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Abstract. Objectives: This review aims to present a developmental framework link-
ing embryonic lineage with non-heritable cutaneous anomalies to improve diagnos-
tic precision and educational approaches in dermatology. Materials and Methods:
A narrative literature review was conducted using PubMed, Scopus, and Web of Sci-
ence databases covering the years 2000-2025. Keywords included “skin development,’
“embryology,” “developmental checkpoint disorders,” and “non-genetic congenital dis-
orders” Data on morphogenesis, embryologic signaling pathways, and representative
disorders were synthesized into a layer-based model. Results: Disorders such as self-
healing collodion baby (periderm retention anomaly), pigmentary mosaicism (postzy-
gotic melanocyte patterning defect), and focal dermal hypoplasia (connective tissue
maldevelopment) reflect disruptions at specific morphogenetic checkpoints. Mapping
these conditions to their embryonic origins revealed layer-specific vulnerability win-
dows and facilitated differential diagnosis from inherited disorders. Understanding
these embryologic principles supports earlier diagnosis, informed prenatal counseling,
and structured integration into dermatology curricula. Advances in regenerative medi-
cine, particularly stem cell-based strategies, highlight the translational potential of der-
matoembryology in developing targeted therapies. Conclusion: A layer-oriented der-
matoembryological perspective enhances recognition of developmental skin disorders,
especially when genetic analyses are inconclusive. Incorporating embryologic concepts
into clinical reasoning not only improves diagnostic accuracy but also fosters regenera-
tive therapeutic innovations and enriches dermatology education.

Keywords: embryonic development, skin abnormalities, congenital disorders, derma-
tology, regenerative medicine.
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1. INTRODUCTION

Human skin is a complex, multilayered organ essen-
tial for homeostasis, immune defense, and environmen-
tal interaction. Structurally, it comprises three princi-
pal layers: epidermis, dermis, and hypodermis. Each
derives from distinct embryonic sources - surface ecto-
derm gives rise to the epidermis, mesoderm to the der-
mis and hypodermis, and neural crest cells to melano-
cytes, vascular elements, and select sensory structures
(1-3). While epidermal and dermal development has
been extensively characterized, the hypodermis remains
comparatively underexplored, despite its key functions
in mechanical cushioning, endocrine signaling, and
immune regulation. Recent advances in tri-layered skin
modeling demonstrate that inclusion of adipose tissue
enhances both structural fidelity and physiological rel-
evance in engineered constructs (4).

Skin morphogenesis begins in the third gestational
week, encompassing sequential processes such as epi-
dermal stratification, melanoblast migration, adnexal
morphogenesis, and maturation of the dermoepidermal
junction (2). Single-cell transcriptomic and spatial analy-
ses have revealed dynamic interactions between immune
and nonimmune populations during this period; nota-
bly, macrophages actively shape angiogenesis, neurogen-
esis, and hair follicle formation beyond their classical
immunologic roles (5). Keratinocyte differentiation pro-
ceeds from basal progenitors upward through spinous
and granular layers, with lineage specification orches-
trated by conserved signaling pathways - Wnt, Notch,
Hedgehog, FGF, and MAPK/ERK - operating in precise
spatiotemporal patterns (6-8). Although epithelial cells
are embryologically committed, regenerative studies
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highlight latent plasticity that links embryogenesis with
postnatal repair, bridging developmental and regenera-
tive dermatology (9).

Errors in these morphogenetic checkpoints may
result in clinically significant anomalies, some without
defined genetic etiologies. Conditions such as self-heal-
ing collodion membrane, pigmentary mosaicism, and
focal dermal hypoplasia illustrate how disruption of crit-
ical embryonic stages can yield cutaneous phenotypes
resembling monogenic disorders (2,10). For instance,
incomplete periderm desquamation beyond 21 weeks or
impaired melanoblast migration before week 12 exem-
plify layer-specific vulnerability windows that manifest
independently of identifiable mutations. Figure 1 sche-
matically correlates germ-layer origins with clinical phe-
notypes, underscoring the diagnostic utility of develop-
mental timing in dermatology.

