Sei anni memorabili al Colle di Arcetri
Six memorable years on the Arcetri Hill
Gabriele Veneziano
CERN, Ginevra
Collège de France, Parigi

Riassunto. Ho cercato di estrarre, dalla mia labile memoria, i ricordi più vivi che mi sono rimasti dei sei anni che ho trascorso ad Arcetri, come studente, ma soprattutto come uno dei molti “gattini” che, in un momento chiave nell’evoluzione della teoria delle interazioni fondamentali, hanno avuto la fortuna di apprendere le armi del mestiere in un ambiente così vivace e stimolante.

Parole chiave: Arcetri, Fisica teorica, Raoul Gatto, Gattini.

Ho un dolcissimo ricordo di quei sei anni (1960-1966) passati ad Arcetri, anni che hanno senz’altro forgiato gran parte della mia personalità come fisico. Cercherò di ricordarli come posso, anche se il tempo, e la mia scarsa memoria, può averli offuscati, o forse sublimati.

Nell’estate del 1960, dopo aver passato l’esame di maturità al Liceo Scientifico Leonardo da Vinci, decisi di iscrivermi a Fisica all’Università di Firenze. Fu una decisione abbastanza sofferta: da un lato perché il mio Professore di Liceo, il bravissimo Teobaldo Liverani, mi aveva consigliato di presentarmi invece al concorso per entrare alla Scuola Normale di Pisa; e dall’altro poiché, insieme a due compagni di classe del liceo, Arturo Bambini e Antonio Fasano, avevamo a...
largo dibattuto se iscriverci a Matematica o a Fisica. Finimmo per optare tutti e tre per la Fisica e per Firenze.

Sebbene fossi riuscito bene anche nelle materie letterarie al Liceo, ricordo il sollievo di potermi concentrare su quelle scientifiche che trovavo, in generale, ben più interessanti e facili da apprendere rispetto alle traduzioni dal/in latino o al memorizzare date storiche e capitali geografiche.

Il biennio (1960-1962) copriva varie discipline, non tutte ugualmente eccitanti. Inoltre, le varie materie erano delocalizzate, per lo più in centro, con la sola eccezione dei corsi di Fisica ad Arcetri (e più tardi di Matematica a Careggi). Per fortuna i miei mi avevano messo a disposizione una Fiat 500 il che facilitava non poco gli spostamenti necessari per seguire i vari corsi. Ricordo come particolarmente piacevoli i corsi di Matematica, in particolare del Prof. Roberto Conti e, per la Fisica, quelli del Prof. Manlio Mandò. I più ostici erano quelli di Chimica, in via Gino Capponi; ed infatti il voto di Chimica sarebbe stato, più tardi, il più basso della mia Laurea.

Un capitolo a parte furono i corsi del Prof. Mandò al biennio. Ricordo che li trovavo atipici ma, al tempo stesso, molto istruttivi. Invece di cercare di impartire il massimo di nozioni per riempire un programma prestabilito, mi parve che Mandò volesse piuttosto procedere lentamente (a scapito di non arrivare a coprire tutto il materiale previsto) per farsi capire il ragionamento fisico che stava sotto la formulazione matematica di tale e tale legge. Fu questo un messaggio prezioso che ho cercato di far mio nella ricerca: il cercare costantemente l’idea fisica che sta dietro la matematica, vista come strumento e mai come fine ultimo.

instead; and on the other because, together with two high school classmates, Arturo Bambini and Antonio Fasano, we had long debated whether to enrol in Mathematics or Physics. All three of us ended up opting for Physics and Florence.

While I had also done well in literary subjects at high school, I remember the relief of being able to focus fully on science, which I generally found far more interesting and easier to learn than translating from and into Latin or memorising historical dates and geographical capitals.

The first two-year courses (1960-1962) covered various subjects, not all of which were equally exciting. Moreover, the various subjects were decentralised, mostly in the centre, with the sole exception of the Physics courses at Arcetri (and later Mathematics at Careggi). Fortunately, my parents had placed a Fiat 500 at my disposal, which made it much easier for me to travel to the various courses. I particularly remember enjoying the Mathematics courses, especially those of Prof. Roberto Conti and, in Physics, those of Prof. Manlio Mandò. The toughest were those of Chemistry, in Via Gino Capponi; and indeed my Chemistry grade would later become the poorest of my degree.

