the test statistic is non-negative, i.e., DA, >0, and also the test based

on DA is consistent.

Remark 1. Clearly, the proposed test statistic is invariant to transformations of location-
scale and also the parameter space is transitive. Therefore, the distribution of the proposed
test statistic D4,, does not depend on the unknown parameters p and . We will use this

property to obtain the critical values of the test statistic.

3. CRITICAL POINTS AND POWER STUDY

At the significance level o, we reject H,, if the value of the test statistic is greater than
C (o), where the critical value C(a) is obtained by the (1 —a) — quantile of the distribution
of the test statistic under the null hypothesis H,,.

Since deriving the exact distribution of the proposed test statistic is complicated, we
study the null distribution of the proposed test statistic via Monte Carlo simulations using
100,000 runs for each sample size.

We use the following steps to determine the critical values of the proposed test
statistics:

1) Generate a sample X,,..., X, with size n from the standard Gumbel distribution;

2) Calculate the proposed statistics based on the sample X|,..., X ;

3) Repeat Steps 1-2 a large number of times and then determine the (1—a)th quantile
of the test statistics.
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The obtained critical values for the proposed test statistics and sample sizes 5 <n <50
are presented in Table 1.

Table 1. Critical values of the proposed test statistic for o =0.05

n

m

1 2 3 4 5 6 7 8 9 10

5
10
15
20
25
30
40
50

1.0889 0.6657

0.7842 0.5222 0.4558 0.4560 0.5025

0.6535 0.4320 0.3820 0.3648 0.3673 0.3930 0.4299

0.5743 0.3763 0.3266 0.3115 0.3127 0.3189 0.3350 0.3605 0.3904 0.4191
0.5262 0.3397 0.2908 0.2765 0.2742 0.2797 0.2876 0.3009 0.3174 0.3402
0.4962 0.3115 0.2629 0.2477 0.2449 0.2490 0.2553 0.2651 0.2755 0.2895
0.4579 0.2774 0.2275 0.2103 0.2056 0.2065 0.2116 0.2182 0.2255 0.2339
0.4298 0.2557 0.2056 0.1870 0.1799 0.1792 0.1817 0.1859 0.1917 0.1986

Based on Remark 1, we can use any value of the parameters to obtain the critical values

because the distribution of the test statistic does not depend on the unknown parameters p
and o . Here, we considered p=0 and c=1.

The power values of the proposed test against various alternatives are computed by

Monte Carlo simulations. We compare the power values of the proposed test with the
existing tests. In our power comparisons, we consider the well-known tests which are
applied in practice and statistical software. The test statistics of these tests are briefly
described as follows. For more details about these tests, on can see D’Agostino and
Stephens (1986).

Let X, < X, <...< X, are the order statistics based on the random sample X,..., X,

H =@ =

The Cramer-von Mises statistic (1931): A quadratic statistic based on the integrated
squared difference between the empirical and hypothesized cumulative distribution
functions (CDFs).

, 1 &(2i-1 Y
W :E_’—Zl E—G(X(i),u,c) .

The Watson statistic (1961): A quadratic statistic similar to the Cramer-von Mises
test but with a modified weighting function to account for the circularity of the data.

U*=CH-n(P-05),

where P is the mean of G(X,;[1,6), i=1,...,n.

3.

The Kolmogorov-Smirnov statistic (1933): A supremum statistic based on the
maximum absolute difference between the empirical and hypothesized CDFs.

D =max(D",D"7).
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where
D = max {i -G(X 50, 6)}; D - max {G(X(,.); {i,6) ’_1}
<i<n |p <i<n n
4. The Kuiper statistic (1960): A supremum statistic similar to the Kolmogorov-
Smirnov test but accounts for the cyclical nature of the data.
V=D"+D".
5. The Anderson-Darling statistic (1952): A quadratic statistic that gives more weight

to the tails of the distribution, making it particularly sensitive to deviations in the
tails.

1 o .
P _;2(21' - 1){1og G(X )3 f1,6) +log[ 1= G(X,,_.:f, o)]}.

i=1

where G is the Gumbel distribution function.

