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Abstract. Traditionally, the cerebellum is viewed as a center for integrating vestibular 
and general proprioceptive sensory, enabling the processing of somatic motor respons-
es essential for maintaining balance and posture. Moreover, the cerebellum regulates 
higher motor functions of the neocortex, which involve motor planning and coordina-
tion of movements, as well as nonmotor functions related to cognition and affectiv-
ity. In recent years, several studies have suggested that the cerebellum may play a role 
in regulating visceral functions. Although the specific neural pathways through which 
these visceral functions are mediated remain unclear, anatomical evidence to support 
these functions has been supplied by the detection of a feedback circuit that connects 
bidirectionally the cerebellum and the hypothalamus, the primary integrative center of 
the autonomic nervous system. This hypothalamocerebellar circuit strongly supports 
the idea of the cerebellum as a center of the autonomic nervous system.

Keyword: Cerebellum, Hypothalamus, Hypothalamocerebellar circuit, Autonomic 
nervous system.

1. BACKGROUND

1.1. The Cerebellum as a Center of the Somatic Nervous System

The publication of the influential work The Cerebellum as a Neuronal 
Machine by John C. Eccles, Masao Ito, and Janos Szentagothai in 1967 estab-
lished the foundations for understanding the anatomy, physiology, patho-
physiology, and clinical aspects of the cerebellum. A series of neuroscience 
studies conducted in subsequent years have widely validated the findings 
reported in this pivotal study and have led to the modern views according 
to which the cerebellum is considered to play a crucial role in integrating 
vestibular and general proprioceptive sensory and regulating the activity of 
the motor areas of the neocortex. The cerebellum is functionally divided into 
three regions: the vestibulocerebellum, spinocerebellum, and cerebrocerebellum 
(also known as pontocerebellum) (Table 1).

This functional subdivision is reflected in the anatomical subdivision of 
the cerebellum (Figure 1). In fact, the vestibulocerebellum substantially cor-
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responds to the flocculonodular lobe, the spinocerebel-
lum comprises a significant portion of the anterior lobe 
and a portion vermis in the middle lobe, and the cere-
brocerebellum includes most of the middle (or posterior) 
lobe along with portions of the hemispheres in the ante-
rior lobe (Ito, 1984; Berry et al., 1995; Voogd and Glick-
stein, 1998; Fitzpatrick, 2004; Brodal, 2016; Unverdi et 
al., 2024). Interestingly, these functional and anatomi-
cal subdivisions also have phylogenetic significance. 
The vestibulocerebellum is the phylogenetically oldest 
region, known as the archicerebellum; the spinocerebel-
lum occupies an intermediate position from a phyloge-
netic point of view, referred to as the paleocerebellum; 
and the cerebrocerebellum represents the most recent 
phylogenetically region, termed the neocerebellum (Ber-
ry et al., 1995).

The vestibulocerebellum and spinocerebellum, espe-
cially through the fastigial nucleus and the globose and 
emboliform nuclei respectively, control various cent-
ers of the somatic motor system, including the vestibu-
lar nuclei, midbrain tectum, magnocellular red nucleus, 
and some neuronal groups in the reticular formation 
(Table 1). Through these centers, the vestibulocerebellum 
and spinocerebellum regulate the activity of brainstem 
and spinal somatic motor neurons, which are directly 
responsible for the contraction of striated muscle fib-
ers. This regulation is crucial for maintaining muscle 
tone and executing automatic somatic movements. Con-
sequently, both the vestibulocerebellum and spinocer-
ebellum play an essential role in controlling balance, 
posture, walking, and gaze (Ito, 1984; Berry et al., 1995; 
Voogd and Glickstein, 1998; Ghez and Thach, 2000; 
Hook and Mugnaini, 2003; Fitzpatrick, 2004; Voogd and 
Ruigrok, 2012; Brodal, 2016).

