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Abstract. Neuronal network architecture plays a crucial role as the structural substrate 
for the brain functions. Increasing evidence, however, indicates that, beside neural net-
works, to fully understand brain complex integrative actions glial cells and the diffu-
sion of signaling substances in the network of extracellular fluid channels should also 
be considered. To account for this more complex architecture it has been proposed 
that all these networks are assembled into a so-called brain hyper-network, having as 
fundamental components the multi-partite synapses involving not only neurons, but 
also regulated by the astrocyte networks and fine-tuned by microglia and by pervasive 
signals diffusing in the interstitial channels of the extracellular matrix. The main fea-
tures of this view of the central nervous system organization are here discussed. This 
complex network architecture can be of particular interest for neurophysiology, since 
it may represent a suitable structural counterpart of physiological mechanisms allow-
ing goal-directed behavior. Furthermore, a model of brain organization integrating the 
activity of different CNS components may assist in the identification of new possible 
targets for the pharmacological treatment of CNS diseases. These aspects are also brief-
ly discussed. 

Keywords: multi-partite synapse, intercellular communication, astrocyte networks, 
extracellular matrix, receptor complexes.

INTRODUCTION

In the last decades a large body of new evidence on central nervous sys-
tem (CNS) structure and function has been acquired by morphological inves-
tigations based on a combination of different approaches, such as chemical 
neuroanatomy methods (histology, histochemistry, and immunocytochem-
istry), new techniques in microscopy (e.g. confocal or atomic force micros-
copy), and brain imaging technologies. A next key step was the possibility 
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of quantitative analysis of the obtained images, mainly 
achieved by the application of computer-assisted image 
analysis methods (Guidolin et al., 2022). This combina-
tion of different approaches led to a view of the CNS as 
a huge network of cells, regions, and systems in which 
intercellular communication processes virtually deter-
mine all aspects of the integrative function performed 
(see Agnati et al., 2023 for a discussion).

The network architecture plays a key role as a struc-
tural substrate for the CNS functions as indicated by 
the increasing interest for the connectomics, the com-
prehensive study of all aspects of neuronal connectivity 
(Lichtmann & Denk, 2011; Sporns, 2012). This field, rep-
resenting a great scientific challenge in neuroanatomy, 
has developed very rapidly in the last years, allowing the 
characterization of the anatomic connections of large 
brain regions and functional neural subcircuits (Hag-
mann et al., 2007; Gong et al., 2009; Briggman et al., 
2011; Van Essen et al., 2012; Wang & He, 2024; see also 
https://www.humanconnectome.org/).

In this respect, however, it is noted that although 
the fundamental anatomical substrate of CNS function 
are neural networks resulting from synaptic contacts 
among neurons, they do not deal exhaustively with the 
issue. About 40 years ago, several authors (see Hökfelt et 
al., 1986) demonstrated that one neuron could synthe-
size more than one neurotransmitter and a single post-
synaptic site may express different types and subtypes of 
receptors for a given transmitter, with each receptor con-
trolling a different decoding mechanism. Thus, a syn-
apse becomes endowed with multiple communication/
transmission lines. Furthermore, our group and other 
groups (see Guidolin et al., 2017 for a review) provided 
new data on the communication modes in the CNS that, 
while not dismissing the fundamental relevance of syn-
aptic contacts, allowed to identify (Agnati et al., 1986) 
the existence of two main modes of intercellular com-
munication in the CNS, generically called wiring trans-
mission (WT: point-to-point communication as in the 
synaptic transmission) and volume transmission (VT: 
communication by diffusion in the extracellular/cerebro-
spinal fluid). 