The following alternatives are considered in power comparison. The considered
alternatives can divide into two groups, symmetric alternatives and asymmetric
alternatives.

Group I: Symmetric alternatives:

the standard normal distribution, denoted by N (0,1),

the Student’s ¢ distribution with 10 degrees of freedom, denoted by #(10),
the Student’s ¢ distribution with 3 degrees of freedom, denoted by #(3),
the standard logistic distribution, denoted by L(0,1),

the standard Laplace distribution, denoted by Laplace,

the standard Cauchy distribution, denoted by C (0,1),

the uniform distribution, denoted by U (0,1),

the beta distribution, denoted by Beta(2,2),

Group II: asymmetric alternatives:

the exponential, Exp(1),

the gamma, I"(0.5,1) and I'(2,1),

the lognormal, LN (0,1),

the Weibull, W (0.5,1) and W (2,1),

the inverse Gaussian, /G (1,0.5), /G (1,1) and /G (1,2),

the skew normal distribution, SN(0,1,0.5), SN (0,1,2) and SN (0,1,3),
the skew Laplace distribution, SL(0,1,0.5), SL(0,1,2) and SL(0,1,3).

Under above alternatives the power values of the tests are obtained by means of Monte
Carlo simulations. Under each alternative 100,000 samples of size 10, 20, 30 and 50 are
generated and the test statistics are calculated. Then power value of the corresponding test
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is computed by the frequency of the event ‘‘the statistic is in the critical region’’. The
power values of the tests at significance level o =0.05 are presented in Tables 2 and 3.
For each sample size and alternative, the bold type in these tables indicates the tests
achieving the maximal power.

Table 2. Empirical powers of the tests against symmetric distribution at significance level 5%.
altern. n w? D vV U A D4,

N (0,1) 10 0.1090 0.0929 0.1002 0.1088 0.1008 0.1859
20 0.2092 0.1620 0.1821 0.2039 0.2187 0.3899
30 03026 0.2289 0.2592 0.2895 0.3340 0.5252
50  0.4965 0.3694 0.4263 0.4717 0.5551 0.7037

£(10) 10 0.1330 0.1113 0.1217 0.1319 0.1254 0.2138
20 0.2690 0.2094 0.2401 0.2643 0.2801 0.4378
30 03907 03033 0.3467 0.3819 0.4202 0.5719
50 0.6057 0.4771 0.5442 0.5912 0.6485 0.7511

t(3) 10 0.2352  0.2000 0.2167 0.2334 0.2301 0.2893
20 0.4572 03848 0.4312 0.4570 0.4653 0.5322
30 0.6220 0.5391 0.5908 0.6218 0.6376 0.6795
50 0.8252  0.7505 0.7990 0.8262 0.8392 0.8503

c (0,1 10 0.5971 0.5617 0.5759 0.5934 0.5931 0.4526
20  0.8708 0.8350 0.8560 0.8701 0.8703 0.7591
30 09612 09442 09546 0.9611 0.9617 0.8837
50 09971 09946 0.9960 0.9971 0.9973 0.8094

L(0,1) 10 0.1439  0.1197 0.1300 0.1427 0.1367 0.2258
20 0.2978 0.2344 0.2681 0.2939 0.3098 0.4564
30 04317 03382 0.3856 0.4242 0.4586 0.5941
50 0.6512 0.5297 0.5945 0.6409 0.6879 0.7739

Laplace 10 0.2243 0.1900 0.2037 0.2228 0.2139 0.2819
20 04676 03922 0.4344 0.4691 0.4670 0.5599
30 0.6456  0.5592  0.6061 0.6464 0.6498 0.7313
50 0.8602 0.7902 0.8289 0.8616 0.8623 0.9080

U (0,1 10 0.1244  0.0995 0.1233 0.1295 0.1177 0.1683
20 02454 0.1822 0.2270 0.2483 0.2654 0.2888
30 03787 0.2732  0.3418 0.3745 0.4422 0.3855
50 0.6553 04776 0.5991 0.6415 0.7616 0.5662