Prof. Mandò’s courses were something else. I remember finding them unusual, but very instructive at the same time. Instead of trying to impart the maximum of notions to fill a pre-established program, it seemed as if he rather wanted to proceed slowly (at the expense of not covering all the material provided) to make us understand the physical reasoning behind the mathematical formulation of this or that law. This was a valuable message that I tried to em-

Gabriele Veneziano
L’esame del Mandò era tristemente noto per la sua difficoltà, un vero scoglio e filtro per chi voleva proseguire oltre il biennio. Quando venne il giorno della comunicazione dei risultati, arrivando ad Arcetri, sentii mormorare che, per la prima volta, Mandò aveva dato 30 e lode al suo esame, e a qualcuno il cui cognome finiva par “ano”. Pensai piuttosto al mio compagno Fasano, bravissimo anche al liceo. Invece il fortunato ero proprio io. Quello che Mandò mi disse, spiegando il voto, fu che avevo usato un metodo non del tutto deduttivo, ma parzialmente induttivo e che questo gli era piaciuto. Avevo fatto alcune approssimazioni, risolto in quell’ambito il problema per poi, a posteriori, verificare che la soluzione soddisfaceva a quelle approssimazioni. Questa idea che, nella ricerca, si debba talvolta lasciare la strada puramente deduttiva e si debba invece osare per trovare una possibile soluzione del problema, per poi naturalmente verificarla, mi è rimasta per tutta la mia carriera scientifica (in particolare nella costruzione del modello che porta il mio nome).

Altri corsi del biennio erano meno eccitanti, come quello del Franchetti su elettricità e magnetismo, che seguiva pari pari le sue dispense e quello del Sestini (meccanica razionale) molto formale e un po’ privo di ispirazione. Anche il laboratorio di fisica, probabilmente a causa degli scarsi mezzi a disposizione, non mi piacque più di tanto.

Il terzo anno (1962-1963) era tradizionalmente quello in cui gli studenti cercavano un Professore disposto a seguirli in una ricerca abbastanza originale da poter costituire una tesi. Al tempo stesso avrebbero seguito corsi e sostenuto relativi esami piuttosto attinenti al campo legato all’argomento della tesi. I bravi
studenti riuscivano, nel giro di altri due anni, a passare tutti gli esami, a finire e difendere la tesi, e a laurearsi.

Nel mio caso le cose andarono piuttosto diversamente. Il gruppo sperimentale di alte energie (Giuliano Di Caporiacco, Michele Della Corte, Anna Cartacci...) aveva preso l’iniziativa e mi aveva già contattato per sapere se avesse potuto interessarmi una tesi sperimentale sui dati che stavano raccogliendo (probabilmente al sincrotrone del CERN). Io tergiversavo, sentendomi più adatto ad una tesi teorica, ma la cattedra teorica stava per diventare vacante poiché il suo titolare, il Prof. Giuseppe Morpurgo, stava per trasferirsi a Genova. Doveva essere presto ripiazzato da un giovanissimo professore in trasferimento da Cagliari, Raoul Gatto.


L’atmosfera nel gruppo era estremamente stimolante. Gatto era molto informato sugli sviluppi della fisica teorica non solo in Italia ma anche, dati i suoi contatti internazionali, in Europa e negli Stati Uniti. Era anche una fonte inesauribile di stimolo e spinta alla ricerca. Il gruppo era forte e dinamico, con un mix di giovani aspromenti e con il maestro Gatto come caposaldo. In quegli anni, Firenze era un centro di riferimento per la fisica teorica, con un’atmosfera vivace e stimolante che invitava a fare scuola e a fronteggiare i difficili problemi del nostro ambito di ricerca.
Sei anni memorabili al Colle di Arcetri

The atmosphere in the group was extremely stimulating. Gatto was very well informed about developments in theoretical physics not only in Italy but also, given his international contacts, in Europe and the United States. He was also an endless source of ideas that were both interesting and accessible even to researchers at the beginning of their careers. Gatto distributed these ideas among the various students in the group, probably using some criteria based on his judgement of each one’s specific talents. This created a healthy competitive environment among the youngsters who vied with each other to see who could best please their mentor. Interesting publications that would enrich everyone’s curriculum were the outcome.

I remember that Maiani and Preparata made a close-knit and very efficient duo and that some people (like Buccella) imitated Preparata by mimicking one of his frequent shouts that echoed through the corridors: “Luciano, Luciano!” Buccella was also very good at imitating Gatto’s voice: “Let me get this straight…” or “It must be very deep…” two statements that indicated his strong perplexity about what he had just been told.