The cerebrocerebellum is part of the cerebrocerebel-
lar circuit, which is a feedback or loop circuit establish-
ing a two-way connection between the neocortex and 

the cerebrocerebellum. The circuit consists of a descend-
ing limb that originates from the neocortex and projects, 
via the basilar pontine nuclei, onto the cortex of the cer-
ebrocerebellum; and an ascending limb that originates 
from the cerebrocerebellum, especially from the den-
tate nucleus, and selectively projects, via the thalamus 
(ventrolateral nuclear complex), onto the motor areas of 
the neocortex. This circuit is involved in regulating the 

Table 1. Functional subdivision of the cerebellum: main afferents and efferents.

Afferents Efferents

Vestibulocerebellum · Vestibulocerebellar tract
· Olivocerebellar tract

· Cerebellovestibular tract
· Cerebelloolivay tract

Spinocerebellum · Posterior spinocerebellar tract
· Anterior spinocerebellar tract
· Cuneocerebellar tract
· Reticulocerebellar tracts
· Trigeminocerebellar tracts
· Olivocerebellar tract

· Cerebellotectal tract
· Cerebellorubral tract
· Cerebelloreticular tracts
· Cerebelloolivay tract

Cerebrocerebellum · Pontocerebellar tracts
· Reticulocerebellar tracts
· Olivocerebellar tract

· Cerebellothalamic tract
· Cerebelloreticular tracts
· Cerebelloolivay tract

Figure 1. Anatomical subdivisions of the human cerebellum. Dia-
gram showing the lobes and lobules of unfolded cerebellum. The 
lobules of the vermis and the right hemisphere of the right side are 
named according to the classic anatomical nomenclature and to the 
Larsell’s nomenclature (Roman numerals from I to X); the hori-
zontal fissure is marked in red. The anatomical of the cerebellum 
subdivision into three lobes largely corresponds to the functional 
subdivision of the cerebellum: the vestibulocerebellum relates to the 
flocculonodular lobe, the spinocerebellum, to the anterior lobe, and 
the cerebrocerebellum, to the middle lobe.
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activity of neocortical areas responsible for planning 
complex spatial and temporal sequences of movements 
as well as executing voluntary movements that require 
high precision and coordination (Kelly and Strick, 2003; 
Schmahmann et al., 2004; Fitzpatrick, 2004; Schmah-
mann and Pandya, 1997a, b; Voogd and Ruigrok, 2012).

Numerous clinical studies have evidenced that cer-
ebellar disorders can be associated with specific clinical 
symptoms that present a correlation with the anatomi-
cal and functional subdivisions of the cerebellum, even 
if these symptoms may occur in various combinations. 
In summary, vestibulocerebellar disorders are primar-
ily associated with vestibular symptoms, such as bal-
ance defects, dizziness, and nystagmus. Spinocerebel-
lar disorders mainly involve somatic motor symptoms, 
including disturbances in muscle tone (hypotonia), 
posture, and gaze issues, as well as difficulties in per-
forming rapid alternating movements (dysdiadochoki-
nesia). Cerebrocerebellar disorders are characterized by 
motor symptoms resulting from functional deficits in 
the motor areas of the neocortex. These clinically occur 
with impairments in executing coordinated and syner-
gistic movements (motor ataxia). This provokes disorders 
of voluntary movements, including walking, praxias, 
speech articulation, and oculomotion; inability to exe-
cute movements that require high precision during their 
execution, typified by undershooting or overshooting 
the intended position with the hand, arm, or leg (dysme-
tria); appearance of tremor during voluntary movements 
(intention tremor) (Koeppen 2018; Manto et al., 2022; 
Ataullah et al., 2024).