Despite its relevance, dermatoembryology remains
underrepresented in dermatology training and diag-
nostic practice (11). A developmentally informed, layer-
specific perspective could strengthen early recognition
of congenital anomalies, refine prenatal assessments, and
foster integration between developmental biology and
clinical dermatology (12). Accordingly, this review delin-
eates the embryologic origins of major skin components,
analyzes how disruptions in developmental checkpoints
produce genetically undetermined disorders, and situ-
ates these insights within diagnostic reasoning, medi-
cal education, and regenerative medicine. Unlike tradi-
tional Mendelian paradigms, our framework emphasizes
embryologic timing and layer-specific vulnerability as
central to understanding dermatologic phenotypes.
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Figure 1. Embryology-Based Classification of Non-Genetic Skin Disorders. Schematic diagram showing the embryonic origins of skin
structures from ectoderm, neural crest, and mesoderm. Germ-layer derivatives are linked to their progenitor stages, mature structures, and
representative disorders arising from morphogenetic checkpoint disruptions. The model highlights the importance of developmental timing
and lineage specificity in shaping dermatologic phenotypes beyond Mendelian inheritance.
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2. OVERVIEW OF SKIN DEVELOPMENT
2.1. Embryological timeline

Skin development begins in the third week of embry-
ogenesis, involving coordinated morphogenetic events
derived from the ectoderm, mesoderm, and neural crest.
The surface ectoderm generates the epidermis, the mes-
oderm forms the dermis and hypodermis, and neural
crest cells contribute melanocytes and mechanosensory
structures (1-3). By week 4, the ectoderm appears as a
single-cell layer that thickens between weeks 4 and 6 into
a bilayer of proliferative basal cells and superficial peri-
derm (13). The periderm serves as a transient barrier and
is normally shed into the amniotic fluid by week 21 (14).
Simultaneously, mesenchymal cells differentiate into ear-
ly dermis, and neural crest-derived melanoblasts begin
migrating toward the basal epidermis around embryonic
day 50 (approximately week 7), continuing through weeks
8-12 under the influence of transcription factors such as
SOX10, PAX3, and MITF (15).

During the second trimester, epidermal stratification
accelerates, adnexal structures begin to form, and the
dermoepidermal junction matures. By the third trimes-
ter, the epidermis and dermis are structurally mature,
adnexal appendages such as hair follicles, glands, and
nails are largely developed, and vascularization, innerva-
tion, and immune cell colonization provide barrier and
sensory functions at birth (16). Figure 2 summarizes
these developmental milestones and highlights the tem-
poral coordination of epidermal, dermal, adnexal, and
immune maturation across gestation.

2.2. Epidermal and dermal layer formation

Between weeks 4 and 6, the surface ectoderm and
mesoderm initiate the formation of the epidermis and
dermis. The ectoderm gives rise to basal keratinocytes
and the transient periderm, which expands without divi-
sion and is shed by week 21 (13,14). Stratification begins
around week 11 with the appearance of an intermedi-
ate layer, and by week 24 the epidermis is composed of
spinous, granular, and cornified layers (13,17). Basal
cells express keratins K5 and K14 from week 8, while
suprabasal cells begin producing differentiation markers
such as filaggrin, involucrin, and loricrin. Together with
SPRs, envoplakin, and periplakin, these proteins are
cross-linked by transglutaminases to form the cornified
envelope.

The dermis, derived from mesenchymal precursors,
produces collagens I, III, V, and VI between weeks 8 and
12, and by week 14 it organizes into papillary and reticu-
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lar layers (18). The dermoepidermal junction matures in
parallel, with hemidesmosomes and type VII collagen
fibrils providing stable adhesion between epidermis and
dermis (17,18).

2.3. Melanocyte migration

Melanocytes originate from neural crest cells, which
undergo epithelial-to-mesenchymal transition before
migrating dorsolaterally toward the epidermis. Their
migration is regulated by transcription factors including
SOX10, PAX3, and MITF (19). During this process, mel-
anoblasts alter adhesion profiles, downregulating E-cad-
herin and adopting a P-cadherin phenotype to facilitate
epidermal integration (19,20). Chemotactic cues, most
notably SDF-1a/CXCL12 acting through CXCR4, direct
migration, while o-MSH enhances responsiveness (21).
These developmental mechanisms not only establish pig-
mentation during embryogenesis but also underpin post-
natal processes such as wound healing.