A particularly gifted and respected “gattino” was Giovanni Gallavotti, who however found particle physics -and the associated quantum field theory- insufficiently rigorous. He soon shifted his interests to statistical mechanics, in which he would forge a magnificent career.

Gatto also interacted with the young Florentine assistants, especially Marco Ademollo, with whom he wrote a very important work on the non-renormalisation, to first order in the breaking of SU(3), of a certain parameter of the weak current. He also interacted quite a bit
Ricordo anche che Gatto rinforzò il mio atteggiamento sul rapporto fra Fisica e Matematica. Naturalmente in senso ironico diceva: un fisico non deve studiare la Matematica, deve giusto saperla! Un’altra sua caratteristica era l’abilità di “sgattaiolare”, cioè di dileguarsi senza farsi accorgere. Probabilmente lo faceva quando era stanco, o aveva altre cose da fare piuttosto che intavolare lunghe discussioni scientifiche con qualche suo allievo. Dopo aver atteso a lungo una sua telefonata (magari ben oltre l’ora di cena perché era consuetudine restare a lavorare fino a tardi), si scopriva che era già partito!

Venendo al sottoscritto quando chiesi a Gatto se sarebbe stato disposto a farmi da relatore per una tesi, la risposta fu abbastanza incoraggiante ma, almeno sul colpo, sorprendente. Mi disse qualcosa del tipo: prima di poterti (o poterle se mi dava ancora del lei?) dare un argomento di tesi dovresti non solo seguire i corsi ma anche approfondirne il contenuto studiando un certo numero di libri e poi passare un esame scritto e orale. Solo a quel punto deciderò.

Questo chiaramente significava che non sarei stato capace di laurearmi nei canonici quattro anni ma che ce ne sarebbero voluti almeno cinque. Ma la cosa non mi spaventò più di tanto perché sapevo che avrei appreso cose interessanti…

Andò peggio al mio caro amico di liceo, il già ricordato Antonio Fasano, che dovette desistere e finì per laurearsi con una tesi diretta dal Prof. Sestini, docente di Meccanica Razionale a Matematica, dipartimento dove Fasano divenne poi professore. È oggi membro dell’Accademia dei Lincei.

Fu così che mi “feci” tutto il libro dello Schweber sulla teoria quantistica dei campi (purtroppo i due volumi di Bjorken e Drell, ben più leggibili e moderni, with Giorgio Longhi. Less so with Claudio Chiuderi whom I remember saying, as a joke, that Gatto’s eyes could easily see through his body.

I also remember that Gatto reinforced my attitude towards the relationship between Physics and Mathematics. He would say, in an ironic sense of course: a physicist doesn’t have to study Maths, he just has to know it! Another characteristic of his was his ability to disappear without anyone noticing. He probably did this when he was tired or had something else to do rather than engage in long scientific discussions with one of his students. After waiting a long time for a phone call from him (perhaps well after dinner time because he was in the habit of staying late at work), it would turn out that he had already left!

Coming back to myself, when I asked Gatto if he would be willing to be my thesis advisor, his answer was quite encouraging but, at least initially, surprising. He told me something like - before I can give you a thesis subject, not only do you need to take the normal courses but also to further deepen their content by studying several books and, finally, pass a written and oral examination. Only then will I decide.

This clearly meant that I would be unable to graduate in the standard four years but would need at least five. This did not frighten me too much because I knew I would learn a lot of interesting things... It was worse for my dear high school friend, the aforementioned Antonio Fasano, who had to give up and ended up graduating with a thesis directed by Prof. Sestini, professor of Rational Mechanics in Mathematics, the department where Fasano later became a professor. He is now a member of the Accademia dei Lincei.

Gabriele Veneziano
uscirono un anno o due troppo tardi). Fu così che lessi anche una rassegna interessante di Amati e Fubini su vari metodi per studiare le interazioni forti, quali la diffusione pione-nucleone. Fu forse l’inizio del mio interesse specifico nella fisica delle interazioni forti alla quale avrei dato i miei contributi più significativi. Dovetti anche approfondire le mie conoscenze della teoria dei gruppi, strumento molto usato da Gatto e dai suoi discepoli anche se, soprattutto, nella fisica delle interazioni deboli.

