Modulation of inflammatory pathway in human gingival fibroblasts exposed to resinous materials

Antonella Mazzone¹*, Ylenia Della Rocca¹, Jacopo Pizzicannella², Francesca Diomede¹, Gyu Diletta Marconi¹, Oriana Trubiani¹

¹ Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
² Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy

*Corresponding author. E-mail: antonella.mazzone@unich.it

Abstract. The goal of this work was to evaluate the anti-inflammatory effects of two resins, Bis-GMA-based resin (ProTemp 4™) and PMMA-based resin (Coldpac), used in dentistry for temporary prosthetics treatments, in the modulation of the inflammatory pathway NFkBp65/NLRP3/IL-1β. The protein expression of inflammatory markers was evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by immunofluorescence analysis while the study of the ultra-morphological analysis was performed through scanning electron microscopy. Taken together these results may suggest that ProTemp 4™ resin exerts a better performance in terms of inflammatory modulation.

Keywords: hGFs, ProTemp 4™, Coldpac, inflammation, biocompatibility.

INTRODUCTION

The advent of new technologies in the dental field has allowed the development of more resistant and easy-to-use resinous materials with innovative features.

One of the most important uses of composite resins is the development of temporary restorations, which is a fundamental step in the prosthetic treatment plan. Each type of resinous material has specific properties depending on the structure and molecular composition [1].

The main problem using these resinous materials is the incomplete polymerization process that leads to leakage of monomers [2] the substances released by these resinous materials may have important adverse reactions such as irritation or allergy to the oral mucosa [3-5] Previous studies reported that the toxicity of dental resin composite can be due to the release of monomers during the auto-polymerization process [6]. For this reason, there is an increased interest in the development of novel biocompatible resinous mate-
rials in the dental field [7-9] the present work aimed to evaluate the biological effects of the ProTemp 4™ resin, containing bisphenol A glycidyl methacrylate (Bis-GMA), and of the Coldpac resin, containing polymethyl methacrylate (PMMA), in an in vitro model of hGFs.

Protein expression and scanning electron microscopy were performed to understand the biological effects of provisional resins in contact with the oral fibroblasts. The expression of the inflammatory pathway nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), the inflammasome protein NOD-, LRR- and pyrin domain-containing 3 (NLRP3), and the pro-inflammatory cytokine interleukin-1 beta (IL-1β) [10,11] were evaluated using the immunofluorescence analysis.

MATERIALS AND METHODS

Preparation of resin disc samples to evaluate cell adhesion

Two materials used for temporary restorations were compared: ProTemp 4™ (ProtempTM 4 Temporization Material, 3M ESPE, St. Paul, USA) and Coldpac self-curing PMMA (Coldpac tooth acrylic, Yates Motloid, Chicago, USA).

After mixing and polymerization according to the manufacturer’s instructions, round section bars of 10 mm in diameter were produced.

Discs with a thickness of 0.3mm were obtained using two glass plates, while using a core drill bit with an internal diameter of 0.5mm, approximately 50 disks were obtained for each resin under examination. Each disc was then finished and polished according to the procedures described by the manufacturer. To eliminate any finishing residues, the disks were placed in distilled water and sonicated for 30 minutes. The samples were dried and placed in an autoclave at 134 °C for 50 minutes to obtain complete disinfection.

Cell culture of hGFs

Human gingival fibroblasts (hGFs PCS-201-018 ATCC, Manassas, Virginia, US) were cultured in basal medium (Fibroblast Growth Kit-Low Serum, (PCS-201-041, ATCC), containing 5 ng/mL rh FGF-β (fibroblast growth factor beta), 7.5 mM L-glutamine, 50 µg/mL ascorbic acid, 1 µg/mL hydrocortisone hemisuccinate, 5 µg/mL rh insulin and 2% fetal bovine serum [12,13]. The culture was maintained in an incubator at 37°C in a humidified atmosphere of 5% CO2 and 95% air [13,14].

Once the cells reached 75-80% confluency, subcultures were made.

Confocal Microscopy Analysis

The hGFs cells were seeded at 8500/well on 8-well culture glass slides (Corning, Glendale, Arizona, USA) and treated with ProTemp 4™ and Coldpac resins, for 24 hours and 1 week, replacing the medium every 2 days. The cells were then fixed for 10 min at room temperature (RT) with 4% paraformaldehyde in 0.1 M PBS (pH 7.4); after washing, samples were processed for immunofluorescence staining.

The Confocal Microscopy analysis was performed using NFkB (1:500, sc-8008, Santa Cruz Biotechnology, CA), NLRP3 (1:500, NBP1 77080, Novus, Milan, Italy), and IL-1b (1:500, sc-32294, Santa Cruz) as primary mouse monoclonal antibodies [16] and Alexa Fluor 568 red fluorescence conjugated goat anti-mouse antibody (A11031, Invitrogen, Eugene, OR, USA) as a secondary antibody. The microscope used is Zeiss LSM800 confocal system (Zeiss, Jena, Germany) [17].