1.2. The Cerebellum as a Center of the Psychic System

More recent research has shown that the cerebrocer-
ebellum plays a crucial role in regulating functions 
played by nonmotor areas of the neocortex (Strick et al., 
2009; Timman et al., 2010; Grimaldi and Manto, 2012; 
Benagiano et al., 2018). The anatomical bases for these 
nonmotor functions of the cerebrocerebellum lie in the 
organization of the cerebrocerebellar circuit into dis-
tinct channels (or subcircuits). Each channel includes a 
descending limb that originates from a specific nonmo-
tor area of the neocortex and projects onto an anatomi-
cally and functionally related region of the cerebrocer-
ebellum; and an ascending limb that starts in the cere-
brocerebellum (especially from the dentate nucleus) and 
projects back onto the same cortical area from which 
the descending limb originated. Therefore, while the tra-
ditional view of the cerebrocerebellar circuit primarily 
focuses on the motor channel, the new views postulate 
the existence of nonmotor channels, including the sen-

sory, associative, and limbic channel. These channels 
establish bidirectional connections between the neocor-
tex of sensory associative and limbic areas and related 
regions of the cerebrocerebellum (Schmahmann and 
Pandya, 1991, 1993, 1995, 1997a, b; Clower et al., 2001; 
Middleton and Strick, 2001; Dum and Strick, 2003; Kel-
ly and Strick, 2003; Ramnani et al., 2006; Akkal et al., 
2007; Leergaard and Bjaalie, 2007).

The presence of distinct channels throughout the 
cerebrocerebellar circuit has been confirmed by stud-
ies carried out with diffusion tensor tractography tech-
niques. These studies have revealed that the tracts in the 
descending limb (neocorticopontine and pontocerebel-
lar tracts) and those in the ascending limb (cerebello-
thalamic and thalamocortical tracts) are organized into 
separate, anatomically distinct fascicles. Each of these 
fascicles connects a specific area of the neocortex with 
a corresponding region in the cerebrocerebellum (Gran-
ziera et al., 2009; Kamali et al., 2010; Kwon et al., 2011; 
Keser et al., 2015; Palesi et al., 2015).

These observations have provided the anatomical 
bases for findings from experimental, neuropsychologi-
cal, and clinical studies, indicating that lesions selec-
tively localized in a specific region of the cerebrocerebel-
lum can disrupt a particular channel and be associated 
with specific nonmotor disorders. The resulting cere-
brocerebellar syndromes can influence cognitive func-
tions, leading to conditions like cognitive ataxia, which 
affects sensory perceptions, learning, memory, language, 
and ideation (Appollonio et al., 1993; Leiner et al., 1993; 
Topka et al., 1993; Daum et al., 1993; Akshoomoff and 
Courchesne, 1994; Silveri and Misciagna, 2000; Got-
twald et al., 2004; Schmahmann et al., 2007a, b; Tim-
man and Daum, 2010). Alternatively, the syndromes can 
impact affective functions, leading to affective ataxia, 
which concerns the adequacy of mood, balance of emo-
tions and feelings, and appropriateness of behavior (Ho 
et al., 2004; Schmahmann et al., 2007a,b; Tavano et al., 
2007; Hoppenbrouwers et al. 2008; Moreno-Lopez et al 
2015; Carta et al 2019).

Finally, in cases of neurodevelopmental disorders of 
the cerebrocerebellum, clinical and behavioral studies 
have described, in addition to motor ataxia, deficits in 
learning and concentration classifiable as autism spec-
trum disorders (Courchesne, 1997; Muratori et al., 2001; 
Jones et al., 2002; Steinlin, 2008; Bolduc and Limperopol-
ous, 2009; Bolduc et al., 2012; Becker and Stoodley, 2013).

The Cerebellar Cognitive Affective Syndrome (CCAS) 
is a complex clinical syndrome characterized by various 
symptoms, including disorientation in space and time, 
difficulty in concentrating (hypoprosexia), challenges 
in solving logical problems, and deficits in generating, 
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developing, and communicating ideas; patients with 
CCAS also exhibit inadequate emotional expressions and 
personality changes. The diverse symptoms associated 
with CCAS have been linked to dysfunction affecting 
the different cerebrocerebellar channels (Schmahmann 
and Sherman, 1998).