Beta(2,2) 10 0.0903 0.0787 0.0854 0.0920 0.0805 0.1522
20 0.1578 0.1315 0.1367 0.1531 0.1595 0.2975
30 02319 0.1854 0.1912 0.2169 0.2544 0.4102
50 04071 0.3036 0.3345 0.3724 0.4739 0.5816
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Table 3. Empirical powers of the tests against asymmetric distribution at significance level 5%.
altern. n w? D v U 4 D4,

Exp(1) 10 0.1585 0.1396 0.1280 0.1482 0.1919 0.1304
20 0.3047 0.2439 0.2255 0.2733 0.3769 0.3324
30  0.4446 0.3515 0.3296 0.3963 0.5506 0.5608
50  0.7020 0.5596 0.5651 0.6428 0.8132 0.8637
I'(0.5,1) 10 0.4350 03769 0.3593 04114 0.5075 0.3986
20 0.7764 0.6624 0.6878 0.7361 0.8513 0.7915
30 0.9285 0.8448 0.8875 0.9019 0.9680 0.8931
50 09955 0.9770 0.9925 0.9915 0.9993 0.9175
e, 10 0.0630 0.0616 0.0593 0.0617 0.0712 0.0680
20 0.0853 0.0752 0.0737 0.0804 0.0992 0.0951
30 0.1106 0.0960 0.0911 0.1042 0.1334 0.1334
50  0.1653 0.1318 0.1310 0.1534 0.2053 0.2245
LN (0,1) 10 0.2850 0.2621 0.2317 0.2626 0.3332 0.1298
20 0.5219 0.4481 0.3995 0.4647 0.5962 0.3214
30 0.7043 0.6130 0.5594 0.6349 0.7803 0.5208
50 09068 0.8313 0.8022 0.8547 0.9496 0.7455
W (0.5,1) 10 0.6997 0.6363 0.6264 0.6745 0.7586 0.5051
20 09600 009144 0.9344 0.9453 0.9790 0.6488
30 0.9965 0.9857 0.9936 0.9942 0.9989 0.5775
50  1.0000 0.9997 1.0000 1.0000 1.0000 0.4524
W (2,1) 10 0.0484 0.0468 0.0510 0.0504 0.0444 0.0622
20  0.0559 0.0548 0.0583 0.0582 0.0509 0.0799
30 0.0620 0.0613 0.0626 0.0632 0.0582 0.0998
50  0.0808 0.0751 0.0737 0.0807 0.0768 0.1489
1G(1,0.5) 10 04135 03741 0.3390 0.3848 0.4731 0.1995
20 0.7340 0.6469 0.6140 0.6795 0.7997 0.5164
30 0.8957 0.8224 0.8055 0.8535 0.9368 0.6944
50 09890 0.9648 0.9654 09774 0.9960 0.7622
IG(L1) 10 0.2314 0.2116 0.1835 0.2121 0.2760 0.1171
20 04313 03670 0.3196 03789 0.5062 0.2920
30 0.5162 0.5203 0.4590 0.5434 0.7024 0.4963
50  0.8494 0.7469 0.7020 0.7829 0.9115 0.7889
1G(1,2) 10 0.1102 0.1047 0.0919 0.1017 0.1316 0.0731
20  0.1841 0.1617 0.1333 0.1594 0.2246 0.1262
30  0.2567 0.2178 0.1761 0.2161 0.3186 0.1963
50 0.4218 0.3375 0.2800 0.3542 0.5105 0.3539
SN(0,1,0.5) 10 0.1057 0.0900 0.0972 0.1053 0.0978 0.0684
20 0.2003 0.1559 0.1740 0.1955 0.2092 0.1275
30 0.2895 0.2208 0.2492 0.2773 0.3219 0.2126
50 04760 0.3544 0.4074 0.4524 0.5337 0.4019
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Table 3. Continued.
altern. n w? D 124 U A? DA,