2.4. Adnexal structure formation

The formation of adnexal structures, including
hair follicles, sebaceous glands, sweat glands, and nails,
occurs through reciprocal epithelial-mesenchymal inter-
actions beginning around weeks 9-20. Hair follicles
develop from epidermal placodes and interact with der-
mal papillae to guide follicular differentiation and shaft
formation. Sebaceous glands arise from follicular epithe-
lium and release sebum by holocrine secretion. Eccrine
sweat glands develop independently from epidermal
downgrowths, forming coiled secretory units within
the deep dermis, whereas apocrine glands originate
from follicular structures in the axillary and anogenital
regions, releasing secretions via decapitation (22). These
developmental events are regulated by signaling path-
ways including WNT, EDA/EDAR, SHH, and BMP, and
disruption of these cascades results in ectodermal dys-
plasias (22,23).

2.5. Molecular signaling pathways

Skin morphogenesis is orchestrated by a network of
evolutionarily conserved signaling pathways. Wnt sign-
aling initiates placode formation and appendage pat-
terning, with Dkk1 acting as a major inhibitor. Notch
signaling regulates cell fate specification through lateral
inhibition, whereas FGF signaling promotes epithelial-
mesenchymal crosstalk critical for tissue morphogenesis.
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Figure 2. Developmental Timeline of Human Skin. Schematic overview of key embryonic and fetal milestones between gestational weeks
4-36. The timeline highlights epidermal stratification, melanocyte differentiation and migration, dermal and adnexal morphogenesis, nail
and mammary ridge development, immune cell colonization, and major molecular signaling events that coordinate skin maturation.

BMP signaling drives epidermal differentiation while
suppressing appendage formation in the interfollicular
epidermis (8,24). MAPK/ERK signaling integrates pro-
liferative and differentiative cues, contributing both to
morphogenesis and to regenerative capacity (24). The
precise temporal coordination of these pathways ensures
normal skin development, while their dysregulation

produces congenital dermatologic disorders and offers
potential therapeutic targets for regenerative strategies.
Figure 3 illustrates the sequential progression of epider-
mal stratification, melanocyte differentiation, dermal
remodeling, adnexal development, and hypodermal mat-
uration throughout gestation.
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Figure 3. Temporal Differentiation of Skin Layers and Adnexal Structures. Schematic overview of human skin development from gestation-
al weeks 4-36, showing epidermal stratification, melanocyte differentiation, dermal remodeling, adnexal formation (hair follicles, glands),
and maturation of subcutaneous adipose tissue leading to a fully functional integument at term.

3. DEVELOPMENTAL DEFECTS AND
RELATED NON-GENETIC DISORDERS

3.1. Periderm defects

The periderm, a transient embryonic layer, protects
the developing epidermis and contributes to epithe-

lial integrity and amniotic exchange. Failure of timely
shedding produces the collodion baby phenotype, often
linked to TGMI1 mutations in autosomal recessive ich-
thyoses (25,26). In some cases, spontaneous resolution
occurs as self-healing collodion baby (27). Persistent
periderm caused by IRF6, IKKa, or SEFN mutations
underlies syndromes such as popliteal pterygium and
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Figure 4. Basal layer and stratification defects in epidermal devel-
opment. (a) Epidermolysis bullosa simplex with plantar erosions
due to KRT5/KRT14 mutations impairing keratin filament stability.
(b) Schematic of AEC (ankyloblepharon-ectodermal dyspla-
sia—clefting) syndrome from TP63 mutations, showing scalp ero-
sions, ankyloblepharon, clefting, nail and hair abnormalities, and
impaired adnexal development.

Bartsocas-Papas (28). Harlequin-like collodion due to
ABCA12 variants represents a milder defect with poten-
tial for improvement under supportive care (29). Vernix
caseosa, composed of periderm remnants and sebaceous
secretions, supports maturation and thermoregulation;
its absence predisposes premature infants to dehydration
and infection, reflecting a clinically relevant model of
incomplete skin maturation (30).

3.2. Basal Layer and stratification defects

Abnormal keratinocyte proliferation and stratifica-
tion in the basal layer result in distinct disorders. Muta-
tions in KRT5 or KRT14 cause epidermolysis bullosa sim-
plex (EBS), characterized by intraepidermal blistering of
variable severity (31). PLEC mutations lead to syndromic
EBS with muscular dystrophy, while TP63 mutations dis-
rupt stratification and adnexal development, producing
AEC (Hay-Wells) syndrome with erosions, ankyloblepha-
ron, clefting, and nail anomalies (32) (Figure 4).

