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Abstract. Intercellular communication plays a crucial role as the structural substrate 
for the brain functions. It occurs according to two main processes, namely wiring 
transmission, i.e. the transmission of signals through physical contacts between cells, 
and volume transmission, i.e. the chemical signal diffusion along the interstitial fluid 
pathways. Intercellular communication represents the main rationale for the emerg-
ing field of connectomics, defined as the comprehensive study of all aspects of central 
nervous system connectivity, aimed at creating a comprehensive map (connectome) of 
the cellular networks in the brain to better understand brain functions. A consensus 
exists that the brain connectome structure follows a hierarchical or nested architec-
ture, and macro-, meso- and microscales have been defined. Available data on network 
organization at these different miniaturization levels will be here briefly reviewed. The 
connectome, however, is also a dynamical entity, undergoing changes during lifetime. 
Thus, a specific focus will be maintained on the changes the network organization 
undergoes during normal aging.

Keywords: intercellular communication, brain networks, brain aging, connectome, 
molecular networks.

INTRODUCTION

The central nervous system (CNS) can be well described as an interac-
tion-dominant dynamics system (Anderson et al., 2012; Guidolin et al., 2017) 
where interaction processes among cells and regions determine virtually all 
aspects of its integrative function, making difficult, and sometimes impos-
sible, to assign tightly defined and unique roles to each specific component. 
The key role played by the network architecture as a structural substrate for 
the CNS functions represents the main rationale for the emerging field of 
connectomics, the comprehensive study of all aspects of CNS connectivity 
(Sporns, 2012). This idea has a quite long history behind it (see Schmahmann 
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and Pandya, 2007). Early neuroanatomists, indeed, were 
aware of the inappropriateness of their anatomical tech-
niques to unravel the complex brain organization, and 
mapping the connections within the CNS has been a 
scientific goal for centuries. A significant example is rep-
resented by the 1685 Steno’s far-sighted lecture “On the 
anatomy of the brain” (see Steno, 1965) where he empha-
sized the need of a program aimed at detailing brain 
anatomy in particular for what it concerns the fibers 
course through the white matter, since “it is impossible 
to explain the movements of a machine if the contriv-
ance of its parts is unknown”. 

The characterization of inter-neuronal pathways, 
however, became possible only when new methods able 
to stain and trace neuronal connections were developed 
(Flechsig, 1901; see Sporns, 2013, for a thoughtful histor-
ical summary on this topic), and a significant advance-
ment in the field occurred in the 1990s with the develop-
ment of noninvasive magnetic resonance-based imaging 
methods and the related computational techniques (see 
Le Bihan and Johansen-Berg, 2011, for a review). Thus, 
the idea emerged of creating a comprehensive map of the 
brain structural connections to better understand brain 
function based on the structural features of neuronal 
networks, leading to the definition of the NIH ‘Human 
connectome project’ (www.humanconnectomeproject.
org) aimed at providing an unparalleled compilation of 
neural data and the opportunity to achieve never real-
ized conclusions about the living human brain (Van 
Essen et al., 2012). As pointed out by Sporns (2013), the 
emphasis on structure is important because anatomi-
cally determined connections among CNS elements 
embody a large (but finite) set of properties that (at 
least in principle) can be objectively mapped and rep-
resented by appropriate network models characterized 
by well-defined geometrical, biophysical and functional 
features. Defining the connectome, however, involves a 
careful analysis of the communication processes existing 
between CNS elements and of the pathways they exploit.

In this respect, it has to be observed that although 
networks of neurons interconnected by synapses repre-
sent the fundamental structural substrate of the CNS 
function, they do not deal exhaustively with the issue. In 
the last decades, indeed, a broadened view on the con-
nectivity in the CNS came with the proposal (Agnati et 
al., 1986; Nicholson, 2001) of the existence of two main 
modes of intercellular communication in the CNS (see 
Guidolin et al., 2017 for a recent review), that have been 
called wiring transmission (WT: point-to-point commu-
nication via private channels, as, for instance, synaptic 
transmission) and volume transmission (VT: communi-
cation by diffusion in the extracellular fluid and in the 

cerebrospinal fluid). Experimental evidence suggested 
that these communication processes involve not only 
neurons but also other types of cells in the CNS (Syko-
vá and Chvátal, 2000; Färber and Kettenmann, 2005; 
Guidolin et al., 2022), allowing the formation of ‘com-
plex cellular networks’ including neurons and glial cells 
(in particular astrocytes), in addition to the extracellular 
matrix.