In the 1990s (see Araque et al., 2001), a broadened 
view on the cellular organization of the CNS was also 
provided with the demonstration that neurotransmit-
ters can elevate astrocytic calcium levels as the result of 
the release of calcium from internal stores. This wave 
of intracellular calcium elevation was shown to propa-
gate through gap junctions (Allen and Barres, 2005) 
between astrocytes for hundreds of micrometers (Cor-
nell Bell et al., 1990), indicating the existence of astro-
cytic networks. In the involved astrocytes the calcium 

signal stimulates the release of gliotransmitters (such as 
D-serine, ATP, glutamate), leading to a direct regulation 
of ongoing synaptic activity (Fellin and Carmignoto, 
2004). In this context, of particular interest have been 
ultrastructural investigations (Ventura and Harris, 1999) 
indicating that a high number of thin filopodia- and 
lamellipodia-like astrocytic processes (called PAP) can 
contact and enwrap synapses, the sites of neuronal com-
munication, sometimes completely encapsulating them. 
Thus, the function and efficacy of synaptic transmission 
are determined not only by the composition and activity 
of pre- and postsynaptic components but also by the fea-
tures of the PAP that enwrap the synapse. This evidence 
led to the proposal of the concept of “tripartite synapse” 
(Araque et al., 1999), providing a link between neural 
and astrocytic networks.

Although most of the available histochemical studies 
focused mainly on nerve cells, extracellular molecular 
networks have been revealed to play significant roles in 
the functional and structural organization of the brain 
(see Agnati et al.,2006 for a review). Extracellular matrix 
(ECM) components are synthesized by both neurons and 
astrocytes and are involved in the formation, mainte-
nance, and function of synapses in the CNS (Dzyubenko 
et al. 2016; Rauch, 2004). Furthermore, they have a key 
role in the VT intercellular communication, since this 
communication mode is based on the diffusion of neu-
roactive substances in the brain extracellular space and 
their binding to extrasynaptic high-affinity receptors on 
neurons or glia (Nicholson and Sykova 1998; Agnati and 
Fuxe, 2000; Marcoli, 2015).

The possibility to integrate the abovementioned 
findings in a new overall view has been explored. In 
particular, the conceptual model of the brain as a hyper-
network (BHN, including neural networks, glial net-
works and ECM as components) has been proposed by 
our group (Agnati et al., 2006; 2018; 2023; Guidolin et 
al., 2017). It is schematically illustrated in Fig. 1 and its 
main features are discussed below. This complex net-
work architecture can be of particular interest for neu-
rophysiology, since it may represent a suitable structural 
counterpart of physiological mechanisms allowing goal-
directed behavior, as those addressed in the framework 
of the theory of functional systems (see Sudakov, 1997). 
Furthermore, a model of brain organization integrat-
ing the activity of different CNS components may also 
assist in the identification of new possible targets for the 
pharmacological treatment of CNS diseases (Marcoli et 
al., 2023). A brief discussion of these aspects will be pro-
vided in the sections that follow. 

https://www.humanconnectome.org/
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THE BRAIN AS A HYPER-NETWORK

The architecture of the CNS extends over a range of 
up to five orders of magnitude of scales: from microns 
for cell structures at one end to centimeters for inter-
areal neuronal connections at the other. As far as the 
neuronal networks are concerned, evidence has been 
provided that the connections between different brain 
areas exhibit an organization called “small- world net-
works” (Watts and Strogatz, 1998; Liao et al., 2017), 
forming clusters of nearby areas with short links, which, 
in turn, have long-range connections to other clusters 
(Sporns and Zwi, 2004; Stam and Reijneveld, 2007). 

Based on these observations, CNS tissue can be 
described as composed of a set of compartments or 
“functional modules” (FM; Agnati and Fuxe, 1984; 
Robertson, 2013) delimited by plastic boundaries. Thus, 
as illustrated in Fig. 1A, FM were considered the basic 
organizational level of the BHN architecture proposed 
for the CNS (Agnati et al., 2018). Typical examples of 
FM are provided by the human cerebral cortex, where 
100 or more anatomical regions can be defined (Wig et 
al., 2011).