SEM

SEM analyses were then performed to evaluate the relationship between hGFs and the resin disks.

After 24 hours and 1 week of culture, the samples were fixed for 1 hour 4°C in 2.5% glutaraldehyde (Electron Microscopy Sciences, EMS, Hatfield, PA, USA), in 0.1 M sodium phosphate buffer (PB), pH 7.3, rinsed three times with PB, and post-fixed for 1 h in 1% aqueous osmium tetroxide (EMS) at 4 °C. The cells were dehydrated through an ethanol series (30%, 50%, 70%, 90%, 95%, and two times 100%) followed by drying in air and carbon. Specimens were mounted on aluminum stubs and gold-coated in an Emitech K550 sputter-coater (Emitech Ltd., Ashford, UK). SEM EVO 50 (Zeiss, Jena, Germany) was used for analysis [20].

Design of the experimental study

The experimental steps featured in this study were performed in triplicate with hGFs (Figure 1):

- hGFs cultured alone as negative control for 24 hours and 7 days.
- hGFs cultured with ProTemp 4™ resin disk for 24 hours and 7 days
- hGFs cultured with Coldpac resin disk for 24 hours and 7 days
RESULTS

The immunofluorescence analysis showed that the pathway NFkBp65/NLRP3/IL-1β was significantly downregulated in hGFs alone and in hGFs cultured with ProTemp 4™ disks compared to hGFs cultured with Coldpac disks, after 24 h (Figure 2) and 1 week of treatment (Figure 3).

The immunofluorescence figures show the NFkB p65/NLRP3/IL-1β expression in hGFs alone, cultured with Coldpac and with ProTemp 4™ for 24 hours. The results show that the NFkBp65/NLRP3/IL-1β pathway was significantly upregulated in hGFs cultured with Coldpac after 24h compared to hGFs cultured with Pro-Temp 4™ and hGFs alone.

The immunofluorescence figures show the NFkB p65/NLRP3/IL-1β expression in hGFs alone, cultured with Coldpac and with ProTemp 4™ after 1 week. The results
show that the NFκBp65/NLRP3/IL-1β pathway was signifi-
cantly upregulated in hGFs cultured with Coldpac after
1 week compared to hGFs cultured with ProTemp 4™ and
hGFs alone.

Regarding the morphological analysis, hGFs cul-
tured on ProTemp 4™ showed a similar morphology as
hGFs evidencing nucleo and nucleoli, after 24h and 1
week; on the contrary, cells cultured on Coldpac showed
a different morphological feature (Figure 4).

DISCUSSION

Over the last few years, new technologies have devel-
oped biologically compatible resins with optimum safety
profiles and physical properties.

In our study, we focused on the ProTemp 4™ and
Coldpac resins that are particularly used for the develop-
ment of prosthetic implants [21]. The incomplete polym-
erization process of these materials may induce toxic
effects on the oral cavity cells [22].

The in vitro model hGFs was used to understand
which provisional resin can lead to better biocompatibil-
ity, after 24 hours and 1 week of culture.

Scanning electron microscopy was performed to
understand the cell adhesion capacity on the resin disks,
on the other hand, confocal laser scanning microscopy
was performed to analyze inflammatory modulation.

The NFκB p65/NLRP3/ IL-1β inflammatory pathway
was found to be downregulated in hGFs cultured with
ProTemp 4™ resin when compared with cells cultured
with Coldpac resin, after 24h and 7 days of cultured. In
parallel, SEM analysis showed that the fibroblastic mor-
phology was preserved in hGFs treated with Protepm
4™ while compared with hGFs treated with Coldpac.

According to our results, ProTemp 4™ resin could be
less inflammatory when compared to Coldpac resin; this
could mean that the ProTemp 4™ resin could lead to bet-
ter biocompatibility and better performance in terms of
cell/material interaction.

REFERENCES

Wang, Y.H.; Cheng, H. In vitro study of surface prop-
erties and microbial adhesion of various dental poly-
mers fabricated by different manufacturing techniques
after thermocycling. Clinical oral investigations 2022,
2. Mazzaoui, S.A.; Burrow, M.F.; Tyas, M.J.; Rooney,
F.R.; Capon, R.J. Long-term quantification of the
release of monomers from dental resin composites
and a resin-modified glass ionomer cement. J Biomed
3. Hatton, P.V.; Mulligan, S.; Martin, N. The safety and
biocompatibility of direct aesthetic restorative mate-
s41415-022-4198-6.