Studies using functional magnetic resonance imag-
ing (fMRI) have shown continuous activation of the cer-
ebrocerebellar lobes while performing working memory 
tasks. This has suggested that the cerebrocerebellum and 
its connections with various areas of the neocortex play 
a crucial role in learning and memory processes (Chen 
and Desmond, 2005; Marvel and Desmond, 2010; von 
der Gablentz et al., 2015; Peterburs & Desmond, 2016; 
Brissenden et al., 2021).

1.3. The Cerebellum as a Center of the Autonomic Nervous 
System

Experimental studies and clinical observations have 
suggested that the cerebellum plays a role in regulating 
various visceral functions (Reis and Golanov, 1997; Xu 
and Frazier, 2000; Colombel et al., 2002; Dietrichs and 
Haines, 2002; Zhu et al., 2004; Peng et al., 2006; Zhu 
and Wang, 2008; Cao et al., 2015).

While the idea of the cerebellum acting as a regula-
tory center for the autonomic nervous system has been 
proposed for several years, research on the anatomical 
bases for this function has been surprisingly limited and 
the available information is scarce and incomplete. 

The present review aimed to assess the current 
understanding of the cerebellum as a regulatory center 
for visceral functions. Particular attention was paid to 
exploring whether the somatic, psychic, and autonomic 
functions of the cerebellum influence one another and 
what the consequences of these interactions may be.

2. HYPOTHALAMOCEREBELLAR CIRCUIT

The anatomical bases for the role of the cerebellum 
as a regulatory center of the autonomic nervous system 
could be supported by the demonstration of the hypo-
thalamocerebellar circuit. This is a feedback circuit that 
bidirectionally connects the hypothalamus, the main 
regulatory center of visceral functions, and the cerebel-
lum (Haines et al., 1997; Zhu et al., 2006; Sakakibara, 
2018; Rizzi et al., 2020; Urbini et al., 2023).

Similar to the cerebrocerebellar circuit, the hypo-
thalamocerebellar circuit is composed of a descending 
and an ascending limb. The descending limb includes a 
direct and an indirect pathway (Figure 2).

2.1. Direct Hypothalamocerebellar Pathway

The direct hypothalamocerebellar pathway connects 
the hypothalamus and cerebellum directly and bidirec-
tionally (Benagiano et al., 2018; Rizzi et al., 2020).

Descending limb: hypothalamocerebellar fibers (Fig-
ure 2A). Anatomical studies carried out on experimental 
animals have shown that the descending limb consists 
of direct hypothalamocerebellar fibers originating from 
neurons in various hypothalamic nuclei. These nuclei 
include the preoptic, ventromedial, dorsomedial, medial 
mamillary, and tuberomamillary nucleus. To a lesser 
extent, hypothalamocerebellar neurons have also been 
detected in the suprachiasmatic, posterior, paraventricu-

Figure 2. Hypothalamocerebellar circuit: A. descending limb; B. 
ascending limb. The diagram illustrates both the direct and indirect 
pathways of the circuit. The hypothalamic nuclei putatively at the 
origin of hypothalamocerebellar, hypothalamoreticular, and hypo-
thalamopontine fibers include the preoptic, ventromedial, dorso-
medial, medial mamillary, and tuberomamillary nucleus. Abbre-
viations: BPN: basilar pontine nucleus; CC: cerebellar cortex; CN: 
cerebellar nucleus; H: hypothalamus; RF: reticular formation.
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lar, and arcuate nucleus (Dietrichs and Haines, 1984; 
Haines and Dietrichs, 1984). The hypothalamocerebellar 
fibers descend to the midbrain tegmentum and preva-
lently enter the homolateral superior cerebellar peduncle, 
reaching the central core of the white matter in the cer-
ebellum. Here, they send collaterals to all the cerebellar 
nuclei and ultimately radiate towards the cortex of all 
the cerebellar lobes (Dietrichs and Haines, 1984; Haines 
and Dietrichs, 1984; Supple, 1993; Dietrichs et al., 1994; 
Haas and Panula, 2003; Haas et al., 2008).