Available anatomical findings on these cortical areas 
also provide suggestions concerning the internal archi-
tecture of each FM. They, indeed, appear organized in 
cortical columns (Lorente de Nò, 1938; Mountcastle et 
al., 1957), cylinders composed of vertical chains of cells 
crossing all cortical layers. As stated by Rakic (Rakic, 
2008), cortical columns can be considered functional 
units subserving a set of common static and dynamic 
cortical operations. A similar organization appears to 
characterize thalamus (Boeken et al., 2023), hippocam-
pus (Caroni, 2015), basal ganglia (DeLong and Wich-
mann, 2009) and cerebellum (Leggio and Olivito, 2018). 
Within each cortical column (diameter in the range 
of 300–500 μm) minicolumns (diameter of about 50 
μm) can be distinguished (Pethers and Sethares, 1996). 
According to Rinkus (Rinkus, 2010) they have a generic 
functionality, which only becomes clear when seen in 
the context of the function of the higher level, subsum-
ing unit, the cortical column. Thus, a FM can be mod-
eled (Agnati et al., 2018;2023) as formed by microcircuits 
(Fig. 1B) in which neurons and glial cells (mainly astro-
cytes) are organized into specific patterns to carry out 
processing activities (Shepherd, 2011).

Concerning the intercellular communication within 
FM and among FM, WT processes play a key role, being 
the involved neurons connected by means of synaptic 
contacts, and astrocytes through gap junctions (mediat-
ing the propagation of calcium signals between them). 
The intercellular communication between the cells in the 

CNS, however, is not limited to specific districts of these 
cells, such as synaptic regions or gap junctions (where 
the involved cells are in contiguity), but it also includes 
processes of VT, based on the release of signaling mol-
ecules and their diffusion in the extra-cellular space (see 
Guidolin et al., 2017 for a review) for a distance greater 
than the synaptic cleft. Typical chemical signals diffused 
by VT (see Guidolin et al., 2017; Agnati et al., 2023) 
include neurotransmitters, neuromodulators, growth 
factors, hormones, ions (e.g., Ca2+ ions) and gases (e.g., 
NO, CO2, CO). This communication mode uses the sev-
eral often spatially divergent tortuous channels made by 
the clefts (about 20 nm in diameter) between cells and 
filled with extracellular fluid and extracellular matrix 
(Chen and Nicholson, 2000). VT, therefore, is character-
ized by a very high divergence, since one source usually 
can send signals to a great many targets, including not 
only neurons and astrocytes but also other types of cells 
in the CNS, such as microglial cells (Färber and Ketten-
mann, 2005). In this respect, of potential interest is also 
the suggested possibility that electric fields produced 
by neuronal activity (Anastassiou and Koch, 2015) and 
magnetic fields associated with Ca2+ transients in astro-
cytes (Martinez-Banaclocha, 2017), if strong enough 
and/or positioned precisely, could influence the electri-
cal excitability of neighboring neurons through a pro-
cess called ephaptic coupling (Hales and Pockett 2014; 
Scholkmann 2015; Agnati et al., 2018). This multifaceted 
pattern of signaling leads to the formation of “complex 
cellular networks,” exchanging signals in a certain vol-
ume of brain tissue and, due to this cross talk, integrat-
ing their activity (Agnati and Fuxe, 2000).

In this context, of particular interest is the role 
played by astrocytes at the level of the “tripartite” syn-
apses (Araque et al., 1999), the structures providing a 
direct link between neural and astrocytic networks. 
As a response to synaptic activity (Heller and Rusakov 
2015; Ghézali et al. 2016), indeed, astrocytes associated 
to these structures are able to rapidly (time scale of min-
utes) restructure their peri-synaptic processes modifying 
the coverage of the synaptic contacts (Reichenbach et al. 
2010; Bernardinelli et al. 2014). Such a sophisticated con-
trol of the PAP’s plasticity, therefore, could allow moving 
from a high privacy of the synaptic transmission (close 
enwrap of the synapse) to a more or less broad opening 
of the enwrapping. This would lead to diffusion by VT 
of signaling molecules also to neighboring astrocytes, 
neurons and other glial cells (Grillner and Graybel, 
2006; Dallerac et al., 2013; Marcoli et al., 2015; Agnati 
et al., 2018; Semyanov, 2021). To account for this more 
complex network of signaling, more recently the con-
cept of “multi-partite synapse”, whose dynamics involves 
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not only neuronal synapses and astrocytes but also the 
extracellular matrix and microglial cells, has been pro-
posed (Agnati et al., 2018; 2023; Aramideh et al., 2021). 
It is schematically illustrated in Fig. 1C.

