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Summary

The location of sympathetic, somatic and sensory neurons projecting to the cranial tibial mus-
cle of the pig hindlimb was studied with the neuronal non-transynaptic tracer Fast Blue. Addi-
tionally, the number and the size of these neurons were determinated. The Fast blue, randomly
applied to the cranial tibial muscle belly of 3 pigs, labelled sympathetic neurons in the ipsilat-
eral L5-S3 and contralateral S1 sympathetic trunk ganglia and in the prevertebral caudal mes-
enteric ganglia of both sides. The somatic motoneurons were identified in the ipsilateral ventral
horn of the S1 segment of spinal cord, while the sensory neurons were located in the ipsilateral
L7-S1 spinal ganglia. The diameter of the multipolar sympathetic neurons oscillated between
26 and 46 pm in the sympathetic trunk ganglia and between 18 and 42 ym in the caudal mes-
enteric ganglia. The size of the multipolar spinal motoneurons oscillated between 33 and 102
pm. The size of the pseudounipolar sensory neurons oscillated between 23 and 67 ym. In all
ganglia, the labelled neurons were localized at random and did not show a somatotopic distri-
bution. Our results document a conspicuous autonomic innervation projecting to the “classic”
skeletal cranial tibial muscle. Probably this innervation is destined to the muscle vessels.
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Introduction

The skeletal muscles receive a sensory and motor innervation, that travel in the
spinal nerves. In particular, studies carried out with horseradish peroxidase applied
to freshly transected nerves have documented the presence of discrete numbers of
sympathetic postganglionic fibres in the nerves supplying the cat (McLachlan and
Janig, 1983) and the rat (Baron et al., 1995) skeletal muscles. In spite of these observa-
tions, it is not known whether any relationship exists among the location of postgan-
glionic neurons, the segmental spinal ganglia and the segments of spinal cord where
the somatic motoneurons directly projecting to a “classic” skeletal muscle are local-
ized. Differently our previous studies have documented the site of autonomic, senso-
ry and somatic neurons projecting to “special” skeletal muscles associated to genital
organs, such as the pig cremaster muscle (Botti et al., 2006a) and the pig bulbospon-
giosus muscle (Botti et al., 2009). In particular we have demonstrated a conspicuous
and proportionally elevated sympathetic innervation for the aforesaid muscles.

Therefore we have undertaken a qualitative and quantitative study to identify the
cell bodies of origin of the autonomic, motor somatic and sensory fibres projecting to
the pig cranial tibial muscle (CTM). The neurons have been identified by retrograde
labelling with Fast blue (FB), inoculated into the muscle belly.

The study was carried out in the pig, an important zootechnical animal and an
interesting model in biomedical (Dodds, 1982; Swindle et al., 1992; Crissinger et al.,
1994) and neuro-anatomical studies (Merighi et al., 1990; Timmermans et al., 1993;
Kaleczyc et al., 1995, 1999, 2002; Kaleczyc, 1998; Majewski et al., 1999; Panu et al.,
2001, 2003; Botti et al., 2006a, 2006b, 2009).

Preliminary data of this research have been performed in abstract form (Gazza et
al., 2005).

Materials and methods

All procedures were approved by the local ethics committee for animal experi-
mentation and by the Italian Ministry of Health. Precautions aimed at avoiding
unnecessary suffering were taken at all stages of the experiment.

The study was carried out on the CTM of 3 intact 50 Kg b.w. pigs using the retro-
grade neuronal tracer method.

The animals were anaesthetized with azaperone (2 mg/Kg) and ketamine (10 mg/
Kg), and their left CTM was identified by making an incision in the upper layers of the
leg. In the central part of the muscle belly, 100 ml of 2% FB, a fluorescent tracer with
affinity for the cytoplasm, were inoculated in five different and random sites (20 ml of
2% w /v solution per site). In all cases, the CTM fascial connective tissue represented a
barrier capable of preventing the dispersion of the tracer in the surrounding tissues.

After a previously optimized 10-day survival time, the animals were again anaes-
thetized and intracardially perfused, first with heparinized physiological solution and
afterwards with fixative solution (4% w/v of paraformaldehyde in the phosphate
buffer 0.1 mol/L, pH 7.4).