Microscopic observations have revealed that the 
hypothalamocerebellar fibers terminate in all layers of 
the cerebellar cortex, multilayered fibers, possibly syn-
apsing on various types of corticocerebellar neurons 
(Panula et al., 1993; Li et al., 2014). Consequently, it has 
been proposed to consider the multilayered fibers as 
a third type of afferent fibers to the cerebellar cortex, 
alongside the well-known mossy and climbing fibers 
(Haines et al., 1997).

Immunocytochemical studies have shown that the 
terminals of the multilayered fibers are immunoreac-
tive for histamine and use it as a chemical neurotrans-
mitter (Airaksinen et al., 1988; Panula et al., 1993; Li 
et al., 1999; Rizzi et al., 2019). Accordingly, histamine 
receptors (H-receptors) have been detected in the cer-
ebellar cortex of various species of mammals, using 
autoradiographic, immunocytochemical, and in situ 
hybridization techniques. Specifically, H-1 receptors 
have been found in all the cortical layers, located on 
the parallel fibers (Rotter and Frostholm, 1986; Traif-
fort et al., 1994); H-2 receptors have been detected in 
the Purkinje neuron layer, on the Purkinje neuron 
bodies and preaxons, and granular layer, on the gran-
ule dendrites (Vizuete et al., 1997); H-3 receptors have 
been detected in the Purkinje neuron layer only (Cha-
zot et al., 2001; Pillot et al., 2002), and have been visu-
alized in the human cerebellum by positron emission 
tomography (PET) (Ashworth et al., 2010). In vitro 
studies have shown that histaminergic terminals have 
excitatory effects on H-1 and H-2 receptors expressed 
by granules (Li et al., 1999), and on H-2 receptors 
expressed by Purkinje neurons (Tian et al., 2000).

Histamine-containing neurons have been demon-
strated in some hypothalamic nuclei, primarily in the 
tuberomamillary nucleus, and to a lesser extent, the 
ventromedial, dorsomedial, and paraventricular nucle-
us (Brown et al., 2001; Haas & Panula, 2003; Haas et 
al., 2008). It is noteworthy that these nuclei also con-
tain the neurons at the origin of the hypothalamocer-
ebellar fibers.

Ascending limb: cerebellohypothalamic fibers (Fig-
ure 2B). The excitatory signals sent by the histamin-

ergic terminals of the multilayered fibers activate the 
Purkinje neurons either directly or indirectly. These 
neurons serve as the source of output from the cerebel-
lar cortex, sending corticonuclear fibers to the neurons 
located in all the cerebellar nuclei (Ito, 1984; Berry et al., 
1995; Voogd and Glickstein, 1998). It is well known that 
the outputs from Purkinje neurons to the nuclear neu-
rons are inhibitory and use GABA as a neurotransmitter 
(Benagiano et al., 2000, 2001).

Anatomical studies using anterograde and retro-
grade tract-tracing techniques, along with physiologi-
cal studies based on electrophysiology techniques, have 
identified the cerebellohypothalamic fibers. These fib-
ers originate from neurons located in all the cerebellar 
nuclei, primarily the fastigium and interpositus nucle-
us. They travel through the superior cerebellar pedun-
cle, midbrain tegmentum, and into the hypothalamus 
(Dietrichs and Haines, 1984; Haines and Dietrichs, 1984; 
Wang et al., 1997; Cavdar et al., 2001a, b). Most of the 
cerebellohypothalamic fibers cross at the decussation of 
the midbrain tegmentum, and reach the contralateral 
hypothalamus, differently from the hypothalamocer-
ebellar fibers, which establish homolateral connections 
(Lemaire et al., 2011). These fibers project onto hypo-
thalamic nuclei that correspond largely to those at the 
origin of the descending limb, including the ventrome-
dial, dorsomedial, and tuberomamillary nucleus (Wang 
et al., 1997; Cavdar et al., 2001a, b). The effects of the 
cerebellohypothalamic fibers on hypothalamic neurons 
can be of excitatory type, mediated by glutamate (Lu et 
al., 2012; Cao et al., 2015), or, more rarely, of inhibitory 
type, mediated by GABA (Wang et al., 2011; Cao et al., 
2013; Lu et al., 2015).