A further aspect deserving consideration concerns 
the hierarchical structure exhibited by CNS networks. It 
is well known, indeed, that all anatomic systems exhib-
it the pivotal property to form multiscale structures 
(Jacob, 1970) each of which forms “a whole in relation 
to its parts and is simultaneously part of a larger whole” 
(Grizzi and Chiriva-Internati, 2005). In the CNS this 
feature is of particular relevance, being its architecture 
extending over a range of up to five orders of magnitude 
of scales: from microns for cell structures at one end to 
centimeters for inter-areal neuronal connections at the 
other. Thus, a hierarchical or nested architecture has 
been suggested as a suitable model to describe the CNS 
network organization (Agnati and Fuxe, 1984; Sporns et 
al., 2005; Sporns, 2013; Guidolin et al., 2016). From the 
point of view of connectomics this structural feature 
poses a significant challenge (see Zalesky et al., 2010), 
that concerns an unambiguous identification of the sig-
nificant levels of organization. In this respect, an almost 
general consensus exists (see Agnati and Fuxe, 1984; 
Sporns et al., 2005) in defining at least three nested 
levels (see Guidolin et al., 2017 for details), namely the 
“macroscale” (where CNS areas and neuronal popula-
tions represent the basic elements), the “mesoscale” (the 
level of complex cellular networks forming a CNS area) 
and the “microscale” (where single cells and intercellular 
contacts, such as synapses, can be found). They are sche-
matically illustrated in Figure 1 and briefly discussed 
in the sections that follow. Furthermore, being age one 
of the arguably most robust sources of neurobiological 
variation in the connectome, a specific focus will be on 
available data illustrating the changes the CNS network 
organization undergoes during normal aging. 

MACROSCALE: CNS NETWORKS AND PATHWAYS

Basic elements at this level are CNS areas, neu-
ronal populations and the pathways connecting them. 
A number of anatomical regions on the order of 100 or 
more (Van Essen et al., 1998; Glasser et al., 2016), for 
instance, can be defined in the human cerebral cortex 
on the basis of several different criteria (see Wig et al., 
2011). Despite the limitation associated with the lack of 
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a single universally accepted parcellation scheme, the 
macroscale level is considered the most feasible organi-
zational level for a first draft of a connectome (Sporns et 
al., 2005). In this respect, direct, invasive, techniques for 
localizing brain regions and tracing anatomical connec-
tions have been available for many decades and used in 
animal studies. They involve the use of tracers and the 
post-mortem analysis of the distribution of labeled axons 
(Markov et al., 2011). For mapping neuronal connec-
tions non-invasively in the human brain two approaches 
are currently used (see Behrens and Sporns, 2012), both 
involving magnetic resonance imaging (MRI), but rely-
ing on very different principles. ‘Diffusion tractography’ 
(tMRI) aims to infer the tracks of axon bundles in the 
white matter, while ‘resting state functional MRI’ (rfM-
RI) measures spontaneous fluctuations in the blood-oxy-
genation-level-dependent (BOLD) signal in grey matter 
regions and estimates statistical dependencies between 
these time series. Although methodological issues (see 
Behrens and Sporns, 2012; Mohanty et al., 2020), such 
as reduction of artifacts and improvement of accuracy 
by using more appropriate metrics, still deserve further 
development, the analysis by methods from network sci-