Dopo un lungo periodo speso studiando i vari libri di cui sopra venne il giorno dell’esame, con una parte scritta e una orale. Non fui brillantissimo. Allo scritto sbagliai un segno nel conto del decadimento del pione carico in elettrone-neutrino da paragonare a decadimento in muone-neutrino. Gatto, nell’annunciarmi il risultato dell’esame, mi annunciò subito che avevo fatto un “errore gravissimo” dato che aveva sovrastimato il primo processo di molti ordini di grandezza (il risultato non andava zero con la massa dell’elettrone). L’orale andò meglio, ma non fu perfetto (detti una dimostrazione assumendo una proprietà che invece non era necessaria). Temetti dunque il peggio: invece Gatto mi confermò che mi avrebbe dato una tesi! Comunque mi servì di lezione. Dopo un conto matematico (dove chiunque può sbagliare un segno specie nel contesto di un esame!) pensare sempre se il risultato ha senso o no fisicamente!

Ricordo anche un altro episodio, avvenuto più tardi. Gatto mi chiese di iscrivermi a un concorso di Assistente (o comunque a un incarico importante). La cosa mi stupì: dovevo essere appena laureato, come avrei potuto pretendere a un tal posto? Scoprii più tardi che era un concorso di cui si conosceva già il vincitore...
Ma Gatto voleva che ci fosse ufficialmente qualche altro concorrente... di paglia. Quello che ricordo, stranamente, è che in un tema abbastanza libero dissi che sarebbe stato molto interessante capire la questione della misura, nell’ambito della meccanica quantistica, di un campo in un punto (un problema sollevato in un famoso articolo di Bohr e Rosenfeld). È interessante che questo sia stato un tema su cui sono tornato tanti anni dopo nell’ambito della teoria delle stringhe!

Tornando agli anni prima della Laurea fu un periodo molto felice della mia vita. Lo studio e la ricerca ad Arcetri erano interessanti con i corsi del secondo biennio concentrati su argomenti vicini ai miei gusti. Come corsi, oltre a quelli di Ademollo e di Gatto, ricordo con nostalgia i corsi di Giuliano Toraldo di Francia su Metodi Matematici e su Ottica quantistica. Quest’ultimo era preceduto da un’introduzione moderna all’elettromagnetismo classico, usando un formalismo relativistico, anni luce da quello che avevo sentito nel biennio.

Finalmente, nel dicembre 1965, mi laureai con pieni voti difendendo una tesi sui decadimenti deboli degli adroni come predetto da un gruppo non compatto di simmetria, U(12), proposto all’ICTP di Trieste da Robert Delbourgo, Abdus Salam e John Strathdee. Poco prima era stato pubblicato, su Physics Letters, il mio primo articolo scientifico. Scritto insieme a Gatto, si trattava di un lavoro sulle interazioni forti che combinava metodi dispersivi e metodi gruppali (in effetti un sottogruppo SU(6) del suddetto U(12)) per ottenere predizioni sulla massa di una risonanza adronica. Avrebbe anticipato una mia costante predilezione per la teoria delle interazioni forti, riaffiorata periodicamente durante tutta la mia carriera. Secondo Buccella fu Gatto stesso a decidere che qualcuno nel suo gruppo
Sei anni memorabili al Colle di Arcetri

someone in his group should go in that direction...perhaps Gatto, with his sensitivity, realised that I was a good candidate to cover that area of research.

Even before I graduated, I enrolled for the 1965-66 academic year at the Scuola di Perfezionamento in Fisica in Florence. I still have (quite by chance!) my student enrolment booklet (together with my 1960 matriculation booklet) which shows that I took three courses given by Ademollo, Chiuderi and Wolfgang Alles. During that academic year, I was given an Angelo Della Riccia scholarship which, to my great satisfaction, was my first salary. It was a very fruitful year of research for me, and a few points stayed imprinted in my memory.

The first arose from a stroke of good luck: the visit to Florence by Professor Susumu Okubo (who came from Rochester) with whom Gatto had mutual scientific interests. The result was a four-author collaboration between two youngsters (Buccella and me) and two professors (Gatto and Okubo). The work caused quite a stir because it showed, using the Jacobi identity, that it was necessary to include a quantum anomaly (so-called Schwinger terms) in the algebra of currents on top of the conventional one. The article, which appeared in Phys. Rev., was discussed by Sidney Coleman in Erice, in the summer of 1966, where it was cited by him as “the four Florentine false proofs” (although I was the only Florentine among the four) the “false” referring to the hypothesis of the validity of Jacobi’s identity, which was most likely invalid.

