Vol. 121, n. 1 (Supplement): 217, 2016

Histopathological rearrangements of the colonic wall following dopaminergic nigrostriatal neurodegeneration

¹ <u>Chiara Ippolito</u> - ¹ Cristina Segnani - ² Carolina Pellegrini - ² Matteo Fornai - ² Luca Antonioli - ³ Rocchina Colucci - ¹ Sauro Dini - ⁴ Mariella Errede - ⁴ Daniela Virgintino - ¹ Amelio Dolfi - ¹ Nunzia Bernardini

¹University of Pisa, Department of Clinical and Experimental Medicine, Unit of Histology and Medical Embryology, Pisa, Italia - ²University of Pisa, Department of Clinical and Experimental Medicine, Division of Pharmacology, Pisa, Italia - ³University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Padova, Italia - ⁴University of Bari, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Unit of Human Anatomy and Histology, School of Medicine, Bari, Italia

Parkinson's disease (PD) is a degenerative neurological disorder, which is often associated with gastrointestinal disturbances (e.g., constipation and defecatory dysfunctions), whose mechanisms are still unknown [1]. Recently, an inflammatory pathogenesis has been proposed to explain these colonic disorders, but low literature are available. This study aims to analyze whether the central dopaminergic denervation, induced by intranigral injection of 6-hydroxydopamine (6-OHDA), can alter the morphological arrangement of colon in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. Histological, histochemical and immunohistochemical analysis were carried out on formalin-fixed, paraffin-embedded colonic samples in order to evaluate: histology, inflammatory cells (eosinophils and mast cells) and collagen fibers in the whole wall; glial fibrillary acidic protein (GFAP), immunoperoxidase, alpha-smooth muscle actin (alpha-SMA) and vimentin immunofluorescence by confocal microscopy. Malondialdehyde (MDA, colorimetric assay), TNF and IL-1 β (ELISA assay) levels were also examined. 6-OHDA-induced nigrostriatal denervation was associated with the following histopathological changes observed in the colonic wall: eosinophil and mast cell infiltration, collagen deposition, activation of myenteric glial cells (GFAP+), increased vimentin immunostaining associated with alpha-SMA decrease in the tunica muscularis, enhanced colonic tissue levels of MDA, TNF and IL-1 β . On the basis of the present results it is possible to conclude that the induction of central nigrostriatal dopaminergic denervation is followed by inflammation and fibrotic rearrangement of the colonic wall.

References

[1] Abbott et al. Neurology, 2011.

Keywords

Parkinson's disease; experimental dopaminergic nigrostriatal neurodegeneration; colonic rearrangement.