ence and graph-theory (Rubinov and Sporns, 2010; For-
nito et al., 2013) of available MRI datasets obtained in 
animals (see Hilgetag et al., 2000) and humans revealed 
a convergence on some key features of brain architec-
ture. Concerning the neural connections between dif-
ferent cortical areas, for instance, they were shown to 
possess an organization in the form of ‘small-world net-
works’ (Watts and Strogatz, 1998; Liao et al., 2017), char-
acterized by clusters of nearby cortical areas connected 
by short links, which in turn have long-range connec-
tions to other clusters (Sporns and Zwi, 2004; Stam and 
Reijneveld, 2007). Within clusters, the network topology 
identified by functional MRI is the type called ‘scale-
free’ (Eguiluz et al., 2005), in which some nodes (hubs 
of connectivity) have a high number of connections to 
other nodes, whereas most nodes have just a handful. 
These basic architectures are schematically illustrated in 
Figure 2. VT pathways at macroscale were also proposed 
(see Fuxe et al., 2013; Illes, 2018). The proposal was 
based on the hypothesis that cyclic pressure oscillations 
(associated to intracranial arterial pulses) exist in the 
subarachnoid space leading to “tide” movements (Agnati 
et al., 2005) in the fluid of the Virchow-Robin spaces. 
Such convective movements would generate long-dis-
tance VT signals (Picard and Zanardi, 2015). As indicat-
ed by experimental studies on β-endorphin (Bjelke and 
Fuxe, 1993; MacMillan et al., 1998), peptidergic neurons 
appear able to operate via long-distance VT with dis-
tances in the range of millimeters (Jansson et al., 2002).

This research effort provided important insights into 
how anatomical connections shape and constrain brain 
dynamics, how this relation varies across individuals, 
and applications to clinical disorders are under develop-
ment (Siddiqi et al., 2023). Concerning MRI-based life 
span studies (see Zuo et al., 2017 for a detailed review on 
the topic), tMRI approaches largely confirmed early find-
ings indicating an inverted-U trajectory for white matter 

Figure 1. Schematic representation of the hierarchic structure 
of CNS networks, characterized by at least three nested levels of 
increasing miniaturization. 

Figure 2. Schematic representation of the two basic network topol-
ogies identified in the CNS. The left panel illustrates a ‘small-world 
network’ and the right panel a ‘scale-free network’ (see text for 
details). 
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development (Mwangi et al., 2013). In particular, phylo-
genetically primitive sensorimotor brain structures were 
found to exhibit the most rapid development and great-
est preservation, while more phylogenetically advanced 
structures (e.g., prefrontal cortex) showed slower devel-
opment and faster declines, suggesting a first-in-last-out 
pattern of development across the life span (Imperati et 
al., 2011). Complementing structural perspectives of life 
span development for the connectome are those emerg-
ing from rfMRI, suggesting, in young brains, age-related 
increases in long-range connectivity when compared 
to both short-range and interhemispheric connectiv-
ity (Fair et al., 2007). By contrast, aging studies revealed 
consistent patterns of decreases in long-range connectiv-
ity (Andrews-Hanna et al., 2007), leading to a reduction 
in network modularity (Chen et al., 2011; Varangis et 
al., 2019), i.e. in the propensity for a network to be divis-
ible in subnetworks or modules. The interpretation of 
this pattern of results is contentious, with some suggest-
ing that this pattern represents a compensatory process 
which allows an optimization of the wiring cost in older 
adults (Cabeza, 2002), while others posit that it simply 
reflects network dedifferentiation (Colcombe et al., 2005), 
a process that could be associated with some decline of 
cognitive functions (Varangis et al., 2019).

MESOSCALE: COMPLEX CELLULAR NETWORKS

Within each brain region, segregated neuronal sub-
circuits can be recognized. A classic example is provided 
by cortical columns (Lorente de Nò, 1938) consisting of 
an array of cooperating neuronal groups extending radi-
ally across the cortical layers and representing units of 
operation (Rakic, 2008). They appear loosely delimitated 
in morphological terms, being dynamic entities chang-
ing according to functional needs. A role in delimiting 
them is probably played by astrocytes, since the astroglial 
cells, especially in mammalian brains, define the micro-
architecture of the parenchyma by dividing the gray mat-
ter into relatively independent structural units through a 
process known as ‘tiling’ (Bushong et al., 2004). 