It is well known that at the cellular level membrane 
receptors represent the key mechanism to decode the 
incoming signals. Experimental findings also showed 
that these elements of the cell decoding apparatus can be 
transferred to another cell via the exosome pathway (see 
Guidolin et al., 2023a for a review), enabling the target 
cell to transiently acquire the capability to decode sig-
nals for which it does not express the pertinent recep-
tors. This process (called “roamer-type” of VT) repre-
sents a mechanism of plasticity for intercellular commu-
nication. In the 1980s, in vitro and in vivo experiments 
by Agnati, Fuxe and collaborators (Agnati et al., 1980; 
Fuxe et al., 1983) provided indirect evidence that a major 
class of cell receptors (the G protein-coupled receptors, 
GPCR), able to signal as monomers, can also establish 
structural receptor-receptor interactions (RRI), leading 
to the formation of receptor complexes (dimers or high 
order oligomers) at the cell membrane (see Fuxe et al., 
2007 for historical details). In the years that followed, 
several groups (see Guidolin et al., 2022 for references) 
provided direct evidence for the existence of this molec-
ular organization by exploiting a set of experimental 
techniques able to detect the spatial proximity of protein 
molecules (Trifilieff et al., 2011; Petazzi et al., 2020). The 
basic molecular mechanism characterizing the recep-
tor assemblies are allosteric interactions (Changeux and 
Christopoulos, 2017), allowing the transfer of the ener-
gy associated with conformational or dynamic changes 
at some site of a protein to other sites, that will change 
their conformational or dynamical features accordingly. 
The resulting collective dynamics of these supramolecu-
lar structures allows the integration of different incom-
ing signals reaching the plasma membrane to initiate 
specific patterns of signal transduction (Fuxe and Borro-
to-Escuela, 2016). Interestingly, bioinformatics approach-
es indicated that the dynamics of receptor complexes 
can be described by suitable networks models (Guidolin 
et al., 2007) suggesting that the connections between 
cells are themselves networks (molecular networks).

As illustrated in Fig. 1D, according to the above dis-
cussed features the BHN model appears to display a hier-
archical or nested (“russian doll”) architecture (Agnati et 
al., 2018; Guidolin et al., 2023b), providing a unified view 
of the different spatial scales (from the macro-scale of 
brain areas and FM, to the nano-scale of the molecular 
networks) characterizing the brain network organization. 
This view, supported by experimental findings focused 
on neuronal networks (see Sporns et al., 2005), can be 

discussed in the frame of Jacob’s proposal (Jacob, 1977) 
on evolution working not as an engineer but as a tinker-
er. Jacob claims that evolution tinkers together contrap-
tions in a natural selection process that acts by adding 
direction to changes, orienting chance, and slowly and 
progressively producing more complex structures. 

ANATOMICAL ARCHITECTURE 
AND NEUROPHYSIOLOGY

The search for understanding the role of CNS in 
the control of physiological functions has been classi-
cally subdivided into two disciplines, neuroanatomy and 
neurophysiology, which analyze from complementary 
perspectives the structural and functional properties of 
the CNS. As evidenced by the work of the neurobiologi-
cal pioneer Santiago Ramon y Cajal (1852-1934), how-
ever, this historical dichotomy was never absolute (Borst 
and Leibold, 2023). He, indeed, always studied anatom-
ic structures with reference to functional insights and 
modern functional imaging techniques (Friston, 2009) 
make the distinction quite blurred. 

For centuries physiology based its view of the role 
of CNS function on the ‘reflex principle’ (see Sudakov, 
1997 for a discussion), assigning a leading role to sen-
sory stimuli, whose propagation along nerve fibers, from 
receptors to specific nerve centers, would allow the pro-
duction of a reflected action as a final stage. According 
to this view, brain areas should be highly selective and 
exhibit considerable specialization, each responding to 
a set of inputs and contributing primarily to a single 
cognitive domain. Reflex theory, however, failed to pro-
vide a satisfactory explanation of many complex phe-
nomena (Sudakov, 1997). This especially concerns goal-
directed behavior. Reflex theory, indeed, had a difficulty 
in explaining why living organisms are so skilled in 
inventing means to correct their behavioral errors, and 
why their activity is not limited to responses to exter-
nal stimuli but goes on until a certain vitally important 
result is achieved.