At that time there was a lot of interest in the so-called “saturazione” of the algebra of currents. It was hoped that it would be possible to represent this algebra using only a finite number of states. At a certain point, following discussions with Gatto, Maiani and Preparata, I realised
ti associati alle correnti, si poteva dimostrare che era impossibile avere una sua rappresentazione finito-dimensionale. Informai Maiani e Preparata di questo risultato chiedendo se fossero interessati a scrivere un lavoretto insieme, ma loro, generosamente, dissero che dopotutto avevo dimostrato da solo il teorema, e che era giusto che fossi l’unico autore. Buttai giù il testo dell’articolo e chiesi l’opinione di Gatto che, dopo essersi convinto della sua correttezza, prese nei miei confronti la stessa posizione di Maiani e Preparata.

Questo risultato, modesto ma rigoroso, fu in qualche modo l’inizio della mia fortuna professionale. Fu notato, in particolare, da Sergio Fubini, lui stesso autore di articoli sulla saturazione dell’algebra. Poco dopo, se ricordo bene, si seppe che Fubini avrebbe dato un paio di seminari alla Normale di Pisa su argomenti connessi. Un gruppo di “gattini” (non mi pare Gatto stesso) decise di recarsi in auto a Pisa e di fermarsi una notte per assistere anche al seminario dell’indomani. Fu così che conobbi personalmente Sergio Fubini. Ricordo che, dopo il primo seminario, gli posai una domanda su due procedure che portavano a risultati leggermente diversi. La sua reazione mi stupì: invece di dire che la risposta era ovvia, Fubini disse che ci avrebbe pensato. Il giorno dopo tornò sulla mia domanda e dette una spiegazione soddisfacente, ma non del tutto banale, della discrepanza. Sono certo che questi due ultimi episodi, insieme alle discussioni che ebbi con Fubini all’Istituto Weizmann nell’inverno 1968, giocarono un ruolo importante nella sua decisione di accettarmi per un post-doc al MIT circa due anni più tardi (e dunque prima che avessi scritto il mio lavoro sull’ampiezza duale).

that by considering the algebra of moments associated with currents, it could be shown to be impossible to have a finite-dimensional representation of it. I informed Maiani and Preparata of this result and asked if they would be interested in writing a paper together, but they generously said that I had proved the theorem myself and so it was only fair that I should be the sole author. I wrote down the text of the article and Gatto for his opinion. After being convinced of its accuracy, he took the same stance as Maiani and Preparata.

This modest but rigorous result was, in some ways, the beginning of my professional fortune. It was noticed, in particular, by Sergio Fubini, who was himself the author of articles on the saturation of current algebra. Shortly afterwards, if I remember correctly, it became known that Fubini was to give a couple of seminars at the Normale in Pisa on related topics. A group of “gattini” (but I don’t think Gatto himself) decided to drive to Pisa and spend a night there to also attend the seminar the next day. That was how I got to know Sergio Fubini in person. I remember that, after his first seminar, I asked him a question about two procedures that led to slightly different results. His reaction surprised me: instead of saying that the answer was obvious, Fubini said he would think about it. The next day he returned to my question and gave a satisfactory—and not entirely trivial—explanation of the discrepancy. I am certain that these last two episodes, together with the discussions I had with Fubini at the Weizmann Institute in the winter of 1968, played an important role in his decision to accept me for a post-doc at MIT about two years later (before I had written my paper on the dual amplitude).

Infine, durante quegli anni, e più precisamente nel marzo 1963, conobbi Edy che mi fu di enorme sostegno durante tutto il periodo pre- e post-laurea, non solo morale ma anche materiale, perché mi dette un grande aiuto nella redazione della tesi. Insieme a lei maturò anche l’idea di proseguire i nostri rispettivi studi in Israele, paese che avevo già visitato qualche anno prima e dove vivevano vari miei e suoi parenti, compresa la sorella di mia madre. In particolare, tramite alcuni lontani parenti che conoscevano Yitzhak Frishman, ero stato a trovarlo all’Istituto Weizmann ed ero rimasto colpito dalla bellezza del Campus e dall’atmosfera che vi regnava. Seppi che avevano una “Graduate School” molto reputata.