The animals used in this study had 14 thoracic (Th), 7 lumbar (L), 4 sacral (S) and
20 or 22 coccygeal (Co) vertebrae.
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Before collecting the samples, macroscopical and microscopical examination of the
CTM and adjacent tissues revealed that the spread of FB was confined to the muscle
and no evidence of the tracer in the surrounding tissues was found.

From each subject we collected, on both sides, the sympathetic trunk ganglia
(STGs) from Th14 to Col, the prevertebral caudal mesenteric ganglia (CMGs), and the
pelvic plexus and its microganglia (PGs) (Panu et al., 2003), the spinal cord (SC) and
the spinal ganglia (SGs) from Th14 to Col.

The samples were preserved for 24 hours at 4 °C in the aforementioned fixative,
then submitted to three washings in a phosphate buffer (0.1 mol/L, pH 7.4) and kept
for 12 hours (4 °C) in the same buffer with the addition of 10% w/v sucrose. After-
wards the samples were transferred to the same buffer with the addition of 30% w/v
sucrose for 72 hours (4 °C). Finally, the samples were cut into 60 ym-thick serial cry-
ostat sections. The ganglia were cut along their longest axis and the SC was sectioned
transversely. The serial sections from all samples were observed under a fluorescent
microscope (Axioskop 2 plus; Zeiss, Oberkochen, Germany) equipped with epi-illu-
mination and an appropriate UV filter set.

In order to estimate the number of retrogradely labelled neurons, all positive neu-
rons with clearly visible nucleus were counted in each section, given that the thick-
ness of the sections greatly exceeded the diameter of the cellular nuclei (Smolen et
al., 1983). The number of the labelled cells in each site (STG, CMG, SC and SG) is
presented as mean + standard error and range.

In order to measure the neuron soma size, 10 random sections from samples con-
taining the highest numbers of labelled cells in the different animals were projected
at a magnification of 40X and photographed with a Polaroid DMC2 digital camera.
The area of the perikarya was established with Simple PClp 4.0.1 image analysis soft-
ware (Compix Inc., Imaging Systems, Cranberry Township, PA). No attempt to cor-
rect possible over- or under-estimation was made during the image processing, so
care was taken to take measurements in identical conditions.

To better define the localization of labelled neurons in the spinal cord, the position
of labelled neurons was drawn with a SPL-450 SEKONIC X-Y Plotter (Tokyo, Japan).

Results
Distribution and frequency of labelled cells

The use of the retrograde neuronal tracer allowed us to locate CTM-projecting
neurons in STGs, CMGs, SC and SGs (Fig. 1).

The labelled cells of the sympathetic trunk were constantly found in the ipsilateral
L5-S3 and contralateral S1 ganglia. The number of STGs perykaria was 1593.67+60.6
(range 1521-1714), the vast majority of them (1527.67+65.07, range 1430-1651) was
located in the ipsilateral ganglia.

Positive neurons were also found in CMGs (132.67+12.91, range 107-148) bilater-
ally. The vast majority of these cells (109.33+10.04, range 96-129) was located in the
ipsilateral ganglion.

Labelled perykaria were found in the SC, where they found in the ipsilateral ven-
tral horn of S1 segment. The labelled motoneurons were 88.67+3.38, range 82-93.
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Figure 1 - Schema of the distribution of labelled neurons in the (STG), caudal mesenteric ganglia (CMG), spi-
nal ganglia (SG) and spinal cord (SC) after injection of Fast blue in the left cranial tibial muscle.

Retrograde labelled sensory neurons were found in the ipsilateral L7-51 SGs. The
number of sensory cells was 46.67+3.18, range 41-52.

In all autonomic and sensory ganglia, the labelled neurons did not show any pref-
erential localization which could suggest a somatotopic distribution.

Morphometric characteristics and diameters of autonomic, somatic and sensory neurons

The STGs neurons were multipolar and their diameter oscillated between 26 and
46 ym (Fig. 2).

Also the CMGs neurons were multipolar with a diameter oscillating between 18
and 42 ym (Fig. 3).

The positive neurons of SC were multipolar with a diameter oscillating between
33 and 102 ym (Fig. 4).