The relationship between neurons and astrocytes, 
however, is much more significant than this (see Guido-
lin et al., 2023 for a recent review). Evidence, indeed, 
exists highlighting the involvement of ‘neuron-astroglial 
interactions’ in the higher brain functions (Pereira and 
Furlan, 2010). As a matter of fact, the concept of ‘tri-
partite synapse’ has been introduced (Araque et al., 
1999), since in most glutamatergic central synapses, the 
extremity of a protoplasmic astrocyte process wraps the 
synaptic cleft. Since astrocytes express membrane recep-

tors to neurotransmitters and can release their own 
chemical messengers (gliotransmitters), this arrange-
ment allows them to establish a cross-talk with both pre- 
and postsynaptic neurons. Several astrocytes participate 
in this functional organization, coupled with each other 
by gap junctions, leading to the formation of real neu-
roastroglial networks (Fellin and Carmignoto, 2004).

A further broadening of this view can be appreci-
ated when VT-based intercellular communication pro-
cesses are considered. In fact, this signaling backbone 
involves almost all the types of cells in the CNS (Syková 
and Chvátal, 2000). Hence, the concept of ‘complex cel-
lular networks’ has been introduced to indicate the set of 
cells of any type that exchanging signals in a certain vol-
ume of brain tissue are capable not only of integrating 
multiple inputs to give out appropriate outputs but also 
of supporting each other’s survival (Agnati et al., 2000). 

On this basis, it can be proposed that the basic net-
work elements at mesoscale should be defined by consid-
ering not only neuronal networks but also whole com-
partments of brain tissue where different cell types and 
the extracellular matrix work as an integrated ‘function-
al module’ (Agnati et al., 2009; Guidolin et al., 2017).

Age-related changes in brain cell number received 
a significant attention in the last century. Early studies 
(reviewed in Pannese, 2011) led to the idea that a signifi-
cant loss of neurons occurred during normal aging, sug-
gesting such a substantial loss as the origin of the cogni-
tive decline often associated with brain aging. However, 
subsequent studies (see von Bartheld, 2018; Pannese, 
2011 for reviews), exploiting more accurate morphomet-
ric methods, have evidenced that during normal aging 
neuronal loss is limited to restricted regions of the cen-
tral nervous system and is quite small (probably no more 
than 10%). Similar concepts apply to astrocytes as well 
(see Pannese, 2021) and changes with aging in astrocyte 
number were detected only in specific brain regions. 
Moreover, the idea of an overabundance of glial cells 
as compared to neurons also changed with the devel-
opment of modern counting methods and the concept 
that glial cells are not more abundant than neurons in 
human brains is now becoming increasingly accepted in 
the field (von Bartheld, 2018). 

During aging, however, evident morphological 
changes have been reported in both neurons and glial 
cells. The most common age-related structural changes 
undergone by neurons involve a reduction in the com-
plexity of dendrite arborization and dendritic length, 
and the myelin sheaths of axons may become less com-
pact (Dickstein et al., 2007; Pannese 2011). Concern-
ing glial cells, astrocytes may become hypertrophic and 
accumulate intermediate filaments, oligodendrocytes 
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and Schwann cells exhibit alterations consistent with the 
observed changes to the myelin sheaths, while in micro-
glia, proliferation in response to injury, motility of cell 
processes, ability to migrate and phagocytic capabilities 
are often reduced (Rodriguez-Arellano et al., 2015; Pan-
nese, 2021). Possible age-related modifications affect-
ing VT processes in the cortex were also investigated 
(Nicholson, 2005) indicating no significant changes of 
the extracellular space in terms of volume and tortuos-
ity, suggesting that, at least in the cortex, diffusion prop-
erties for small signaling molecules should not change 
dramatically with age.

Altogether these changes likely may modify the pat-
tern of intercellular interactions at this scale, probably 
contributing to the behavioral impairment and cognitive 
decline often associated with normal aging.