In the early 1940s an alternative view, called ‘theory 
of functional systems’ (TFS), was proposed (Anokhin, 
1937). According to this view, some organism need is the 
dominant factor driving the organization of brain activi-
ties to achieve a result. This occurs through a flow of 
information (sensory, contextual, motivational, mnemon-
ic) reaching brain areas, leading to their self-organization 
in order to define a goal and trigger possible goal-direct-
ed actions (Müller et al., 2021). When the goal is being 
set, however, we have the goal but not the result (Vityaev 
and Demin, 2018). Thus, the brain organization is pro-
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gressively adjusted depending on mechanisms of feed-
back on the degree of usefulness or value of the currently 
obtained result (Anokhin, 1974; Vityaev and Demin, 
2018). The brain functional organization, therefore, is not 
seen as a rigid design, but rather as a constantly chang-
ing dynamic structure. Only the elements that lead to the 
desired result are selected, and this selection is in a con-
stant flux and evolution (Müller et al., 2021). 

In this respect, being composed of a network of FM, 
the BHN model of brain architecture fits with this physi-
ological view of CNS function and provides support to 
that view. The model, indeed, is consistent with findings 
from brain imaging studies showing that most regions of 
the brain appear to be activated by multiple tasks across 

diverse task categories (Anderson et al., 2010). As an 
example, studies on the Broca’s area (see Poldrack, 2006), 
showed that the current notion of the Broca’s area as a spe-
cific “language” region is weak, since it was more frequent-
ly activated by non-language tasks than by language-relat-
ed ones. These findings suggest that the brain achieves its 
variety of functions by putting the same regions together 
in different patterns of functional cooperation. 

The possibility of different patterns of activity is 
a typical feature of the dynamics of systems character-
ized by a network architecture. In other words, when 
started from an initial configuration generated by exter-
nal inputs, a network system can rapidly converge to one 
of a number of temporary equilibrium configurations 

Fig. 1. Schematic illustration of the BHN view of the CNS organization. A. CNS tissue can be described as a network of FM linked by WT 
(solid arrows) and VT (dashed arrows) signaling pathways. B. Each FM can be modeled as formed by microcircuits involving neurons (in 
black) and glial cells (in grey) communicating by WT (neurons and astrocytes) and/or VT. C. Crucial components of this organization, are 
multi-partite synapses, whose dynamics involves not only neuronal synapses and astrocytes but also the extracellular matrix and microglial 
cells. Furthermore, at the cell membrane receptor proteins can form quaternary structures (receptor complexes). The collective dynamics of 
these supramolecular structures allows the integration of different incoming signals reaching the plasma membrane to initiate specific pat-
terns of signal transduction. D. According to the BHN view the CNS tissue exhibit a hierarchical organization with networks of increasing 
miniaturization nested within each other. 
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or ‘attractors’ (Wuensche and Lesser, 1992; Guidolin et 
al., 2007; Pereira and Brunel, 2022; Ashwin et al., 2024). 
Thus, the BHN model of CNS architecture may also rep-
resent a suitable structural counterpart of this physiolog-
ical process. 

In this respect, a further intriguing aspect emerges 
when the hierarchical architecture of CNS suggested by 
the BHN view is considered. Physiological processes, 
indeed, are in general controlled at multiple cellular lev-
els and neural circuits indicating a hierarchical function-
al organization (Nederbragt, 1997) allowing an increas-
ing level of integration of the incoming information. 
Reported examples include the maintenance of homeo-
stasis (Stevenson, 2024) and visual perception (Gilbert, 
2013; Gämänut and Shimaoka, 2021; Lima et al., 2023). 