3.3. Granular layer and cornification abnormalities

Cornification defects include epidermolytic ichthyo-
sis, caused by dominant KRT1 or KRT10 mutations,
presenting with neonatal blistering that progresses to
diffuse hyperkeratosis with suprabasal cytolysis and
clumped keratohyalin granules (33). Lamellar ichthyosis,

Gokhan Kaya et al.

Figure 5. Epidermolytic ichthyosis: clinical manifestation. Clini-
cal photograph of a child with dominant KRT1/KRT10 mutations,
showing neonatal blistering evolving into diffuse hyperkeratosis
with verrucous plaques, erosions, and secondary infection. Histol-
ogy demonstrates suprabasal cytolysis, clumped keratohyalin gran-
ules, and perinuclear vacuolization.

classically recessive, has also been linked to dominant
NKPDI mutations, producing milder congenital scaling
(34) (Figure 5).

3.4. Embryological pigment patterning defects

Defects in melanocyte function and patterning cre-
ate pigmentary anomalies. Oculocutaneous albinism
type 1 (OCAL), due to TYR mutations, manifests as
generalized hypopigmentation despite normal migra-
tion (35,36). Segmental pigmentary disorders, including
hypomelanosis of Ito and nevus depigmentosus, result
from postzygotic mosaicism (37,38). Becker nevus, asso-
ciated with ACTB mutations, presents with unilateral
hyperpigmentation and hypertrichosis, whereas nevus
spilus exhibits scattered dark macules over lighter patch-
es (39,40) (Figure 6).
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Figure 6. Clinical spectrum of embryological pigment patterning defects. (a) Oculocutaneous albinism (TYR mutation) with generalized
hypopigmentation and nystagmus. (b) Nevus depigmentosus: stable, segmental hypopigmented macule. (c) Hypomelanosis of Ito: mosaic
hypopigmentation along Blaschko’s lines with extracutaneous anomalies. (d) Becker nevus: unilateral hyperpigmentation with hypertricho-
sis, linked to ACTB mutations. (e) Nevus spilus: benign mosaic disorder with dark macules on a lighter background.

3.5. Dermal formation defects

Dermal development depends on positional iden-
tity maintained by HOX gene expression (40). Mutations
in collagen genes (COL1A1, COL3A1, COL5A1) cause
Ehlers-Danlos syndromes, with skin hyperextensibility,
fragility, and vascular complications (41,42). In contrast,
focal dermal hypoplasia (Goltz syndrome), caused by
PORCN mutations, produces linear dermal atrophy, fat
herniation, and skeletal anomalies (43) (Figure 7).

3.6. Dermal-epidermal junction defects
Defects at the dermoepidermal junction manifest

as different subtypes of epidermolysis bullosa. Muta-
tions in KRT5, KRT14, or PLEC produce EBS with

basal keratinocyte cleavage; LAMA3, LAMB3, LAMC2,
COL17A1, or ITGB4 mutations cause junctional EB
(JEB) with lamina lucida blistering (44,45); and COL7A1
mutations lead to dystrophic EB (DEB) with sublamina
densa cleavage, scarring, and SCC risk (46). Kindler syn-
drome (FERMT]I) features mixed-level cleavage, poikilo-
derma, photosensitivity, and cancer predisposition (47)
(Figure 8).

3.7. Adnexal development defects

Defective appendage development produces diverse
phenotypes. Hypohidrotic ectodermal dysplasia (EDA,
EDAR, EDARADD) presents with hypotrichosis, hypo-
dontia, and hypohidrosis (48). FOXN1 mutations cause
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alopecia, nail dystrophy, and severe T-cell immunodefi-
ciency (49). Monilethrix (KRT81/83/86) is characterized
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by fragile, beaded hairs and keratosis pilaris (50). Tri-
cho-dento-osseous syndrome involves curly hair, enamel
hypoplasia, and skeletal sclerosis (51). Nevus sebaceous
of Jadassohn is a congenital hamartoma with risk of
secondary BCC, while Gorlin syndrome (PTCH1 muta-
tions) links follicular morphogenesis defects to multiple
BCCs and systemic anomalies (19,52,53) (Figure 9).