MICROSCALE: SYNAPSES AND 
MOLECULAR NETWORKS

At this scale, single cells and synapses can be found. 
Of particular interest at this level are the so-called 
synaptic clusters (SC), in which multiple synapses act 
cooperatively to modulate their strength (Golding et 
al., 2002). SC are often organized around the dendritic 
spines and partially isolated from the surrounding envi-
ronment by glial cells (Golding et al., 2002; Cutsuridis et 
al., 2009).

As pointed out by Sporns et al. (2005), drawing 
the connectome at microscale is infeasible, at least in 
the near future. Even considering the single neurons 
as the basic element, the connections to map would be 
in the order of 1015, a technically impossible task. If we 
also consider other cell types and VT connections, the 
connectome size would become even greater. Howev-
er, it must be said that such a level of structural detail 
may be unnecessary and a simple characterization of 
mechanisms remodeling connectivity at this scale could 
represent a sufficiently significant dataset for a deeper 
description of CNS functions. In particular, to better 
capture properties concerning the strength and plas-
ticity of synapses, looking at the cell membrane can be 
useful. At this level molecular networks can be found. 
They are made of molecules (in particular proteins) 
that function as a metabolic and/or regulatory signaling 
pathway in a cell (Bhalla and Iyengar, 1999). For our dis-
cussion of particular interest are the ‘receptor mosaics’, 
i.e. macromolecular complexes formed at the membrane 
level by receptors as a consequence of direct (structural) 
allosteric receptor-receptor interactions (see Guidolin 
et al., 2019; 2023 for recent reviews). The cooperativity 

that emerges in the actions of orthosteric and allosteric 
ligands of the monomers forming the assembly provides 
the cell decoding apparatus with sophisticated dynamics 
in terms of modulation of recognition and signal trans-
duction. Thus, the formation of the receptor mosaics 
allows an integration of the incoming signals already at 
the plasma membrane level and can significantly con-
tribute to set and tune the efficiency of the connections 
between cells and, in particular, the synaptic strength 
(Agnati et al., 2003). Interestingly, methods from graph 
and network theory appear appropriate also to describe 
the dynamic behavior of interacting receptors (Guidolin 
et al., 2007), further suggesting the possibility of includ-
ing these structures in the context of connectomics. In 
particular, the possible existence of receptors acting 
as ‘hubs’ in the receptor assembly has been suggested 
(Agnati et al., 2016). Due to their position in the network 
of receptor interactions, hub receptors could play a key 
role in the integrative action of the assembly and repre-
sent a target of primary importance from the pharmaco-
logical perspective.

As mentioned before, with increasing age the den-
dritic tree undergoes progressive regression. In this con-
text, it has been known for a long time that the number 
of dendritic spines significantly decreases (Nakamura 
et al. 1985; Nunzi et al., 1987). These changes have been 
assessed quantitatively in certain regions of the nervous 
system. For instance, the reduction in spine number in 
monkey cerebral cortex ranges from 25 to 50% accord-
ing to the area considered (Dumitriu et al. 2010), while 
in the CA1 region of the rat hippocampus the reported 
reduction was of about 12% (Nunzi et al., 1987). Being 
dendritic spines important sites of synapse formation, 
these findings are consistent with observations indicat-
ing a decrease of neuronal connectivity at microscale 
during normal aging (Morrison and Baxter, 2013). A 
tendency to reduced inter-astroglial coupling has also 
been reported (Cotrina et al., 2001). However, during 
aging astrocytes seem to conserve their ability to express 
spontaneous and neurotransmitter-dependent intracellu-
lar Ca2+ signals. Moreover, gliotransmission resting lev-
els, and astrocyte-neuron interactions also appear largely 
conserved (Gomez-Gonzalo et al., 2017).