A last point, however, has to be emphasized. As men-
tioned before, a complex flow of information is physi-
ologically important to trigger possible goal-directed 
actions. In this respect, the hypernetwork architecture 
can be of specific interest. This architecture, indeed, con-
siders a spectrum of signals reaching brain areas not lim-
ited to neuronal synaptic signaling, but also involving 
signals between astrocytes, between neurons and glial 
cells, as well as signals (such as growth factors, hormones, 
ions, and gases) reaching the nerve cells by VT pathways. 
Therefore, the use by brain areas of contextual informa-
tion to define their functional organization is intrinsically 
present in the BHN view of CNS architecture.

ANATOMICAL ARCHITECTURE AND 
NEUROPHARMACOLOGY

A critical aspect of drug development in the thera-
py of neuropsychiatric disorders is the so-called “target 
problem” (TP), namely the selection of a proper target 
not simply based on the etiopathological classification of 
symptoms but rather on the detection of the supposed 
structural and/or functional brain alterations (see Mar-
coli et al., 2023 for a recent review).

In neuropharmacology the classical view of neu-
ronal synapse is still the most followed reference frame-
work on which drug discovery and development are 
based. Early findings, indeed, suggested that by acting at 
the synaptic receptor level, marked changes in integra-
tive brain functions could be achieved (Kebabian and 
Greengard, 1971; Snyder, 2011; Giessing and Thiel, 2012). 
However, frequent failure of drugs in drug development 
and/or drug side effects, especially during chronic treat-
ments, indicated that the TP was not well resolved by 
this direct approach (see, for instance, (Lipton, 2005) 
for N-methyl-D-aspartate receptor as drug target). A 

step forward was the characterization at synaptic level 
of iso-receptors (i.e. of receptor subtypes for the same 
neurotransmitter), offering the possibility of acting on 
recognition/decoding components of synaptic transmis-
sion capable of triggering some peculiar responses at 
synaptic level (see Snyder, 1984). Again, however, TP was 
not fully solved with the more selective drugs targeting 
isoreceptors. Indeed, although less severe than previous-
ly observed, side effects and/or treatment failures have 
been reported (Miller, 2010; Carhart-Harris and Nutt, 
2017; Charvin et al., 2018).

The more comprehensive view of synapses as multi-
partite structures, as suggested by the BHN model of 
CNS organization (Agnati et al., 2023), may significantly 
expand the range of possibilities to addressing the TP 
(Marcoli et al., 2023). They, indeed, don’t involve only 
neurons, but are also regulated by the astrocyte networks 
and fine-tuned by microglia (Miyamoto et al., 2013; 
Crapser et al., 2021) and by pervasive signals diffusing in 
the interstitial channels of the extracellular matrix. 

In this context, membrane receptor complexes in 
neurons and glial cells have been proposed as key inte-
grators, capable of converting multiple extracellular 
signals into appropriate cellular biochemical responses 
(see (Guidolin et al., 2021;2022;2024) for reviews). RRI, 
therefore, may provide new opportunities to optimize 
existing pharmacological treatments or to develop com-
pletely new pharmacological strategies. In this respect, 
the search for receptor heteromers’ selective compounds 
would be of key importance to fully exploit their prop-
erties. At least three approaches could be followed to 
achieve this goal. The first, and presently most stud-
ied (see Guidolin et al., 2020), is based on the fact that, 
due to a different pattern of allosteric RRI, the confor-
mational state of a given protomer may change accord-
ing to the type of complex in which it is involved (Fuxe 
et al., 2013). Thus, the pharmacology of some agonists/
antagonists of a given protomer in terms of affinity and 
efficacy may show substantial differences among various 
types of receptor complexes. A second approach to iden-
tify receptor complex selective compounds is based on 
the possibility that, when the complex forms, the quater-
nary structure could display novel specific allosteric sites 
suitable for the binding of some modulators (Cervetto et 
al., 2008). The use of bivalent ligands constitutes a third 
possible approach for targeting receptor heteromers 
(see (Hiller et al., 2013) for a review). A bivalent ligand 
consists of two pharmacophoric entities linked by an 
appropriate spacer. In this way, it should be possible to 
target GPCR heteromers by adequate, potent, and recep-
tor complex-selective ligands. (see (Daniels et al., 2005) 
for examples). These research efforts are still in their 
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experimental phase. Some significant results, however, 
have been obtained, as exemplified by the adenosine A2A 
receptor antagonist istradefylline (targeting the heter-
odimer between the A2A receptor and the dopamine D2 
receptor), recently approved in the United States as an 
adjunctive treatment in Parkinson’s disease (Chen and 
Cunha, 2020). 