The sensory CTM-projecting neurons were roundish and devoid of dendrites,
with a diameter varying between 23 and 67 um (Fig. 5).

Discussion

The present study, for the first time in a breeding species, yields information on
localization, number and size of the postganglionic, somatic and sensory neurons
projecting to the pig CTM, a “classic” hindlimb skeletal muscle. After application of
FB to the muscle belly, labelled cell bodies were identified bilaterally in STGs and in
CMGs, and only ipsilaterally in SC and SG.

The vast majority of CTM-projecting neurons were autonomic. They were concen-
trated in the sympathetic chain ganglia, with a broad cranio-caudal extension, and in
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25 um

Figure 2 - Micrograph showing a multipolar labelled neuron of the left, ipsilateral, L7 sympathetic trunk
ganglion. Bar = 25 um.

Figure 3 — Micrograph showing two multipolar labelled neurons of the left, ipsilateral, caudal mesenteric
ganglion. Bar = 25 um.
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Figure 4 - Micrograph showing two multipolar somatic labelled neurons of the S1 segmant of the spinal
cord. Bar = 25 um.

— 35 um

Figure 5 — Micrograph showing a labelled pseudounipolar neuron of the left, ipsilateral, S1 spinal ganglion,
projecting to the cranial tibial muscle. Bar = 35 um.
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Figure 6 - The localization of labelled spinal motoneurons following Fast blue injections into the cranial tibi-
al muscle is shown in tranverse sections of 3 different tracts of the S1 segment of the spinal cord.

the CMGs. Therefore, we retain that the autonomic source of porcine CTM innerva-
tion is sympathetic in nature.

We consider that the remarkable autonomic innervation of the pig CTM could
be attributed, primarily, to the vascular contingent of the muscle, as it has already
been demonstrated for the vessels of the guinea-pig limb muscles (Grasby et al., 1997)
and human skeletal muscle (Saito et al., 1997). Autonomic control of vasomotor func-
tions regulates muscle metabolism (Grant, 1966; Baez, 1973; Fleming et al., 1987, 1989;
Franken et al., 1996; Berg et al., 1997; Kurjiaka, 2004). In fact, during skeletal muscle
contraction it is possible to observe a functional vasodilation, rapidly followed by a
sympathetic mediated vasoconstriction (Thomas and Segal, 2004). Initially the rhyth-
mic skeletal muscle contractions augments capillary perfusion (Sweeney and Sarelius,
1989) and promotes the extraction of oxygen and nutrients from the blood (functional
vasodilation) (Gorczynski et al., 1978; Marshal and Tandon, 1984). Subsequently the
blood flow is restricted by the autonomic nervous system to increase and preserve
the local pressure (Van Teeffelen and Segal, 2003).

Furthermore, an autonomic innervation could facilitate the neuromuscular trans-
mission produced by an increased release of acetylcholine (Kuba and Tomita, 1971),
and either prolong or curtail the active state of motor units (Barker and Saito, 1981).

Our research allowed to localize the pig CTM motor somatic neurons. These cells
were located ipsilaterally in the ventral horn of S1 segment of SC. The motoneurons
are distributed in all the lateral part of the ventral horn, even if the vast majority of
labelled somata were topographically located in the lateral part of the apex of ventral
horn (Fig. 6).

The primary sensory neurons of the CTM were located in the ipsilateral L7-S1
SGs. The lumbo-sacral extension of marked SGs found in this study confirms that
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also in the pig the afferent fibres from CTM travel along the deep peroneal nerve,
that is a branch of the common peroneal nerve and this is a branch of the ischiatic
nerve. In the pig the ischiatic nerve originates from L6 and S2 nerves (Getty, 1982;
Nickel et al., 1988). The afferent projections from the CTM may transmit different
somatic and visceral inputs to the spinal cord. This information, which originates
from the striated fibres and smooth vascular musculature of the CTM, could influ-
ence muscle contraction and metabolism.

Our study, carried out by the retrograde neuronal tracer technique, has localized
the autonomic, somatic and sensory neurons innervating a pig hindlimb muscle, the
CTM, and has documented that the vast majority of the neurons projecting to the
muscle and its blood vessels are autonomic.

Further research needs to be carried out in order to define the neurochemical con-
tent of the neurons projecting to the CTM.
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