SN(0,1,2) 10 0.0644 0.0577 0.0631 0.0649 0.0587  0.0553
20 0.0887 0.0757 0.0831 0.0888 0.0874 0.0685

30 0.1118 0.0946 0.0998 0.1091 0.1194 0.0881

50 0.1650 0.1284 0.1392 0.1574 0.1849 0.1286

SN(0,1,3) 10 0.0507 0.0487 0.0514 0.0518 0.0476  0.0536
20 0.0565 0.0526 0.0583 0.0586 0.0532  0.0598

30 0.0582 0.0558 0.0594 0.0588 0.0589  0.0689

50 0.0679 0.0629 0.0660 0.0678 0.0703  0.0817

SL(0,1,0.5) 10 0.4059 0.3275 03714 0.4012 03927 0.1867
20 0.7535 0.6448 0.7099 0.7473 0.7576  0.5536

30 0.9087 0.8329 0.8785 0.9035 0.9147 0.7880

50 0.9904 09703 0.9831 0.9892 0.9919 0.9609

SL(0,1,2) 10 0.1092 0.0991 0.1003 0.1071 0.1116  0.0469
20 0.1936 0.1646 0.1821 0.1945 0.1997 0.0652

30 02712 0.2292 0.2569 0.2737 0.2839  0.0953

50 0.4254 03548 0.4055 0.4343 0.4395 0.1646

SL(0,1,3) 10 0.0978 0.0929 0.0863 0.0933 0.1083 0.0527
20 0.1533 0.1359 0.1313 0.1458 0.1679  0.0620

30 0.2034 0.1771 0.1736 0.1924 0.2231 0.0729

50 03158 0.2602 0.2723 0.3044 0.3358 0.1012

The power of the proposed test statistic depends on the alternative distribution and the
window size. It is not possible to have the best value of m which attains the maximum
powers for all alternatives. Therefore, based on a broad Monte Carlo analysis, we
determine the optimal m to be the values of m which attain good (not best) powers for
symmetric of asymmetric alternative distributions. For a given n, the value of m can be

obtained from heuristic formula m:[n/2—1] and m:[n/IO], for symmetric of

asymmetric alternatives, respectively. Here, [x] means the integer part of x. For example,
when n=20, we recommend m=2 and m=9, against asymmetric and symmetric
alternatives, respectively, as the optimal values which the proposed test attains good (not
best) power values. We observe that the optimal m increases as n increases.

From Table 2, the symmetric alternatives, it is seen that the proposed test based on
DA, statistic has the most power (with the exception of the case where Cauchy was the

alternative). The differences of power values between the test D4, and the other tests are
substantial. Therefore, against symmetric alternatives, the proposed test based on DA

statistic should be recommended in practice.
In Table 3, the asymmetric alternatives, it is evident that no single test can be said to

perform the best against all alternatives. However, the test 4> has the most power against
mostly alternatives.

Our analysis indicates that the D4, and A’ tests exhibit the highest power against
their respective types of alternatives: DA, for symmetric and 4> for asymmetric

distributions. Overall, both tests demonstrate robust performance against a range of
alternatives, making them reliable tools for practical applications.
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4. APPLICATIONS

In this section, we examine two real-world data set to test the goodness-of-fit for the
Gumbel distribution when a sample is available.

Example 1. The first real data set consists of 30 observations of time between failures for
the repairable item. It was introduced by Murthy et al. (2004) and then applied by Hossam
et al. (2022). The real data set is as follows.

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23,
0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37,0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

In Figure 1, we present a graphical comparison of the observed data and the Gumbel
distribution using an empirical distribution function (EDF) plot. Additionally, we provide
a quantile-quantile (Q-Q) plot to visually assess the agreement between the two
distributions.

The proposed procedure can be used to investigate whether the data come from a
Gumbel distribution. The value of the considered test statistics is computed and also the
critical value of each test at the significance level 0.05 is obtained by Monte Carlo
simulation. Results are summarized in Table 4. Also, the values of estimated parameters
are 1=1.06 and 6=0.77.

ecdf(x) Q-Q Plot for Gumbel-Distribution

= 8- o

04 06 0.8
°e T
Te
L}
Sample Quantiles
3
1 1

02

0.0
1

x Theoretical Quantiles

Figure 1. EDF plot and Q-Q plot of the observed data to the Gumbel distribution.

Table 4. The value of the test statistics and critical values at 5% level.