Questa idea fu rafforzata da un incontro che ebbi a Firenze, verso la primavera del 1966, con il grande fisico Giulio Racah, ebreo fiorentino emigrato da tempo in Israele e Professore all’Università di Gerusalemme. Essendo Racah di passaggio a Firenze, amici comuni fecero si che potessi incontrarlo a casa sua. Parlammo di Israele e di fisica, in particolare di gruppi di simmetria (la sua specialità). Si parlò di chi era attualmente in fisica teorica al Weizmann: venne così fuori il nome di Harry Lipkin di cui Racah aveva un’ottima opinione.
Quando comunicai questa idea a Gatto la sua reazione non fu esattamente incoraggiante. Ricordo che mi chiese “Ma chi c’è al Weizmann?”. Risposi che c’erano almeno due fisici di cui conoscevamo i lavori: Haim Harari e Harry Lipkin; Gatto riconobbe che non sarei andato in un vuoto scientifico (anche se forse non altrettanto valido come Firenze). Alla fine, l’idea di iscrivermi per un Ph.D. al Weizmann prevalse. Feci domanda e questa fu presto accettata. E Lipkin sarebbe stato il mio Advisor.

Fu così che Edy ed io ci sposammo a fine luglio 1966 e, dopo una luna di miele in Versilia, Venezia e Dolomiti, iniziamo a far valigie per partire (in nave portando dietro una piccola utilitaria). Ci fu appena il tempo di insediarci in un appartamento a Tel Aviv, che Firenze fu colpita dall’alluvione. Era difficile, a quei tempi, avere notizie fresche dall’Italia. Le poche ci arrivavano via radio, quando la rete funzionava ed eravamo ovviamente molto preoccupati. Gatto ebbe l’idea di invitarmi a Firenze per terminare un articolo in ponte insieme a Ademollo e Longhi, penso una scusa per permettermi di tornare a vedere i miei, cosa che apprezzai molto.

Penso di chiudere qui la storia dei miei anni al Colle di Galileo anche se, ovviamente, i successivi ritorni mi hanno sempre dato un enorme piacere, e un pizzico di nostalgia. Voglio solo menzionare due circostanze fra le più significative.

La prima, nel settembre 1967, di ritorno dalla Scuola estiva ad Erice e prima di ripartire per il secondo anno di studi al Weizmann. A Erice mi aveva molto colpito un intervento di Murray Gell-Mann. Menzionò un articolo di Dolen, Horn and Schmit uscito di recente a Caltech e di un possibile “bootstrap” basato su questo lavoro. Andai ad Arcetri a trovare Marco Ademollo, che sarebbe presto partito per due anni come visitatore a Harvard, e gli raccontai quanto avevo sentito a
Erice. Fu così che iniziò una collaborazione che, estesa successivamente a Hector Rubinstein e Miguel Virasoro, avrebbe portato ai modelli duali (e qualche anno dopo alla teoria delle stringhe).

La seconda, molto più recente, è connessa alla rinascita della fisica ad Arcetri (dopo il trasferimento del dipartimento al polo scientifico di Sesto Fiorentino) con la creazione del Galileo Galilei Institute (GGI). Per incarico dell’INFN ne ho seguito, per vari anni, lo sviluppo e il consolidamento dando il mio modesto contributo a quello che è considerato un “fiore all’occhiello” dell’Ente. Durante quei 4-5 anni ho alloggiato per lunghi mesi non lontano dal caro Colle, approfittando sia del contesto scientifico che della bellezza naturale dei dintorni.

Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude…

Giacomo Leopardi, L’infinito

Bibliografia


Ademollo, who was soon to leave for two years as a visitor at Harvard, and told him what I had heard in Erice. This was the start of a collaboration that, having later extended to Hector Rubinstein and Miguel Virasoro, would lead to dual models (and a few years later to string theory).

The second, much more recent, is linked to the rebirth of physics at Arcetri (after the department moved to the science hub in Sesto Fiorentino) with the creation of the Galileo Galilei Institute (GGI). I followed its development and consolidation for several years, on behalf of the INFN, making my modest contribution to what is considered a “feather in the cap” of the organisation. During those four to five years, I spent long months staying not far from my beloved Hill, taking advantage of both the scientific environment and the natural beauty of the surroundings.

I always have felt fondness for this lonely hill
and for this hedge which screens off
such a large part of the furthermost horizon.

Giacomo Leopardi, Infinity


Notes

1 La scuola di Gatto ad Arcetri viene ricordata anche in (Preparata 2002) e in (Maiani 2008).
2 Sulla figura e sul ruolo scientifico di Gatto vedi (Maiani 2017), (Casalbuoni e Dominici 2018) e (Battimelli, Buccella, Napolitano 2019).