3.8. Embryological patterning lines

Cutaneous mosaic disorders often follow Blaschko’s
lines due to postzygotic mutations (54). Incontinentia
pigmenti (IKBKG) progresses through vesiculobullous,
verrucous, hyperpigmented, and atrophic stages, often
with dental, ocular, and neurological abnormalities (56).
Epidermal nevi, either isolated or syndromic, similarly
trace embryonic patterning lines (55,57) (Figure 10).

3.9. Externally induced developmental defects

Exogenous factors may disrupt embryonic skin
development. Amniotic band sequence causes con-
strictions and limb defects (58). Valproic acid expo-
sure induces neural tube and craniofacial anomalies
via epigenetic and folate metabolism interference (59).

Junctional EB (JEB)

Figure 8. Structural and clinical features of dermal-epidermal junction disorders. (a) Kindler syndrome (FERMT1 mutation) showing trau-
ma-induced blistering, poikiloderma, photosensitivity, mucosal involvement, and increased SCC risk. (b) Schematic of the epidermal-der-
mal junction (EDJ) highlighting adhesion structures. Disruption causes distinct epidermolysis bullosa (EB) subtypes: EBS (KRT5, KRT14,
PLEC; basal keratinocyte cleavage), JEB (COL17A1, LAMA3, LAMB3, LAMC2, ITGB4; lamina lucida blistering), and DEB (COL7A1;

sublamina densa cleavage with scarring).



Dermatoembryology and congenital disorders

o MONILETHRIX
occipit_al Fragile and Microscopic hair shaft
alopecia broken @
hair shafts )
|
[/
ul
Normal Beaded appearance
(hair shaft) or Moniliform hair

Skin findings

/

Genetic inheritance

21

Keratosis pilaris

v A c

Figure 9. Clinical presentation of adnexal development disorders. (a) Hypohidrotic ectodermal dysplasia (EDA/EDAR/EDARADD muta-
tions): sparse hair, hypodontia with conical teeth, and perioral wrinkling. (b) Nevus sebaceous of Jadassohn: congenital yellowish alopecic
scalp plaque with risk of secondary BCC. (c) Monilethrix (KRT81/83/86 mutations): patchy occipital alopecia with fragile beaded hair
shafts and associated keratosis pilaris. (d) Gorlin syndrome (PTCH1 mutation): multiple basal cell carcinomas, odontogenic cysts, palmar/

KRT81, KRT83, DSG4

plantar pits, skeletal anomalies, and craniofacial features.

Excess retinoic acid produces craniofacial malforma-
tions through retinoid receptor activation (60). Infec-
tions such as congenital cytomegalovirus and Zika virus
impair growth and neurodevelopment, particularly with
early gestational exposure (61,62). Figure 11 presents an
embryology-based diagnostic framework that integrates
lesion timing, morphology, and layer attribution for con-
genital skin anomalies.

4. DISCUSSION

4.1. Diagnostic utility of dermatoembryology

Dermatoembryology provides a valuable interpretive
framework for prenatal dermatologic diagnosis, particu-

larly for congenital anomalies of developmental rather
than strictly genetic origin. Cutaneous structures derive
from distinct embryological layers: ectoderm produces
the epidermis and periderm, mesoderm forms dermal
and vascular components, and neural crest cells give
rise to melanocytes and some dermal elements. Each fol-
lows a defined developmental timeline: periderm forms
by week 5 and regresses by week 21, while melanocyte
migration occurs between weeks 8 and 12 (63). Recog-
nizing these sequences is critical when interpreting fetal
biopsies or ultrasonography.