Test Value of the test statistic | Critical value Decision
w? 0.0335 0.1226 Not Reject H,
D 0.1023 0.1566 Not Reject H,
14 0.1589 0.2641 Not Reject H,
U’ 0.0295 0.1165 Not Reject H,
A 0.2748 0.7461 Not Reject H,

DA, 0.1062 0.2629 Not Reject H,
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Based on the considered tests, we can find that the values of these test statistics are
smaller than the corresponding critical values and consequently the Gumbel hypothesis is
not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not
have sufficient evidence to reject the Gumbel distribution as the underlying distribution of
these data.

Example 2. We consider the Covid-19 data set presented by Hassan et al. (2021). Covid-
19 data belong to Italy of 111 days that are recorded from 1 April to 20 July 2020. This
data formed of daily new deaths divided by daily new cases. It is available at
https://covid19.who.int. The data set is as follows.

0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319,
0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754,
0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597, 0.2195,
0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 0.2148,
0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686,
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792, 0.3515,
0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071, 0.1041,
0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894,
0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802, 0.0870,
0.0476, 0.0562, 0.0138.

Figure 2 includes both an EDF plot and a Q-Q plot, visually comparing the observed
data to the Gumbel distribution.
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Figure 2. EDF plot and Q-Q plot of the observed data to the Gumbel distribution.

For this example, the values of estimated parameters are obtained as 1 =0.13 and

6=0.07 . Applying the proposed procedure to this data set the value of the test statistic is
obtained as 0.0967 and also the critical value of the test at the significance level 0.05 is
obtained as 0.1146. The other procedures are also used to investigate whether this data
come from a Gumbel distribution. The value of each test statistic is computed and also the
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critical value of each test is obtained by Monte Carlo simulation. Results are summarized
in Table 5.

Table 5. The value of the test statistics and critical values at 5% level.

Test Value of the test statistic Critical value Decision
w? 0.1768 0.1235 Reject H,
D 0.0816 0.0835 Not reject H,
V 0.1401 0.1408 Not reject H,
U’ 0.1632 0.1174 Reject H,
A 1.1045 0.7552 Reject H,

DA, 0.0967 0.1146 Not Reject H,

Based on the tests D, V and DA

.. » we can find that the values of these test statistics
are smaller than the corresponding critical values and consequently the Gumbel hypothesis
is not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not
have sufficient evidence to reject the Gumbel distribution as the underlying distribution of
these data. Based on the other tests, since the values of the test statistics are larger than the
corresponding critical values, the Gumbel hypothesis is rejected at significance level 0.05.

Based on our simulations from Tables 2 and 3, we concluded that generally the
proposed test DA, and A° are powerful against symmetric and asymmetric alternatives,

respectively. Therefore, in this example, we prefer the proposed test A> over the other
tests. Consequently, we choose this test and make a decision. From the results of Table 6,
the test 4> reject the null hypothesis and we can not conclude that these data follow a
Gumbel distribution.

5. CONCLUSIONS

In this paper, we have extended a goodness-of-fit test for the Gumbel distribution based on
an estimate of Kullback-Leibler information. We have examined the properties of the
proposed test, computed critical values, and evaluated its power. While our findings
demonstrate the test’s effectiveness against symmetric alternatives, its true value lies in
distinguishing the Gumbel distribution from other skewed distributions, particularly
relevant in domains like extreme event modeling and survival analysis where
misspecifying a skewed distribution as a Gumbel could lead to underestimation of risk or
inaccurate predictions.

The current study focuses on complete data sets, but acknowledging the prevalence of
type II censoring in survival analysis, future research should investigate the applicability
of our proposed test in the presence of censoring. This extension would be particularly
valuable for analyzing survival data and evaluating the fit of the Gumbel distribution in
settings where complete data is not available.

Our findings underscore the potential of our proposed test in various domains. Future
research should include a more comprehensive comparison of our test with existing
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methods, particularly the Anderson-Darling test, to gain a clearer understanding of its
advantages and limitations in both complete and censored data settings.

Finally, we have presented two real data sets to illustrate how the proposed test can be
applied to items and removed from the life-test experiment items and removed from the life-
test experiment assess the goodness-of-fit of the Gumbel distribution when a complete
sample is available. This demonstrates the potential usefulness of our test in various
domains, and further research will explore its applicability to censored data settings.
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