2.2. Indirect Hypothalamocerebellar Pathways

In the indirect pathways, the connections between 
the hypothalamus and cerebellum are established 
through the involvement of brainstem centers. Briefly, 
fibers originating in the same hypothalamic nuclei that 
give rise to the direct hypothalamocerebellar pathway, 
before reaching the cerebellum, interrupt in brainstem 
nuclei, such as nuclei of the reticular formation and basi-
lar pontine nuclei.

The indirect pathways include the hypothalamor-
eticulocerebellar and hypothalamopontocerebellar path-
ways. Each of these pathways consists of a proximal 
segment, either the hypothalamoreticular fibers or the 
hypothalamopontine fibers, and a distal segment, either 
the reticulocerebellar fibers or the pontocerebellar fib-
ers. The hypothalamoreticular fibers primarily project 
onto neurons located in the precerebellar lateral reticular 



118 Vincenzo Benagiano, Anna Rizzi

nucleus, which is located in the lateral medullary retic-
ular formation (Dietrichs et al., 1985; Mihailoff et al., 
1989; Allen and Hopkins, 1990); the hypothalamopontine 
fibers target neurons that are sparse in the rostral medial 
and dorsal medial basilar pontine nuclei (Aas, 1989; Liu 
and Mihailoff, 1999). Actually, detailed information on 
the anatomy, neurochemistry, and physiology of these 
pathways is lacking in the literature.

3. DISCUSSION

The existence of a hypothalamocerebellar circuit, 
which connects bidirectionally the hypothalamus and 
the cerebellum, is now well established (Dietrichs and 
Haines, 1984; Haines and Dietrichs, 1984; Supple, 1993; 
Dietrichs et al., 1994). This is a feedback circuit organized 
similarly to the more widely recognized cerebrocerebel-
lar circuit. It consists of a descending limb that originates 
from various hypothalamic nuclei, specifically, the ven-
tromedial, dorsomedial, and tuberomamillary nucleus, 
and terminates in the cerebellar cortex across all cerebel-
lar lobes; and an ascending limb that starts in the cere-
bellar cortex and projects back onto the same hypotha-
lamic nuclei from which the descending limb originates. 
It is important to note that the hypothalamocerebellar 
fibers are distributed throughout all cerebellar lobes. 
They terminate as multilayered fibers in all cortical lay-
ers and express histamine as a chemical neurotransmitter 
(Li et al., 1999; Haas and Panula, 2003; Haas et al., 2008; 
Rizzi et al., 2019). All these are characteristics that differ-
entiate the hypothalamocerebellar fibers, which form the 
hypothalamocerebellar circuit, from the pontocerebellar 
ones, which form the cerebrocerebellar circuit.

The hypothalamus acts as the primary regulatory 
center for visceral functions and is an important subcor-
tical component of the limbic system (Onat and Cavdar, 
2003; Saper, 2012). It is likely that the signals sent to the 
cerebellum via the hypothalamocerebellar fibers, which 
form the descending limb of the hypothalamocerebel-
lar circuit, contain information related to the visceral 
and limbic systems. These connections suggest that the 
cerebellum, through the cerebellohypothalamic fibers, 
ascending limb of the hypothalamocerebellar circuit, 
plays a regulatory role of hypothalamic nuclei involved 
in visceral and limbic functions.

The role of the hypothalamic-cerebellar circuit would 
be comparable to that of the cerebrocerebellar circuit: the 
cerebellum could influence the activity of the hypotha-
lamic nuclei just as the cerebrocerebellum controls the 
activity of motor and nonmotor areas of the neocortex. 
Interestingly, the entire cerebellum would be involved in 

regulating the hypothalamus, while only the cerebrocer-
ebellum would be involved in regulating the neocortex.