Persistence of the periderm beyond week 22 may
indicate delayed epidermal maturation, clinically mani-
festing as a transient collodion membrane. Likewise,
impaired melanocyte migration or differentiation may
explain segmental hypopigmentation patterns that are
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Figure 10. Cutaneous stages of Incontinentia Pigmenti. Inconti-
nentia pigmenti is an X-linked dominant genodermatosis caused by
mutations in the IKBKG (NEMO) gene, primarily affecting females.
The disease progresses through four characteristic cutaneous stages,
often following Blaschko’s lines: Stage 1 (Vesiculobullous stage):
Linear or grouped vesicles and bullae appearing shortly after birth.
Stage 2 (Verrucous stage): Hyperkeratotic, wart-like papules typi-
cally seen in the first few weeks of life. Stage 3 (Hyperpigmented
stage): Swirling or streaked hyperpigmented macules appearing
during infancy or early childhood. Stage 4 (Atrophic/hypopigment-
ed stage): Residual hypopigmented or atrophic streaks in adoles-
cence or adulthood, often persistent. These stages may overlap or
vary in duration and intensity between individuals. In addition to
skin findings, the condition may involve dental, ocular, neurologi-
cal, and hair anomalies.

evident at birth but not attributable to known genoder-
matoses. Such findings, particularly when genetic test-
ing is inconclusive, underscore the role of developmen-
tal landmarks in prenatal diagnosis, as also supported
by recent whole-exome sequencing (WES) studies (64).
Thus, dermatoembryology bridges morphology with pre-
natal diagnostics, offering a layer-specific perspective that
enhances both invasive and non-invasive assessments.
Figure 11 illustrates this integrated diagnostic approach.

4.2. Educational integration: teaching dermatologic devel-
opment

Despite its relevance, dermatologic embryology
remains underrepresented in medical curricula, lead-
ing to fragmented knowledge (11). A layer-based teach-
ing model that links ectodermal, mesodermal, and neu-
ral crest derivatives to common dermatologic conditions
could strengthen both basic science education and clini-
cal reasoning. Fakoya et al. (12) highlighted the need
for an internationally standardized embryology syllabus
emphasizing clinical translation, while Moraes et al. (65)
showed that case-based and multimedia-enhanced teach-
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ing improves student engagement. Incorporating such
approaches into dermatology education - particularly in
pediatrics and prenatal dermatology - may foster early
pattern recognition, diagnostic accuracy, and apprecia-
tion of developmental timing in cutaneous pathology.

4.3. Future directions: a stem cell perspective

Recent advances in stem cell biology have expand-
ed the translational potential of dermatoembryology.
Skin-derived stem cells, including epidermal stem cells
(EpSCs), mesenchymal stromal cells (MSCs), and neural
crest-derived melanocyte precursors, are central to both
development and regeneration (66). These cells, residing
in niches such as the basal epidermis, hair follicle bulge,
and dermis, are regulated by pathways including Wnt/p-
catenin, Notch, and p63 (67). Their plasticity is evident
during wound healing, where follicular stem cells con-
tribute to interfollicular repair, recapitulating develop-
mental programs (68).

Stem cell-based therapies have shown promise in
chronic wounds, autoimmune dermatoses, and heredi-
tary blistering disorders. Adipose- and bone marrow-
derived MSCs enhance re-epithelialization, angiogen-
esis, and immunomodulation in both experimental and
clinical settings (69,70). Induced pluripotent stem cells
(iPSCs) from dermal fibroblasts offer opportunities for
gene-corrected autografts in conditions such as epi-
dermolysis bullosa (66). Emerging human skin explant
(HSE) models further demonstrate that ex vivo tissue
maintains architecture, immune competence, and multi-
potent stem cell reservoirs (SKPs, MSCs), enabling stud-
ies on neuro-immune-cutaneous interactions relevant to
both regenerative medicine and drug development (71).

5. CONCLUSION

Human skin develops through tightly coordinated
interactions among ectodermal, mesodermal, and neural
crest-derived lineages, each contributing to its structural
and functional integrity. While dermatology research
often emphasizes genetic causes, many congenital dis-
orders arise instead from developmental disruptions at
critical morphogenetic checkpoints. Examples include
anomalies in periderm shedding, melanoblast migration,
dermal extracellular matrix formation, and adnexal mor-
phogenesis, all of which can be traced to layer-specific
vulnerabilities during embryogenesis.