From the functional standpoint, one of the general 
hallmarks of aging is the decline of a number of physi-
ological functions in response to a variety of stimuli. 
These observations led to an emerging hypothesis attrib-
uting aging to loss of cell communications (see Robert 
and Fulop, 2014) mainly associated either to some recep-
tor loss in aging cells and tissues or to their uncoupling 
from their specific signaling pathways (Santos-Otte et 
al., 2019). Several examples of these processes have been 
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documented in the CNS. They include decline in mus-
carinic responsiveness with age (Joseph and Roth, 1990), 
loss of D2/D3 dopamine receptors in extrastriatal regions 
(Kaasinen et al., 2020), and alterations in the expres-
sion and activity of Gi/0 protein-coupled receptors in the 
human frontal cortex, hippocampus, substantia nigra and 
striatum (de Oliveira et al., 2019). The involvement of G 
protein coupled receptors (GPCRs) is of particular inter-
est for the present discussion, in view of their well-doc-
umented (see Guidolin et al. 2007; 2019; 2023) capability 
to form receptor complexes at the cell membrane through 
direct allosteric receptor-receptor interactions. In fact, due 
to oligomerization of GPCRs at the membrane and their 
cooperative signaling, downregulation of some specific 
GPCR may affect signaling and drug targeting of other 
types/subtypes of GPCRs with which it interacts, opening 
the possibility that the dynamics of molecular networks 
could exhibit significant age-associated changes.

CONCLUDING REMARKS

The rapid increase of studies addressing connec-
tomics clearly indicates that the anatomical mapping 
of the relationship among CNS components may lead 
to a deeper level of understanding of CNS functions. 
The CNS, indeed, is believed to accomplish its activ-
ity mainly through the integrative action of networks 
in which functions emerge from collections of elemen-
tary units (nodes), linked by connections and bound 
together dynamically (Bullmore and Sporns, 2012). Thus, 
drawing the connectome is much more than collecting 
a large descriptive dataset. It strongly implies the adop-
tion of network models for brain function, including but 
not limited to the quantitative methods offered in abun-
dance by network science (Sporns, 2013).

This research effort has been so far focused mainly 
on neuronal connectivity at a macroscale level, exploit-
ing the possibilities offered by magnetic resonance imag-
ing to evaluate the inter-regional structural and func-
tional connectivity patterns. The obtained data dem-
onstrated a number of nontrivial architectural features 
of the human neuronal networks (Behrens and Sporns, 
2012). Brain integrative actions, however, strongly 
depend, but certainly not only, on the wiring diagram of 
neurons, since additional networks and processes exist 
modulating neuronal activity (Brezina, 2010). In this 
respect, two aspects should deserve consideration. 

The first refers to the increasing evidence indicating 
that synaptic transmission is significantly complemented 
by cell types other than neurons. As illustrated above, 
neurons and glial cells form complex cellular networks 

communicating via two modes of connection, WT and 
VT, which are not mutually exclusive. From the connec-
tomics point of view, it is also of interest to observe that 
both modes can be identified, mapped, characterized in 
terms of their neuroanatomical and biophysical features 
(Syková and Chvátal, 2020) and included in formal net-
work models (Guidolin et al., 2007; 2017). The second 
concerns the level of highest miniaturization of the CNS 
network organization, where protein-protein allosteric 
interactions generate molecular networks performing 
integrative functions already at the plasma membrane lev-
el, suggesting they could be of relevance for connectomics 
(Sala et al., 2023). In this respect, of the greatest impor-
tance are direct (structural) receptor-receptor interactions, 
playing a role in setting synaptic efficacy and in memory 
processes (Agnati et al., 2003; Guidolin et al., 2007). 

Finally, it must be observed that the connectome is 
a dynamical entity, undergoing changes during lifetime. 
A number of connectomics-based studies concerning 
typical and atypical development of human brain neu-
ronal networks from birth to early adulthood are pres-
ently available (see Cao et al., 2016, for a review) and, 
as briefly discussed above, the number of studies on the 
modifications induced by the normal aging process is 
increasing (see Zuo et al., 2017). In this respect, however, 
a better understanding of the relationship between brain 
structure (at all the organizational levels) and behav-
ior across the whole life span still represents a defining 
agenda for the next future. This effort, indeed, may help 
to better discriminate the effect that pathologic aging 
and disease processes have on the declining CNS archi-
tecture, as well as the interventions aimed at targeting 
these conditions. 
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