The existence of the hypothalamocerebellar circuit 
provides anatomical evidence supporting a series of 
observations that indicate the role of the cerebellum in 
regulating visceral functions and its involvement in the 
pathogenesis of visceral disorders. These findings align 
with experimental studies showing that electrical stim-
ulation or lesions of the cerebellum can trigger visceral 
changes affecting gastrointestinal, cardiovascular, res-
piratory, immune, and other visceral functions (Reis and 
Golanov, 1997; Xu and Frazier, 2000; Colombel et al., 
2002; Dietrichs and Haines, 2002; Zhu et al., 2004; Peng 
et al., 2006; Zhu and Wang, 2007; Cao et al., 2015).

Additionally, the hypothalamus is a center of the 
limbic system, which is extensively connected to other 
limbic centers, including the limbic lobe of the neocor-
tex, hippocampus, amygdala, and ventral striatum. This 
suggests that the hypothalamocerebellar circuit may play 
a role in regulating psychic functions related to mood, 
emotions, feelings, and instinctive behaviors (Ho et al., 
2004; Schutter and van Honk, 2005; Schmahmann et al., 
2007; Tavano et al., 2007; Hoppenbrouwers et al., 2008; 
Moreno-Lopez et al., 2015; Carta et al., 2019). These 
functions, influenced by the hypothalamocerebellar cir-
cuit, would complement those exerted through the lim-
bic channel of the cerebrocerebellar circuit.

The hypothalamocerebellar fibers connect the hypo-
thalamus with all lobes of the cerebellum. This means 
they inevitably terminate in regions of the cerebellum 
that also receive other types of inputs, i.e., vestibular 
afferents (vestibulocerebellum), general proprioceptive 
afferents (spinocerebellum), and cerebrocerebellar affer-
ents (cerebrocerebellum). The overlap of these different 
types of afferents in the same regions of the cerebellar 
cortex enhances the interaction among the somatic, psy-
chic, and visceral functions regulated by the cerebellum. 
The integration of the vestibular sensory, played by the 
vestibulocerebellum, and that of the general proprio-
ceptive sensory, played by the spinocerebellum, would 
be influenced by visceral sensory information from the 
hypothalamus, which reach the vestibulocerebellum and 
the spinocerebellum. In turn, both the vestibulocerebel-
lum and spinocerebellum send back to the hypothalamus 
signals that would influence its visceral motor responses. 
On the other hand, the regulatory function of the neo-
cortex, played by the cerebrocerebellum through the cer-
ebrocerebellar circuit, would be influenced by visceral 
sensory information, leading to complex interactions 
between the somatic, psychic, and autonomic system.

Finally, the basilar pontine nuclei and some neu-
ronal groups within the reticular formation, which are 
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intercalated in the descending limb of the indirect hypo-
thalamocerebellar pathway and the cerebrocerebellar 
circuits, could serve as further points of contact between 
the two main regulatory circuits within the central nerv-
ous system.

4. CONCLUSION

The cerebellum can be regarded as a central com-
ponent of the somatic, psychic, and autonomic systems. 
It plays a significant role in regulating various areas of 
the neocortex, through the cerebrocerebellar circuit, as 
well as different hypothalamic nuclei, through the hypo-
thalamocerebellar circuit.

These new perspectives on the cerebellum functions 
may help explain the development of visceral disorders, 
mood disorders, and behavioral disturbances, commonly 
observed in patients with cerebellar diseases, alongside the 
symptoms commonly associated with these conditions.

Unfortunately, these insights have not yet gained 
widespread recognition in clinical settings, where the cer-
ebellum is often viewed solely in terms of its motor func-
tions. It is crucial that further experimental, behavioral, 
and clinical studies support these new perspectives so that 
they can be effectively integrated into clinical practice.
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