A dermatoembryological, layer-oriented framework
improves diagnostic accuracy, particularly when genetic
testing is inconclusive, and supports prenatal counseling,
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Figure 11. Embryology-Guided Diagnostic Framework for Congenital Skin Lesions with Clinical Case Applications. (a) Diagnostic algo-
rithm presenting a structured, five-step approach integrating lesion anatomical localization, morphology, timing of onset, embryological
layer attribution, and clinical decision pathways for congenital dermatologic anomalies. (b) Illustrative application of this diagnostic frame-
work to three representative clinical scenarios: Mongolian spot (neural crest-derived pigmentary delay), aplasia cutis congenita of the scalp
(mesodermal fusion defect), and self-healing collodion baby (ectodermal periderm retention anomaly). This model facilitates targeted diag-
nostic evaluation and clinical management based on embryological insights.



24

Gokhan Kaya et al.

Table 1. Embryological Origins of Cutaneous Stem Cells and Their Therapeutic Potential. This table summarizes major stem cell types
involved in skin development and regeneration, categorized by their embryological origins. It highlights their differentiated outcomes and

potential clinical or research applications in dermatology.

Emb{z:;ic;glcal Stem Cell Type(s) Differentiated Outcomes Clinical/Research Applications
Ectoderm Epidermal Stem Cells (EpSCs) Keratinocytes, epidermis layers Epidermolysis bullosa, skin grafting,

Neural Crest ~ Melanocyte SCs, EPI-NCSC

Mesoderm Mesenchymal Stromal Cells (MSCs)

myocytes
iPSC-derived
(Exogenous)

Melanocytes, neural/glial lineages

Fibroblasts, adipocytes, endothelial,

iPSC-derived keratinocytes/fibroblasts Any germ-layer lineage (pluripotent)

wound healing

Pigment disorders, vitiligo, melanoma
modeling

Wound healing, fibrosis modulation,
immunotherapy

Gene-corrected autografts, in vitro
disease modeling

early biopsy decisions, and interdisciplinary manage-
ment. Incorporating these principles into medical cur-
ricula also enriches dermatology education by deepening
understanding of congenital anomalies and their devel-
opmental origins.

Finally, the same principles carry translational val-
ue: regenerative dermatology increasingly leverages stem
cell biology and developmental pathways to restore tis-
sue architecture. Together, these insights emphasize the
diagnostic, educational, and therapeutic importance of
embryology in contemporary dermatologic practice.

ABBREVIATIONS

ABCAI12: ATP-binding cassette sub-family A member 12
ABS: Amniotic band sequence

ACTB: Actin beta

ADHD: Attention deficit hyperactivity disorder
AEC: Ankyloblepharon-ectodermal defects-cleft lip/pal-
ate (Hay-Wells) syndrome

ASD: Autism spectrum disorder

BMP: Bone morphogenetic protein

CXCL12: C-X-C motif chemokine ligand 12
CXCR4: C-X-C chemokine receptor type 4
DEB: Dystrophic epidermolysis bullosa

DEJ: Dermoepidermal junction

EBS: Epidermolysis bullosa simplex
E-cadherin: Epithelial cadherin

EDAR: Ectodysplasin A receptor

EDARADD: EDAR-associated death domain
EDA: Ectodysplasin A

EpSCs: Epidermal stem cells

FGF: Fibroblast growth factor

FOXNI1: Forkhead box N1

HED: Hypohidrotic ectodermal dysplasia
HSE: Human skin explants

iPSCs: Induced pluripotent stem cells

IRF6: Interferon regulatory factor 6

IKKa: IxB kinase alpha

JEB: Junctional epidermolysis bullosa

KRT: Keratin

LAMA3, LAMB3, LAMC2: Laminin subunits a3, 3, y2
MAPK/ERK: Mitogen-activated protein kinase/extracel-
lular signal-regulated kinase

MITEF: Microphthalmia-associated transcription factor
MSCs: Mesenchymal stromal cells

NKPDI1: NTPase KAP family P-loop domain-containing
protein 1

OCA1: Oculocutaneous albinism type 1

PAX3: Paired box gene 3

P-cadherin: Placental cadherin

PLEC: Plectin

SAM: Sterile alpha motif

SCs: Stem cells

SDF-1a: Stromal cell-derived factor 1 alpha

SFN: Stratifin

SHH: Sonic hedgehog

SKPs: Skin-derived precursors

SOX10: SRY-box transcription factor 10

TDO: Tricho-dento-osseous syndrome

TGM1: Transglutaminase 1

TP63: Tumor protein p63

TYR: Tyrosinase

VPA: Valproic acid

WES: Whole-exome sequencing
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