CONCLUDING REMARKS

As indicated by the rapid increase of studies address-
ing connectomics, the anatomical mapping of the rela-
tionship among CNS components can represent a sig-
nificant advance to reach a deeper level of understanding 
of CNS functions. In fact, the integrative actions of net-
works in which functions emerge from sets of elementary 
units (nodes), linked by connections and bound together 
dynamically (Bullmore and Sporns, 2012), are probably 
the process allowing the brain to accomplish its activity. 
As pointed out by Sporns (Sporns, 2013), the emphasis 
on structure is important because anatomically deter-
mined connections among CNS elements embody a large 
but finite set of relations that (at least in principle) can be 
objectively characterized in terms of their geometrical 
and biophysical features.

To date, the characterization of the connectiv-
ity between neurons at a macroscale level (Gong et al., 
2009) has been the major focus of the research effort in 
connectomics, allowing the demonstration of several 
topological features of the adult human neuronal net-
works (see Stam, 2010). Experimental and theoretical 
limitations of the present approach, however, exist and 
should be carefully considered. The major limitation rely 
to the assumption that all functionality of CNS could 
be derived once the complete pattern of connections 
between neurons has been recorded (see Sporns, 2013, 
for a critical analysis). 

In this respect a particular aspect deserves consid-
eration. It refers to the increasing evidence indicating 
that synaptic transmission is significantly complemented 
by other cell types (Araque et al., 1999; Miyamoto et al., 
2013) communicating via two modes of connection, WT 
and VT (which are not mutually exclusive), and by a pat-
tern of diffusing signals reaching the cells through the 
extracellular space (Agnati and Fuxe, 2000; Marcoli et 
al., 2015). The view of the CNS organization as a hyper-
network tries to account for this more complex archi-
tecture to reach a deeper insight into the relationship 
between brain structure and function with potentially 
relevant implications of this enlarged view on neurophys-
iology and neuropathology (see Guidolin et al., 2017). 

Obviously, at present, it is impossible to give detailed 
representations of the BHN. The possibility however 
exists to identify the brain areas where are mainly con-
centrated the supposed crucial components of this 
organization, namely the multi-partite synapses (where 
the dynamic reassembling of the different brain net-
works information handling processes appears to occur) 
and to consider these areas as nodes for an analysis of 
the BHN (see Robertson, 2013). A research effort in this 
direction could also complement imaging connectomics 
and provide a more complete drawing of the connec-
tome plasticity in different functional conditions. Fur-
thermore, it can be suggested that investigations on the 
functional plasticity of multi-partite synapses can be the 
background for a new understanding and perhaps a new 
modelling of brain integrative actions.

In the last 20 years, a significant research inter-
est has also been focused on the nano-scale level of 
the BHN, namely on molecular networks at the cell 
membrane of neurons and glial cells (see Guidolin et 
al., 2021), and in particular on receptor complexes. 
They, indeed, may provide new opportunities to opti-
mize existing pharmacological treatments or to devel-
op completely new pharmacological strategies. In this 
context, a topic of possible development would also 
be the identification of pharmacological tools sepa-
rately targeting synaptic and extrasynaptic receptors 
(Hoestgaard-Jensen et al., 2013) in order to design 
strategies to rebalance WT and VT. In the neurop-
harmacological field, finally, an important direction 
of future research is certainly targeting glial cells as 
a strategy to treat neurological disorders (Cervetto et 
al., 2023). As suggested by the BHN view, indeed, the 
intimate association of glia with neurons is at the basis 
of increasing evidence that metabolic perturbations of 
glial cells may alter neuron–glial interactions, poten-
tiating the underlying pathology of many neurologi-
cal diseases (Afridi et al., 2020). The mechanism driv-
ing the circumstantial activation of glial phenotypes, 
however, is just starting to unravel, and future studies 
should open new perspectives. 
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