Twin pregnancies and maternal cardiovascular function: literature review and future prospects

Melissa Foglietta¹,*, Francesco D'Antonio², Sante Donato Pierdomenico³, Elena Bacigalupi³, Jacopo Pizzicannella⁴

¹ Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
² Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
³ Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, Chieti-Pescara, Italy
⁴ Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy

*Corresponding author. E-mail: melissa.foglietta11@gmail.com

Abstract. Twin pregnancy – with a prevalence nearly doubled in the last decades due to the use of assisted reproductive technology and the increasing age of conception – is associated with physiological cardiovascular adaptations to meet the hemodynamic demands of pregnancy. Compared to singleton pregnancies, increased and earlier in pregnancy risk of developing perinatal complications and maternal cardiac disease is demonstrated due to additional stress on the maternal cardiovascular system due to higher circulation volume. Knowledge on maternal adaptation in twin pregnancies are still lacking and often data derive from research studies on singleton pregnancy and including twins without differentiations. Only a few trials considered the impact of twin pregnancies on the maternal cardiovascular system and included echocardiographic evaluations showing how the changes in left ventricular geometry, systolic and diastolic function were comparable to those observed later in uncomplicated singleton pregnancies or in presence of hypertensive disorders. The present work aimed to review the current state of research on maternal cardiovascular function in twin pregnancies as the basis for a new study focused to find premature echocardiographic parameters able to contribute to the design of effective preventive strategies of complications – such as hypertensive disorders – in pregnancies, particularly on twin pregnancy.

Keywords: twin, pregnancy, cardiovascular system, diastolic function, systolic function.

INTRODUCTION

The Worldwide incidence of multiple pregnancies, especially twins is growing – nearly doubled in the last decades in USA – due to the wide use of assisted reproductive technology and the increased age of conception.

During pregnancy – singleton or multiple – mother’s anatomical, metabolic, and physiological changes are necessary for the benefit of the foetus-
es; in fact, physiological cardiac remodelling permits to increase cardiac output and blood volume on one side and decrease the peripheral vascular resistances from the other side (Melchiorre et al., 2016).

Women failing to meet the haemodynamic demands of pregnancy are more likely to develop perinatal or maternal complications and have also an increased risk to develop cardiovascular disease later in life. (Bellamy et al., 2007).

Compared with singleton pregnancy, uncomplicated twin pregnancy has a more pronounced and altered maternal cardiac function, haemodynamic changes, and additional stress on the maternal cardiovascular system due to higher circulation volume; therefore, in twin pregnancies mother’s heart has a higher risk of decompensation correlating to increased risk of complication such as pre-eclampsia (Francisco et al., 2017 and Li X et al., 2016).

Trials demonstrated the proportionality of the occurrence of pre-eclampsia and the number of foetuses with a prevalence of 6.5%, 12.7% and 20% in singleton, twin and triple pregnancies respectively (DayMC Barton et al., 2005 and Adank MC et al., 2020) and occurrence at an earlier gestation age, a more quickly progression and an atypical presentation in twin pregnancies; the larger placental size and mass, the stronger inflammatory response, and the possibility to a larger area of placental perfusion damage are the major causes of these findings (Wang et al.2021 and Narang et al., 2021).

We conducted an extensive literature search through PubMed (NCBI) up to 20 June 2023 based on journals evaluating maternal echocardiographic cardiovascular function in twin pregnancies. The keywords used were: twin, pregnancy, echocardiography, systolic and diastolic function (Table 1).

HYPOTHESIS AND THEORY ON MATERNAL CARDIOVASCULAR FUNCTION

Knowledge on maternal cardiovascular function during twin pregnancies are still lacking, women with multiple gestations were often excluded from research studies or included in studies with singletons without differentiation, despite the disproportionate incidence of pregnancy changes and complications in twin pregnancies.

Two of the most dated studies (Robson et al.,1989 and Veille et al.,1985) and then other more recent studies (Kametas et al.,2003 and Kuleva et al,2011) reported variations of the left ventricular (LV) function during gestation such as the increase of cardiac output, stroke volume (SV), heart rate, LV end-diastolic volume and of left atrial area, related to the more hyperdynamic maternal circulation, increased plasma volume and venous return in twin pregnancies.

Moreover, a recent trial (Orabona et al.,2022) added information on maternal LV dimensions, volumes and LV mass during twin pregnancies demonstrating the progressively increased trend from the first to the third trimester, like in singletons.

Regarding the LV diastolic function, at first, Ghi and Degli Esposti et al (2015) observed the deterioration of diastolic parameters characterized by the reduction of mitral E wave and the increase of mitral A wave and of left atrial pressures.

Recently, Nunez et al confirmed all previous data and taking into consideration the increase of cardiac output, myocardial performance index, LV mass, relative wall thickness (RWT) and the progressive LV diastolic dysfunction demonstrating the increase of isovolumetric relaxation time (IVRT), left atrial area and, the decrease of mitral E/A ratio in twin – dichorionic and monochorionic – pregnancies. No differences were observed in LV myocardial deformation between twin and singleton pregnancies.

Moreover, the impact of chorionicity on the cardiovascular system was examined (Nunez et al and Ghi and Dall’Asta et al.,2019) and dichorionic twin pregnancies seemed to be associated with more accentuated mother cardiac changes.

The impact of pregnancy on maternal right ventricular (RV) systolic and diastolic function was investigated in a recent longitudinal study (Orabona et al.,2022) involving 30 twin pregnancies and no significant differences in RV function (all the parameters such as fractional area change FAC, TAPSE, sPAP, E and A waves, E/A, DT, E/e’, IVCT, myocardial performance index and 2D longitudinal strain) were found in twins pregnancies compared to singleton pregnancies.

In general, all trials demonstrated how the maternal cardiovascular changes in twin pregnancies anticipated those encountered in singleton pregnancy later in gestation, suggesting the physiological remodelling in response to the increase in volume loading rather than decompensation of the maternal cardiovascular system.

Recently Giorgione et al. (2022) – considering around 830 pregnant women – demonstrated how changes in LV geometry, function and haemodynamics in normotensive twin pregnancy were comparable to those observed in singleton pregnancies complicated by hypertensive disorders of pregnancy (HDP); the cardiac maladaptation in twin pregnancies seemed to be exacerbated in the presence of HDP, compared to normotensive twin pregnancies.

The importance of these findings is related to the precocious evaluation of the functional and structural cardiac changes that could precede complications in pregnancy.
Twin pregnancies and maternal cardiovascular function

POTENTIAL FUTURE DEVELOPMENTS IN THE TWIN PREGNANCIES FIELD

Although data on twin pregnancies are still missing, recent knowledge about physiological and pathophysiological changes are emerging. During singleton and multiple pregnancies physiological adaptations are necessary to ensure adequate uteroplacental circulation for foetal growth and development and to respond to higher circulation volume of mothers. In twin pregnancies – compared with singletons – LV mass, end-diastolic volume, SV, cardiac output, and left atrium dimensions increase, but there are also other subtle changes in systolic and diastolic LV function parameters. The typical cardiovascular adaptations in twin pregnancies resemble to those seen in singletons in late gestation.
tion and this concept suggests physiological remodelling in response to the increase in volume.

When mother’s physiological changes fail to meet the haemodynamic demands, the risk of complication increases.

Moreover, twin pregnancies have an increased risk of cardiovascular complications—such as pre-eclampsia—, at an earlier gestation age and, a more quickly progression compared to singleton pregnancies.

Understanding the normal cardiovascular changes occurring during pregnancies is essential not only for caring patients with cardiovascular disease but also to try to anticipate the occurrence of complications in the pregnancies of subjects with no pre-pregnancy disorders.

Therefore, we retain that could be useful to establish a new longitudinal study based on transthoracic echocardiography evaluations during the three trimesters of pregnancy to find premature parameters able to contribute to the design of effective preventative strategies for prevention of maternal cardiovascular diseases in high-risk pregnancies such as twins ones.

LEGENDS

HDP hypertensive disorders of pregnancy
IVCT isovolumetric contraction time
IVRT isovolumetric relaxation time
LAVi left atrial volume
LV left ventricle
RV right ventricle
RWT relative wall thickness
SV stroke volume
TTE Transthoracic echocardiography
TVR total vascular resistance

REFERENCES

